Supplement of “Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than $O(1/\epsilon)$”

Yi Xu†, Yan Yan‡, Qihang Lin♮, Tianbao Yang†
† Department of Computer Science, University of Iowa, Iowa City, IA 52242
‡ QCIS, University of Technology Sydney, NSW 2007, Australia
♮ Department of Management Sciences, University of Iowa, Iowa City, IA 52242
{yi-xu, qihang-lin, tianbao-yang}@uiowa.edu, yan.yan-3@student.uts.edu.au

1 Proofs

Lemma 1 (2). For any $x \in \Omega_1$ and $\epsilon > 0$, we have

$$\|x - x_\epsilon\| \leq \frac{\text{dist}(x_\epsilon, \Omega_\ast)}{\epsilon} (F(x) - F(x_\epsilon))$$

where $x_\epsilon \in S_\epsilon$ is the closest point in the ϵ-sublevel set to x.

The lemma is an immediate result from [2]. For completeness, we give the proof here.

1.1 Proof of Lemma 1

Proof. Consider $\|x\|$ to be an Euclidean norm. We first recall the definition of x_ϵ:

$$x_\epsilon = \arg \min_{z \in S_\epsilon} \|z - x\|^2$$ \hspace{1cm} (1)

where $S_\epsilon = \{x \in \Omega_1 : F(x) \leq F_\ast + \epsilon\}$ is the sublevel set. We assume $x \notin S_\epsilon$, otherwise the conclusion holds trivially. Thus $F(x_\epsilon) = F_\ast + \epsilon$. By the first-order optimality conditions of (1), we have for any $z \in \Omega_1$,

$$\zeta (x_\epsilon - x + \zeta \partial F(x_\epsilon)) (z - x_\epsilon) \geq 0$$ \hspace{1cm} (2)

Let $z = x$ we have

$$\zeta \partial F(x_\epsilon) (x - x_\epsilon) \geq \|x - x_\epsilon\|^2$$

We argue that $\zeta > 0$, otherwise $x = x_\epsilon$ contradicting to the assumption $x \notin S_\epsilon$. Therefore

$$F(x) - F(x_\epsilon) \geq \|x - x_\epsilon\|^2 \zeta = \frac{\|x - x_\epsilon\|^2}{\zeta} \|x - x_\epsilon\|$$ \hspace{1cm} (3)

Next we prove that ζ is upper bounded. Since

$$-\epsilon = F(x_\ast) - F(x_\epsilon) \geq (x_\ast - x_\epsilon)^\top \partial F(x_\epsilon)$$

where x_\ast is the closest point to x_ϵ in the optimal set. Let $z = x_\ast$ in the inequality of (2), we have

$$(x_\epsilon - x)^\top (x_\ast - x_\epsilon) \geq \zeta (x_\epsilon - x_\ast)^\top \partial F(x_\epsilon) \geq \zeta \epsilon$$

Thus

$$\zeta \leq \frac{(x_\epsilon - x)^\top (x_\ast - x_\epsilon)}{\epsilon} \leq \frac{\text{dist}(x_\epsilon, \Omega_\ast) \|x_\epsilon - x\|}{\epsilon}$$

Therefore
\[\|x - x^\dagger_s\| \geq \frac{\epsilon}{\zeta} \] \[\text{dist}(x^\dagger_s, \Omega_s) \]
Combining the above inequality with (3) we have
\[\|x - x^\dagger_s\| \leq \frac{\text{dist}(x^\dagger_s, \Omega_s)}{\epsilon} (F(x) - F(x^\dagger_s)) \]
which completes the proof.

\[\square \]

1.2 Proof of Theorem 5

Proof. Let \(x^\dagger_{s,\epsilon} \) denote the closest point to \(x_s \) in the \(\epsilon \) sublevel set. Define \(\epsilon_s \triangleq \frac{\epsilon_{m-1}}{\mu_b} \). Note that \(\mu_s = \epsilon_s / D^2 \). We will show by induction that \(F(x_s) - F_* \leq \epsilon_s + \epsilon \) for \(s = 0, 1, \ldots \) which leads to our conclusion when \(s = m \). The inequality holds obviously for \(s = 0 \). Assuming \(F(x_{s-1}) - F_* \leq \epsilon_{s-1} + \epsilon \), we need to show that \(F(x_s) - F_* \leq \epsilon_s + \epsilon \). We apply Corollary 3 to the \(s \)-th epoch of Algorithm 2 and get
\[F(x_s) - F(x_{s-1}) \leq \frac{D^2 \mu_s}{2} + \frac{2\|A\|^2}{\mu_s t^2} \|x_{s-1} - x^\dagger_{s-1,\epsilon}\|^2 \]
(4)

