Algorithm 1 ADMM (x₀, β₀, t) do
1. Input: x₀ ∈ Ω, β₀, t
2. Initialize: x₁ = x₀, y₁ = Ax₀, λ₁ = 0, γ = β₀∥A∥₁ and G = γI − β₀AᵀA or G = 0.
3. for r = 1, 2, . . . do
4. Update x₂ = arg min x∈Ω f(x) + γ∥x − y₁∥₂ (depends on unknown x₁), after t = O(1/t²) iterations, ADMM ensures that F(x₂) − F(x₁) ≤ γ.
5. end for
6. Output: x₂ = x₂ + y₁.

Lemma 1 [1]. By setting β = σmin(G)ζ (ζ depends on unknown x), after t = O(1/ζ²) iterations, ADMM ensures that F(x₂) − F(x₁) ≤ c.

(2) The stochastic ADMM updates x₁, y₁, and λ₁, the same to above (6) and (7), but updates x₂ as

\[x₂ = \arg \min_{x \in \Omega} f(x) + \gamma∥x − y₁∥_2 \quad \text{where} \quad y₁ = \arg \min_{y \in \mathbb{R}^m} \{ f(x₁) + \frac{1}{2}∥Ax − y∥_2^2 \} \] (9)

where ζ is a stepsize and \(y₁ = \arg \min_{y \in \mathbb{R}^m} \{ f(x₁) + \frac{1}{2}∥Ax − y∥_2^2 \} \).

Algorithm 2 SADM (x₀, η, β₀, t) do
1. Input: x₀ ∈ Ω, η, β₀, t
2. Initialize: x₁ = x₀, y₁ = Ax₀, λ₁ = 0, γ = β₀∥A∥₁ and G = γI − β₀AᵀA ≥ I or G₁ = I.
3. for r = 1, 2, . . . do
4. Update x₂ = arg min x∈Ω f(x) + γ∥x − y₁∥₂ (depends on unknown x₁), after t = O(1/ζ²) iterations, with high probability, SADM ensures that F(x₂) − F(x₁) ≤ c.
5. end for
6. Output: x₂ = x₂ + y₁.

Lemma 2 [2]. By setting \(\beta = \frac{1}{\min(\sigma_{\min}(\Omega_{\ell+1}), \sigma_{\min}(\Omega_{\ell}))} \) (ζ depends on unknown x₁), after t = O(1/ζ²) iterations, with high probability, SADM ensures that F(x₂) − F(x₁) ≤ c.

Local Error Bound and Global Error Inequality

Definition 1. A function F(x) is said to satisfy a local error bound condition on \(\epsilon \)-sublevel set if there exist \(\epsilon \geq 0 \) such that for any \(x \in S \),

\[d_{\text{sublevel}}(x, S) \leq \epsilon \rightarrow \Omega(\epsilon F(x) - F(x)) \; \text{(10)} \]

Lemma 3 [3]. For any \(x \in \Omega_{\ell+1} \), \(\epsilon > 0 \), we have

\[x - x_{\ell+1} \leq \frac{1}{\epsilon} \left(d_{\text{sublevel}}(x, S) \right)^{\frac{1}{2}} \] (11)

where \(x_{\ell+1} \in S \) is the closest point in the \(\epsilon \)-sublevel to \(x \).

Locally Adaptive ADMM (LA-ADMM)

Algorithm 3 LA-ADMM (x₀, β₀, A, Ω) do
1. Input: x₀ ∈ Ω, A, initial β₀
2. for k = 1, 2, . . . do
3. Let xₖ = ADMM(xₖ₋₁, βₖ₋₁, tₖ₋₁)
4. Update βₖ = 2/βₖ₋₁, Dₖ = Dₖ₋₁/2.
5. end for

Theorem 1. Assume F(x) obeys the local error bound condition. Let LA-ADMM run with \(t = O\left(\frac{\epsilon_{\min}(\Omega_{\ell}))}{\epsilon} \right) \) for each stage and \(K = \log(\epsilon/\eta) \) iterations for each stage and \(K = \log(\epsilon/\eta) \).

Main Result 2

Theorem 2. Assume F(x) obeys the local error bound condition. Given \(\delta \in (0, 1) \) and \(\delta < K \), let LA-ADMM run with \(t = \frac{\epsilon_{\min}(\Omega_{\ell})}{\epsilon} \) for each stage and \(K = \log(\epsilon/\eta) \) iterations for each stage and \(K = \log(\epsilon/\eta) \).

Algorithm 4 LA-SADM (x₀, η, β₀, t) do
1. Input: x₀ ∈ Ω, η, initial β₀, and D₀.
2. for k = 1, 2, . . . do
3. Let xₖ = SADM(xₖ₋₁, η, βₖ₋₁, tₖ₋₁).
4. Update ηₖ = 2η, βₖ = βₖ₋₁/2, Dₖ = Dₖ₋₁/2.
5. end for

Main Result 1

Theorem 1. Assume F(x) obeys the local error bound condition. Let LA-ADMM run with \(t = O\left(\frac{\epsilon_{\min}(\Omega_{\ell}))}{\epsilon} \right) \) for each stage and \(K = \log(\epsilon/\eta) \) iterations for each stage and \(K = \log(\epsilon/\eta) \).

Remark 1. The number of iteration \(t \) depends on the unknown parameter. This dependence can be relaxed by using another level of restarting and increasing sequence of \(t \). We refer readers to our paper for more details.

Applications and Experiments

1. Generalized LASSO: \(\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ∥Ax − b∥_2^2 + \frac{1}{2} ∥x∥_1 \).
2. Fused LASSO penalizes \(∥x∥_1 \) and \(∥x∥_2 \) simultaneously.
3. Graph-guided fused LASSO (GGLASSO): A ∈ ℝⁿ×m encodes graph information.
4. Sparse graph-guided fused LASSO (SG-GGLASSO): \(∥x∥_1 + ∥x∥_2 + |x|_1 \).
5. Piecewise linear loss:
 - hinge loss \((z - h) \geq 0 \):
 - absolute loss \((z - h)_+ \):
 - squared hinge loss \((z - h)_+^2 \):
 - squared absolute loss \(|x|_1^2 \): 2 robust regression with a Low-rank Regularizer: \(F(X) = \frac{1}{2} ∥XAX − C∥₂ \).
7. Low-rank representation: \(F(X) = \frac{1}{2} ∥XAX − C∥₂ \).