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Abstract
A challenge for mining large-scale streaming data overlooked
by most existing studies on online learning is the skew-
distribution of examples over different classes. Many previ-
ous works have considered cost-sensitive approaches in an
online setting for streaming data, where fixed costs are as-
signed to different classes, or ad-hoc costs are adapted based
on the distribution of data received so far. However, it is
not necessary for them to achieve optimal performance in
terms of the measures suited for imbalanced data, such as F-
measure, area under ROC curve (AUROC), area under preci-
sion and recall curve (AUPRC). This work proposes a gen-
eral framework for online learning with imbalanced stream-
ing data, where examples are coming sequentially and models
are updated accordingly on-the-fly. By simultaneously learn-
ing multiple classifiers with different cost vectors, the pro-
posed method can be adopted for different target measures for
imbalanced data, including F-measure, AUROC and AUPRC.
Moreover, we present a rigorous theoretical justification of
the proposed framework for the F-measure maximization.
Our empirical studies demonstrate the competitive if not bet-
ter performance of the proposed method compared to previ-
ous cost-sensitive and resampling based online learning al-
gorithms and those that are designed for optimizing certain
measures.

Introduction
Streaming data are pervasive in many domains, including
online social media (Lukasik and Cohn 2016; Akbari et
al. 2016), clickbait prediction (Biyani, Tsioutsiouliklis, and
Blackmer 2016), ad placement (Liu and Liu 2016), etc.. In
these scenarios, data are coming sequentially. Mining the
streaming data requires the learner to make a prediction
instantly after receiving an example and update the model
based on the received true label. As the increasing popular-
ity of streaming data, it becomes critical to design effective
learning algorithms for mining streaming data and making
accurate predictions on the fly.

Online learning has emerged to be an important learning
paradigm due to its ability to handle streaming data. Differ-
ent from traditional batch learning, in online learning, data
arrive sequentially, and the prediction is made before get-
ting a feedback about the true label. Thus, the online perfor-
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mance of a learner is a critical concern in online learning,
since it measures how much the predictions are consistent
with the true label.

In most existing studies of online learning, a challenge
for mining large-scale streaming data is that examples are
usually skew-distributed over different classes. Particularly
for binary problems, the number of positive examples is
usually significantly smaller than that of negative ones in
many applications. Therefore, the zero-one loss and its sur-
rogates commonly used in traditional online learning algo-
rithms are not appropriate for imbalanced data. This issue
has been long recognized as cost asymmetry, i.e., the cost
for a false negative should be different from that for a false
positive. To deal with it, cost-sensitive algorithms, one of the
most popular approaches for tackling imbalanced data, have
been recently studied in the online setting (Wang, Zhao, and
Hoi 2012), which usually assign fixed costs, or ad-hoc costs
based on the distribution of data received so far to differ-
ent classes. However, it would not necessarily achieve supe-
rior performance measures including F-measure, area under
ROC curve (AUROC), area under precision and recall curve
(AUPRC).

Another line of research for learning with the imbalanced
streaming data is to directly optimize target measures in
an online fashion, which attracts increasing attention re-
cently (Gao et al. 2013; Zhao et al. 2011). However, there
are two main limitations. Firstly, measures applied in im-
balanced problems, e.g., F-measure, AUROC and AUPRC,
are usually not decomposable, which makes it sigfinicantly
challenging to directly optimize these measures in the online
setting. Moreover, an algorithm designed for optimizing a
specific measure (e.g., F-measure) is usually not applicable
for optimizing another certain measure (e.g., AUROC).

To address these issues, in this work, we present a uni-
fied framework for learning with imbalanced streaming data
that is easily adapted to different performance measures. The
proposed framework simultaneously learns multiple classi-
fiers with various cost vectors. In particular, at each itera-
tion, the prediction is made by a classifier which is selected
randomly according to a sampling distribution, which is up-
dated based on the current performance measures of classi-
fiers, similarly to the well-know exponential weighted aver-
age algorithm (Littlestone and Warmuth 1994). The selec-
tion of the optimal classifier is adaptive and evolving ac-



cording to the streaming data. We emphasize that the pro-
posed approach is different from the cross-validation ap-
proach, which replies on a separate validation set. Further-
more, the proposed framework enjoys a rigorous theoreti-
cal justification for the F-measure maximization. Empirical
studies demonstrate that the proposed algorithm is more ef-
fective than previous online learning algorithms for imbal-
anced streaming data.

The remainder of the paper is organized as follows. We
firstly review some related work. Secondly we present a
framework of online multiple cost-sensitive learning to-
gether with some analysis. In the next section, we discuss
the application of online learning with the F-measure as the
target measure, and present a theoretical analysis of the pro-
posed algorithm for the F-measure maximization. Then we
discuss the application of online learning with AUROC and
AUPRC as the target measures. In particular, we focus on
how to efficiently update AUROC and AUPRC in an online
fashion.

Related Work
In traditional online learning, studies revolve around the re-
gret analysis of algorithms for sequential prediction prob-
lems (e.g., prediction with expert advice, online classifica-
tion) (Cesa-Bianchi and Lugosi 2006; Herbster and War-
muth 1998; Littlestone 1988). In these studies, many on-
line algorithms have been developed, e.g., the exponentially
weighted average algorithm (Littlestone and Warmuth 1994)
and the online gradient descent (Zinkevich 2003). In the last
ten years, we observe substantial applications of these algo-
rithms in machine learning and data analytics, e.g., online
classification (Gentile 2002; Crammer and Singer 2003).