First, we assume \(F(x_{s-1}) - F_* \leq \epsilon \), i.e. \(x_{s-1} \in S_\epsilon \). Then we have \(x^\dagger_{s-1,\epsilon} = x_{s-1} \) and
\[F(x_s) - F(x_{s-1}) \leq \frac{D^2 \mu_s}{2} \leq \frac{\epsilon_s}{2} \]
As a result,
\[F(x_s) - F_* \leq F(x_{s-1}) - F_* + \frac{\epsilon_s}{2} \leq \epsilon + \epsilon_s \]
Next, we consider \(F(x_{s-1}) - F_* > \epsilon \), i.e. \(x_{s-1} \notin S_\epsilon \). Then we have \(F(x^\dagger_{s-1,\epsilon}) - F_* = \epsilon \). By Lemma 1, we have
\[\|x_{s-1} - x^\dagger_{s-1,\epsilon}\| \leq \frac{\text{dist}(x^\dagger_{s-1,\epsilon}, \Omega_s)}{\epsilon} (F(x_{s-1}) - F(x^\dagger_{s-1,\epsilon})) \]
\[\leq \frac{\text{dist}(x^\dagger_{s-1,\epsilon}, \Omega_s)}{\epsilon} [\epsilon_{s-1} + \epsilon - \epsilon] = \frac{\text{dist}(x^\dagger_{s-1,\epsilon}, \Omega_s) \epsilon_{s-1}}{\epsilon} \]
\[\leq \frac{c(F(x^\dagger_{s-1,\epsilon}) - F_*)^\theta \epsilon_{s-1}}{\epsilon} \]
(5)
Combining (4) and (5) and using the fact that \(\mu_s = \frac{\epsilon_s}{D^2} \) and \(t \geq \frac{2bcD\|A\|}{\epsilon^{1-\theta}} \), we have
\[F(x_s) - F(x^\dagger_{s-1,\epsilon}) \leq \frac{\epsilon_s}{2} + \frac{\epsilon_s^2}{2\epsilon_s b^2} = \epsilon_s \]
which together with the fact that \(F(x^\dagger_{s-1,\epsilon}) = F_* + \epsilon \) implies
\[F(x_s) - F_* \leq \epsilon + \epsilon_s \]
Therefore by induction, we have
\[F(x_m) - F_* \leq \epsilon_m + \epsilon = \frac{\epsilon_0}{b_m} + \epsilon \leq 2\epsilon \]
where the last inequality is due to the value of \(m \).

\[\square \]
Algorithm 3 An Accelerated Proximal Gradient Method (g is smooth): APG(x_0, t, L_μ)

1: **Input:** the number of iterations t, the initial solution x_0, and the smoothness constant L_μ
2: Let $\theta_0 = 1$, $U_{-1} = 0$, $z_0 = x_0$
3: Let α_k and θ_k be two sequences given in Theorem 2.
4: for $k = 0, \ldots, t - 1$ do
5: Compute $y_k = (1 - \theta_k)x_k + \theta_k z_k$
6: Compute $u_k = \nabla f_\mu(y_k) + \nabla g(y_k)$, $U_k = U_{k-1} + \frac{u_k}{\alpha_k}$
7: Compute $z_{k+1} = \Pi_{U_k}^{L_\mu + M}/\alpha_k(x_0)$ and $x_{k+1} = \Pi_{U_k}^{L_\mu + M}(y_k)$
8: end for
9: **Output:** x_t

2 HOPS with a smooth $g(x)$

In the Preliminaries section, we assume that $g(z)$ is simple enough such that the proximal mapping defined below is easy to compute:

$$P_{\lambda g}(x) = \min_{z \in \Omega_1} \frac{1}{2}||z - x||^2 + \lambda g(z)$$ \hspace{1cm} (6)

We claimed that if $g(z)$ is smooth, this assumption can be relaxed. In this section, we present the discussion and result for a smooth function $g(x)$ without assuming that its proximal mapping is easy to compute. In particular, we will consider g as a smooth component in $f_\mu + g$ and use the gradient of both f_μ and g in the updating. The detailed updates are presented in Algorithm 3, where

$$\Pi_u^c(x) = \arg\min_{z \in \Omega_1} \langle u, z \rangle + \frac{c}{2}||z - x||^2$$ \hspace{1cm} (7)

To present the convergence guarantee, we assume that the function g is M-smooth w.r.t $||x||$, then the smoothness parameter of objective function $F_\mu(x) = f_\mu(x) + g(x)$ is

$$L = L_\mu + M = \frac{||A||^2}{\mu} + M$$ \hspace{1cm} (8)

Then, we state the convergence result of Algorithm 3 in the following corollary.

