next up previous
Link to Statistics and Actuarial Science main page
Next: Solutions Up: 22S:194 Statistical Inference II Previous: Solutions

Assignment 11

Problem: Let $ X_1,\dots,X_n$ be a random sample from a Pareto$ (1,\beta)$ distribution with density $ f(x\vert\beta) =
\beta/x^{\beta+1}$ for $ x \ge 1$. Find the asymptotic relative efficiency of the method of moments estimator of $ \beta$ to the MLE of $ \beta$.
Due Friday, April 18, 2003.
Problem: Let $ X_1,\dots,X_n$ be $ i.i.d.$ Poisson$ (\lambda)$ and let $ W = e^{-\overline{X}}$. Find the parametric bootstrap variance Var$ ^*(W)$ and show that Var$ ^*(W)/$Var$ (W) \overset{P}{\rightarrow}
1$ as $ n \rightarrow \infty$.
Due Friday, April 18, 2003.
  1. Let $ X_1,\dots,X_n$ be a random sample that may come from a Poisson distribution with mean $ \lambda$. Find the sandwich estimator of the asymptotic variance of the MLE $ \widehat{\lambda} =
\overline{X}$.
  2. Let $ g(x) = e^{-x}$ for $ x > 0$ be an exponential density with mean one and let $ f(x\vert\theta)$ be a $ N(\theta,1)$ density. Find the value $ \theta^*$ corresponding to the density of the form $ f(x\vert\theta)$ that is closest to $ g$ in Kullback-Liebler divergence.
Due Friday, April 18, 2003.



Luke Tierney 2003-05-04