Corollary 6. Let $\theta_k = \frac{2}{k+2}$, $\alpha_k = \frac{2}{k+1}$, $k \geq 0$ or $\alpha_{k+1} = \theta_{k+1} = \frac{\sqrt{\theta_k^2 + 4\theta_k^2} - \theta_k^2}{2}, k \geq 0$. For any $x \in \Omega_1$, we have

$$F(x_t) - F(x) \leq \frac{\mu D^2}{2} + \frac{2 ||A||^2 ||x - x_0||^2}{\mu t^2} + \frac{2 M ||x - x_0||^2}{t^2}$$ \hspace{1cm} (9)

Remark: In order to have $F(x_t) \leq F(x_\ast) + \epsilon$, we can consider $x = x_\ast$ in Corollary 6, i.e.

$$F(x_t) - F(x_\ast) \leq \frac{\mu D^2}{2} + \frac{2 ||A||^2 ||x_\ast - x_0||^2}{\mu t^2} + \frac{2 M ||x_\ast - x_0||^2}{t^2}$$ \hspace{1cm} (10)

In particular, we set

$$\mu = \frac{2 \epsilon}{3 D^2}$$ \hspace{1cm} (11)

and

$$t \geq \max \left\{ \frac{3 D ||A|| ||x_\ast - x_0||}{\epsilon}, \frac{\sqrt{6 M ||x_\ast - x_0||}}{\sqrt{\epsilon}} \right\}$$ \hspace{1cm} (12)

Algorithm 3 also achieves the iteration complexity of $O(1/\epsilon)$.

Similarly, we can develop the HOPS algorithm and present it in Algorithm 4. The iteration complexity of HOPS is established in Theorem 7.
Algorithm 4 Homotopy Smoothing (HOPS) for solving (1) \((g\) is smooth)

1: **Input:** the number of stages \(m\) and the number of iterations \(t\) per-stage, and the initial solution \(x_0 \in \Omega_1\) and a parameter \(b > 1\).

2: Let \(\mu_1 = \frac{2\epsilon_0}{3bD}\).

3: for \(s = 1, \ldots, m\) do

4: Let \(x_s = \text{APG}(x_{s-1}, t, L_m)\).

5: Update \(\mu_{s+1} = \mu_s / b\).

6: end for

7: **Output:** \(x_m\)

Theorem 7. Suppose Assumption 1 holds and \(F(x)\) obeys the local error bound condition. Let HOPS run with \(t = O(1/\epsilon^{1-\theta}) \geq \max \{ \frac{3D\|A\|bc}{\epsilon^{2(1-\theta)}}, \frac{\sqrt{6M/r\epsilon^{(1-\theta)}}}{\epsilon^{1-\theta}} \}\) iterations for each stage, and \(m = \lceil \log_b(\epsilon_0/\epsilon) \rceil\). Then

\[
F(x_m) - F_\ast \leq 2\epsilon.
\]

Hence, the iteration complexity for achieving an 2\(\epsilon\)-optimal solution is \(\tilde{O}(1/\epsilon^{1-\theta})\).

Proof. Let \(x_{s,\epsilon}^\dagger\) denote the closest point to \(x_s\) in the \(\epsilon\) sublevel set and define \(\epsilon_s = \frac{\epsilon_0}{b^s}\). We will show by induction that \(F(x_s) - F_\ast \leq \epsilon_s + \epsilon\) for \(s = 0, 1, \ldots\) which leads to our conclusion when \(s = m\). The inequality holds obviously for \(s = 0\). Assuming \(F(x_{s-1}) - F_\ast \leq \epsilon_{s-1} + \epsilon\), we need to show that \(F(x_s) - F_\ast \leq \epsilon_s + \epsilon\). We apply Corollary \([\text{x}][\text{cor}]\) to the \(s\)-th epoch of Algorithm 3 and get

\[
F(x_s) - F(x_{s-1,\epsilon}^\dagger) \leq \frac{\mu_s D^2}{2} + \frac{2\|A\|^2\|x_{s-1,\epsilon}^\dagger - x_{s-1}\|^2}{\mu_s t^2} + \frac{2M\|x_{s-1,\epsilon}^\dagger - x_{s-1}\|^2}{t^2} \tag{13}
\]

First, we assume \(F(x_{s-1}) - F_\ast \leq \epsilon\), i.e. \(x_{s-1} \in S_\epsilon\). Then we have \(x_{s-1,\epsilon}^\dagger = x_{s-1}\) and

\[
F(x_s) - F(x_{s-1,\epsilon}^\dagger) \leq \frac{D^2\mu_s}{2} \leq \frac{\epsilon_s}{3}.
\]

As a result,

\[
F(x_s) - F_\ast \leq F(x_{s-1,\epsilon}^\dagger) - F_\ast + \frac{\epsilon_s}{3} \leq \epsilon + \epsilon_s.
\]

Next, we consider \(F(x_{s-1}) - F_\ast > \epsilon\), i.e. \(x_{s-1} \notin S_\epsilon\). Then we have \(F(x_{s-1,\epsilon}^\dagger) - F_\ast = \epsilon\). Recall that

\[
\|x_{s-1} - x_{s-1,\epsilon}^\dagger\| \leq \frac{c\epsilon_{s-1}}{\epsilon^{1-\theta}} \tag{14}
\]

Combining (13) and (14) and using the fact that \(\mu_s = \frac{2\epsilon_s}{3bD}\) and \(t \geq \max \{ \frac{3D\|A\|bc}{\epsilon^{2(1-\theta)}}, \frac{\sqrt{6M/r\epsilon^{(1-\theta)}}}{\epsilon^{1-\theta}} \}\), we get

\[
F(x_s) - F(x_{s-1,\epsilon}^\dagger) \leq \frac{\epsilon_s}{3} + \frac{3D^2\|A\|^2\epsilon_s^2 c_{s-1}^2}{\epsilon_s^2 c_{s-1}^2 (1-\theta) T^2} + \frac{2M\epsilon_s^3 c_{s-1}^2}{c_{s-1}^2 (1-\theta) T^2} \\
\leq \frac{\epsilon_s}{3} + \frac{\epsilon_{s-1}^2}{3\epsilon_s b^2} + \frac{\epsilon_{s-1}^2}{3\epsilon_s b^2} = \epsilon_s
\]

which together with the fact that \(F(x_{s-1,\epsilon}^\dagger) = F_\ast + \epsilon\) implies

\[
F(x_s) - F_\ast \leq \epsilon + \epsilon_s
\]

Therefore by induction, we have

\[
F(x_m) - F_\ast \leq \epsilon m + \epsilon = \frac{\epsilon_0}{b_m} + \epsilon \leq 2\epsilon
\]

where the last inequality is due to the value of \(m = \lceil \log_b(\epsilon_0/\epsilon) \rceil\).
In fact, the number of iteration in each stage depends on \(s \), then the iteration complexity for achieving an \(2\varepsilon \)-optimal solution is

\[
\sum_{s=1}^{m} \max \left\{ \frac{3D\|A\|bc}{\varepsilon^{1-\theta}}, \frac{\sqrt{6M}\varepsilon bc}{\varepsilon^{1-\theta}} \right\} \leq \sum_{s=1}^{m} \frac{3D\|A\|bc + \sqrt{6M}\varepsilon bc}{\varepsilon^{1-\theta}}
\]

\[
= \frac{3D\|A\|bc}{\varepsilon^{1-\theta}} \left\{ \log_b \left(\frac{\varepsilon_0}{\varepsilon} \right) \right\} + \frac{\sum_{s=1}^{m} \sqrt{6M}\varepsilon_0 bc}{(\sqrt{b} - 1)\varepsilon^{1-\theta}}
\]

\[
\leq \frac{3D\|A\|bc}{\varepsilon^{1-\theta}} \left\{ \log_b \left(\frac{\varepsilon_0}{\varepsilon} \right) \right\} + \frac{\sqrt{6M}\varepsilon_0 bc}{(\sqrt{b} - 1)\varepsilon^{1-\theta}}
\]

3 Primal-Dual Homotopy Smoothing

We note that the required number of iterations per-stage \(t \) for finding an \(\varepsilon \) accurate solution depends on unknown constant \(c \) and sometimes \(\theta \). Thus, an inappropriate setting of \(t \) may lead to a less accurate solution. To address this issue, we present a primal-dual homotopy smoothing. Basically, we also apply the homotopy smoothing to the dual problem:

\[
\max_{u \in \Omega_2} \Phi(u) \triangleq -\phi(u) + \min_{x \in \Omega_1} \langle A^\top u, x \rangle + g(x)
\]

\[
\psi(u) = \min_{x \in \Omega_1} \langle A^\top u, x \rangle + g(x) + \eta \omega(x)
\]

Denote by \(\Phi_\ast \) the optimal value of the above problem. It is easy to see that \(\Phi_\ast = F_\ast \). By extending the analysis and result to the dual problem, we can obtain that \(F(x_m) - \Phi(u_m) \leq 4\varepsilon c \). Thus, we can use the duality gap \(F(x_\ast) - \Phi(u_\ast) \) as a certificate to monitor the progress of optimization. In this section, we present more details.

3.1 Nesterov’s smoothing on the Dual problem

We construct a smooth function from \(\psi_\eta(u) \) that well approximates \(\psi(u) \):

\[
\psi_\eta(u) = \min_{x \in \Omega_1} \langle A^\top u, x \rangle + g(x) + \eta \omega(x)
\]

where \(\omega(x) \) is a 1-strongly convex function w.r.t. \(x \) in terms of a norm \(\| \cdot \| \). Similarly, we know that \(\psi_\eta(u) \) is a smooth function of \(u \) with respect to an Euclidean norm \(\| u \| \) with smoothness parameter \(L_\eta = \frac{1}{\eta} \| A \|^2 \), where \(\| A \| \) is defined by \(\| A \| = \max_{\| x \| \leq 1} \max_{\| u \| \leq 1} \langle A^\top u, x \rangle \). Denote by

\[
x_\eta(u) = \arg \min_{x \in \Omega_1} \langle A^\top u, x \rangle + g(x) + \eta \omega(x)
\]

The gradient of \(\psi_\eta(u) \) is computed by \(\nabla \psi_\eta(u) = Ax_\eta(u) \). We can see that when \(\eta \) is very small, \(\psi_\eta(u) \) gives a good approximation of \(\psi(u) \). This motivates us to solve the following composite optimization problem

\[
\max_{u \in \Omega_2} \Phi_\eta(u) \triangleq -\phi(u) + \psi_\eta(u)
\]

Similar to solving the primal problem, an accelerated proximal gradient method for dual problem can be employed to solve the above problem. We present the details in Algorithm 5 We present the convergence results for Algorithm 5 in the following theorem:

Theorem 8. Let \(\theta_k = \frac{2}{k+2}, \alpha_k = \frac{2}{k+1}, k \geq 0 \) or \(\alpha_{k+1} = \theta_k + 1 = \frac{\sqrt{\theta_k^2 + 4\theta_k^2} - \theta_k^2}{2}, k \geq 0 \). For any \(u \in \Omega_2 \), we have

\[
\Phi_\eta(u) - \Phi_\eta(u_0) \leq \frac{2L_\eta\|u - u_0\|^2}{t^2}
\]
HOPS for dual problem run with Assumption 9. For a concave maximization problem (15), we assume (i) there exist Algorithm 6 Homotopy Smoothing (HOPS) for solving dual problem Algorithm 5 An Accelerated Proximal Gradient Method for the dual problem: DAPG A local error bound condition is also imposed. Suppose Assumption 9 holds and Theorem 11. The above theorem can be proved similarly as Theorem 5.

Algorithm 5 An Accelerated Proximal Gradient Method for the dual problem: DAPG(u_0, t, L_η)

1: **Input:** the number of iterations t, the initial solution u_0, and the smoothness constant L_η
2: Let $\theta_0 = 1$, $V_{-1} = 0$, $\Gamma_{-1} = 0$, $r_0 = u_0$
3: Let α_k and θ_k be two sequences given in Theorem 8
4: for $k = 0, \ldots, t-1$ do
5: Compute $w_k = (1 - \theta_k)u_k + \theta_k r_k$
6: Compute $v_k = \nabla w_k, V_k = V_{k-1} - \frac{w_k}{\alpha_k}$, and $\Gamma_k = \Gamma_{k-1} + \frac{1}{\alpha_k}$
7: Compute $r_{k+1} = \Pi_{V_k/\Gamma_k}^\phi(u_0)$ and $u_{k+1} = \Pi_{V_k/\Gamma_k}^\phi(w_k)$
8: end for
9: **Output:** u_t

Algorithm 6 Homotopy Smoothing (HOPS) for solving dual problem

1: **Input:** the number of stages m and the number of iterations t per-stage, and the initial solution $u_0 \in \Omega_2$ and a parameter $b > 1$.
2: Let $\eta_1 = \epsilon_0/(b\bar{D}^2)
3: for s = 1, \ldots, m do
4: Let $u_s = \text{DAPG}(u_{s-1}, t, L_\eta_s)$
5: Update $\eta_{s+1} = \eta_s/b$
6: end for
7: **Output:** u_m

3.2 HOPS for the Dual Problem

Similar to primal problem, we can also develop the HOPS for dual problem, which is presented in Algorithm 6. A convergence can be established similarly by exploring a local error bound condition on $\Phi(u)$. To present the convergence result, we make the following assumptions, which are similar as the primal problem.

Assumption 9. For a concave maximization problem (15), we assume (i) there exist $u_0 \in \Omega_2$ and $\epsilon_0 \geq 0$ such that $\max_{u \in \Omega_2} \Phi(u) - \Phi(u_0) \leq \epsilon_0$; (ii) let $\psi(u) = \min_{x \in \Omega_1} \langle A^\top u, x \rangle + g(x)$, where $g(x)$ is a convex function; (iii) There exists a constant \bar{D} such that $\max_{x \in \Omega_2} \omega(x) \leq \bar{D}^2/2$.

Let $\tilde{\Omega}_\epsilon$ denote the optimal solution set of (15). For any $u \in \Omega_2$, let $u^* = \arg \min_{x \in \tilde{\Omega}_\epsilon} \|u - v\|^2$. We denote by \tilde{L}_ϵ the ϵ-level set of $\Phi(u)$ and by \tilde{S}_ϵ the ϵ-sublevel set of $\Phi(u)$, respectively, i.e.,

$$\tilde{L}_\epsilon = \{u \in \Omega_2 : \Phi(u) = \Phi_* - \epsilon\}, \quad \tilde{S}_\epsilon = \{u \in \Omega_2 : \Phi(u) \geq \Phi_* - \epsilon\} \quad (17)$$

A local error bound condition is also imposed.

Definition 10 (Local error bound). A function $\Phi(u)$ is said to satisfy a local error bound condition if there exist $\bar{\theta} \in (0, 1]$ and $\bar{c} > 0$ such that for any $u \in \tilde{S}_\epsilon$

$$\text{dist}(u, \tilde{\Omega}_\epsilon) \leq \bar{c}(\Phi_* - \Phi(u))^{\frac{1}{\bar{\theta}}} \quad (18)$$

Theorem 11. Suppose Assumption 9 holds and $\Phi(u)$ obeys the local error bound condition. Let HOPS for dual problem run with $t = O\left(\frac{2b\epsilon^2\|A\|}{\epsilon_1 - \bar{\theta}}\right) \geq \frac{2b\epsilon^2\|A\|}{\epsilon_1 - \bar{\theta}}$ iterations for each stage, and $m = \lceil \log_b \left(\frac{\epsilon_0}{\epsilon} \right) \rceil$. Then

$$\Phi_* - \Phi(u_m) \leq 2\epsilon.$$

Hence, the iteration complexity for achieving an 2ϵ-optimal solution is $\frac{2b\epsilon^2\|A\|}{\epsilon_1 - \bar{\theta}} \lceil \log_b \left(\frac{\epsilon_0}{\epsilon} \right) \rceil$ in the worst-case.

The above theorem can be proved similarly as Theorem 5.
We conduct experiments for solving three problems: (1) an ℓ_1-norm regularized hinge loss for linear classification on the w1a dataset; (2) a total variation based ROF model for image denoising on the Cameraman picture; (3) a nuclear norm regularized absolute error minimization for low-rank and sparse matrix decomposition on a synthetic data. The three problems are discussed in details below.

3.3 Primal-Dual HOPS

As mentioned before, we can use the duality gap $F(x_s) - \Phi(u_s)$ as a certificate to monitor the progress of optimization to address the problem of detecting the number of iterations per-stage t. We describe the details in Algorithm 7. Following the analysis as in the proof of Theorem 5, when the number of iterations in the s-th epoch denoted by t_s satisfies $t_s \geq \max\{\frac{2b_0D\|A\|}{\epsilon_{t-0}}, \frac{2b_0D\|A\|}{\epsilon_{t-0}}\}$, we can have $F(x_s) - F_* \leq \epsilon + \epsilon_s$ and $\Phi_* - \Phi(u_s) \leq \epsilon + \epsilon_s$, so that

$$F(x_s) - \Phi(u_s) \leq 2(\epsilon + \epsilon_s)$$

(Hence, as long as the above condition satisfies, we restart the next stage. Then with at most $m = \lceil \log_6(\epsilon_0/\epsilon) \rceil$ epochs we have

$$F(x_m) - \Phi(u_m) \leq 2(\epsilon + \epsilon_m) \leq 4\epsilon.$$

4 Experimental Design

We conduct experiments for solving three problems: (1) an ℓ_1-norm regularized hinge loss for linear classification on the w1a dataset; (2) a total variation based ROF model for image denoising on the Cameraman picture; (3) a nuclear norm regularized absolute error minimization for low-rank and sparse matrix decomposition on a synthetic data. The three problems are discussed in details below.

- **Linear Classification**: In linear classification problems, the goal is to solve the following optimization problem:

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell(x^\top a_i, y_i) + \lambda r(x)$$

where $(a_i, y_i), i = 1, 2, \ldots, n$ denote pairs of data and label of training data, $\ell(x^\top a_i, y_i)$ is a loss function, $r(x)$ is regularizer, and λ is regularization parameter. In our experiment, we use the hinge loss (a non-smooth function) $\ell(z y) = \max(0, 1 - z y) = \max_{\alpha \in [0, 1]} \alpha(1 - z y)$ for loss function and the ℓ_1-norm for regularizer:

$$\min_{x \in \mathbb{R}^d} F(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} \max_{u_i \in [0, 1]} u_i(1 - y_i a_i^\top x) + \lambda \|x\|_1$$

We first write (21) into the following equivalent minimax formulation

$$\min_{x \in \mathbb{R}^d} \max_{u \in \{0, 1\}^n} u^\top Ax + \frac{u^\top 1}{n} + \lambda \|x\|_1$$

1 This could be a general norm.
where matrix $A = -\frac{1}{n}(y_1a_1, y_2a_2, \ldots, y_na_n)^\top$ and 1 is a vector of all ones. Thus, $f(x) = \max_{u \in [0, 1]^n} u^\top Ax + \frac{\mu}{n} u^\top \frac{1}{n}$ and $g(x) = \lambda \|x\|_1$. To apply Nesterov’s smoothing technique, we construct the following smoothed function

$$f_\mu(x) = \max_{u \in [0, 1]^n} u^\top Ax + \frac{u^\top 1}{n} - \frac{\mu}{2} \|u\|_2^2$$ \hspace{1cm} (23)$$

We construct the experiment on the w1a dataset, which contains 2,477 training examples and 300 features. We fix the regularization parameter $\lambda = n^{-1}$.

- **Image Denoising:** For total variation (TV) based image denoising problem, we consider the following ROF model:

$$\min_x \int_{\Omega} |\nabla x| + \frac{\lambda}{2} \|x - h\|_2^2,$$ \hspace{1cm} (24)$$

where h is the observed noisy image, $\Omega \subset \mathbb{R}^{m \times n}$ is the image domain, $\int_{\Omega} |\nabla x|$ is the TV regularization term, and λ is the trade-off parameter between regularization and fidelity. Following the ROF setting in [1], we obtain the following discrete version:

$$\min_{x \in X} F(x) \triangleq \|\nabla x\|_1 + \frac{\lambda}{2} \|x - h\|_2^2.$$ \hspace{1cm} (25)$$

where $X = \mathbb{R}^{m \times n}$ is a finite dimensional vector space, $\nabla x \in Y$ and $Y = X \times X$. The discrete gradient operator ∇x is defined as following that has two components:

$$(\nabla x)^1_{i,j} = \begin{cases} x_{i+1,j} - x_{i,j} & \text{if } i < m \\ 0 & \text{if } i = m \end{cases}$$

$$(\nabla x)^2_{i,j} = \begin{cases} x_{i,j+1} - x_{i,j} & \text{if } j < n \\ 0 & \text{if } j = n, \end{cases}$$

and $\|\nabla x\|_1$ is defined as

$$\|\nabla x\|_1 = \sum_{i,j} |(\nabla x)_{i,j}| = \sum_{i,j} \sqrt{((\nabla x)^1_{i,j})^2 + ((\nabla x)^2_{i,j})^2}.$$

According to [1], we have the minimax formulation of ROF model as

$$\min_{x \in X} \max_{u \in \Omega_2} -\langle x, \text{div} u \rangle + \frac{\lambda}{2} \|x - h\|_2^2$$ \hspace{1cm} (26)$$

where $\Omega_2 = \{ u : u \in Y, \|u\|_\infty \leq 1 \}$, $\|u\|_\infty = \max_{i,j} \sqrt{(u^1_{i,j})^2 + (u^2_{i,j})^2}$, and $\text{div} u$ is the discrete divergence operator [1]. Thus, $f(x) = \max_{u \in \Omega_2} -\langle x, \text{div} u \rangle$ and $g(x) = \frac{\lambda}{2} \|x - h\|_2^2$. By using Nesterov’s smoothing technique, we have the following smoothed function

$$\max_{u \in \Omega_2} -\langle x, \text{div} u \rangle - \frac{\mu}{2} \|u\|_2^2.$$ \hspace{1cm} (27)$$

In our experiment, we use Cameraman picture of size 256 × 256 with additive zero mean Gaussian noise with standard deviation $\sigma = 0.05$ and we set $\lambda = 20$.

- **Matrix Decomposition:** In low-rank and sparse matrix decomposition problem, suppose given a data matrix $O \in \mathbb{R}^{m \times n}$, we aim to decompose it as $O = X + E$

where $X \in \mathbb{R}^{m \times n}$ is a low-rank matrix, and $E \in \mathbb{R}^{m \times n}$ represents errors and it is sparse. We use nuclear norm regularized absolute error minimization:

$$\min_{X \in \mathbb{R}^{m \times n}} F(X) = \|X\|_* + \lambda \|E\|_1$$

s.t. $O = X + E$
where $\|X\|_* = \sum \sigma_i(X)$ denotes the nuclear norm of matrix X, i.e., the summation of singular values of matrix X, and $\|E\|_1 = \sum_{ij} |E_{ij}|$ denotes the ℓ_1-norm of E. The above formulation is equivalent to

$$
\min_{X \in \mathbb{R}^{m \times n}} F(X) = \|X\|_* + \lambda \|O - X\|_1
$$

(28)

We first write (28) into the following equivalent minimax formulation

$$
\min_{X \in \mathbb{R}^{m \times n}} \max_{\|U\|_\infty \leq 1} -\lambda \langle X, U \rangle + \lambda \langle O, U \rangle + \|X\|_*
$$

(29)

where $U \in \mathbb{R}^{m \times n}$ and $\|U\|_\infty = \max_{ij} |U_{ij}|$. Thus, $f(X) = \max_{\|U\|_\infty \leq 1} -\lambda \langle X, U \rangle + \lambda \langle O, U \rangle$ and $g(X) = \|X\|_*$. To apply Nesterov’s smoothing technique, we consider the following smoothed function

$$
f_{\mu}(X) = \max_{\|U\|_\infty \leq 1} -\lambda \langle X, U \rangle + \lambda \langle M, U \rangle - \frac{\mu}{2} \|U\|_F^2.
$$

(30)

We set the regularization parameter $\lambda = (\max\{m, n\})^{-0.5}$. We conduct experiment on a synthetic data with $m = n = 100$. To generate the corrupted matrix $O \in \mathbb{R}^{m \times n}$, we first obtain two orthogonal matrices $S_1 \in \mathbb{R}^{m \times k}$ and $S_2 \in \mathbb{R}^{n \times k}$ ($k = 10$) by Gaussian distribution. The low rank matrix X can be calculated by $X = S_1 S_2^\top$. Then we randomly add Gaussian noise to 10% elements of X and obtain the corrupted matrix O.

We compare HOPS-D, HOPS-F and PD-HOPS with PD, APG-D and APG-F in our experiments. To make fair comparison, we stop each algorithm when the optimality gap is less than a given ϵ and count the number of iterations and the running time that each algorithm requires. We set $\epsilon = 10^{-4}, 10^{-5}$ for linear classification problem, and $\epsilon = 10^{-3}, 10^{-4}$ for other two problems. For APG, we use the backtracking trick to tune L_{μ}. For HOPS, we tune the number of iterations t in each epoch among several values in $\{10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 1000\}$ and the parameter b among $\{1.2, 2, 2.5, 3, 3.5, 4, 5, 10, 25\}$, and report the best results. We also tune the values of parameters σ and τ and report the best results for PD.

References