Learning with cost asymmetry has attracted much at-
tention recently. Most studies cast the problem into cost-
sensitive learning that assigns different costs to mistakes of
different classes (Elkan 2001; Masnadi-Shirazi and Vascon-
celos 2010; Scott 2011). While there exist a long list of lit-
eratures on batch learning with cost-sensitivity, few studies
were devoted to online learning with cost-sensitivity (Cram-
mer et al. 2006; Wang, Zhao, and Hoi 2012). These stud-
ies assume a given cost vector (or matrix) and modify con-
ventional loss functions to incorporate the given cost vec-
tor/matrix. The issue with this approach is that the cost
vector/matrix is usually unknown when applying to imbal-
anced data. Recent studies have found that the optimal costs
assigned to different classes have an explicit relationship
with the optimal performance measure (Puthiya Parambath,
Usunier, and Grandvalet 2014). Besides the cost-sensitive
approach, some resampling based methods are proposed to
deal with imbalanced data. However, most of them focus
on batch learning, e.g., (Liang and Cohn 2013), while there
are a few works concerning the online setting, e.g., (Wang,
Minku, and Yao 2015).

Recently, there emerge some works about online op-
timization for a particular performance measure, e.g., F-
measure, AUROC. For example, (Zhao et al. 2011; Gao et al.
2013) proposed online learning algorithms for AUROC op-
timization. However, both works focus on the offline perfor-
mance evaluation. In (Busa-Fekete et al. 2015), the authors

Table 1: Notations (subindex t refers to the t-th round in
online learning.)

Notations Meaning Notations Meaning

xt ∈ Rd feature vector `(yf(x)) loss
yt ∈ {1,−1} class label ŷt I(ft > 0)
ft(·) prediction func. ȳt

yt+1
2

ft = ft(xt) prediction σ(f) 1
1+exp(−f)

I(b) indicator func. pt ∈ RK sampl. probs.

Mt: performance measure based on {ŷτ , yτ , τ = 1, . . . , t− 1}

proposed an online learning algorithm for F-measure opti-
mization with an automatic threshoding strategy based on
the online F-measure. However, they innocently ignored the
strategy for updating the model by simply assuming a given
algorithm that can learn the posterior probability Pr(y|x).
In (Hu et al. 2015), a method is proposed to directly op-
timize AUROC, but requires extra resources to store the
learned support vectors. The authors in (Kar, Narasimhan,
and Jain 2014) proposed an online learning framework for
non-decomposable loss functions based on the structural
SVM. The drawback of this method is that their online learn-
ing algorithm needs to solve a difficult optimization prob-
lem at each iteration. As for AUPRC, there still lacks of ef-
forts. Recent studies (Goadrich, Oliphant, and Shavlik 2006;
Davis and Goadrich 2006) have found that when dealing
with highly skewed datasets, Precision-Recall (PR) curves
might give a more informative picture of an algorithm’s per-
formance, which gives the measure of AUPRC.

Finally, we note that the proposed algorithm is different
from online Bayesian learning that maintains and updates
the posterior distribution of model parameters (Dredze,
Crammer, and Pereira 2008), and is also different from the
online ensemble algorithm in (Vovk 1990) that aggregates
all classifiers for prediction. The synthesis of online gradi-
ent descent for updating individual classifiers and the expo-
nential weighted average algorithm for updating probabili-
ties is similar to the work of online kernel selection (Yang
et al. 2012). However, the two work have different focuses.
In particular, their goal is to select the best kernel classifier
among multiple kernel classifiers for optimizing traditional
measures while our goal is to select the best cost-sensitive
classifier among multiple cost-sensitive classifiers for opti-
mizing a target measure suited for imbalanced data. There-
fore, their analysis can not be borrowed for our purpose.

Online Multiple Cost-Sensitive Learning
We first present some notations. Let xt ∈ Rd denote the
feature vector of the example received at the t-th iteration,
and yt ∈ {1,−1} denote its true class label. We denote by
ft(x) : Rd → R a prediction function at the t-th iteration
and by ft = ft(xt) the prediction on the t-th example. Let
I(b) denote an indicator function, where I(b) = 1 if b is true
and 0 otherwise. Commonly used notations in this paper are
summarized in Table 1.

In traditional online learning, the performance of ft(·)
on the example xt is usually measured by a loss function



`(ytft(xt)), e.g., hinge loss `(z) = max(0, 1 − z) and lo-
gistic loss `(z) = log(1 + exp(−z)), which are consid-
ered to be a surrogate loss of 0-1 error I(sign(ft(xt)) 6=
yt). Previous studies cast the problem into learning a se-
quence of classifiers f1(·), . . . , fT (·) such that the regret
defined below is minimized, RT =

∑T
t=1 `(ytft(xt)) −

minf
∑T
t=1 `(ytf(xt)). Many online learning algorithms

have been proposed to minimize the regret such as online
gradient descent (Zinkevich 2003)). However, a critique over
the standard surrogate loss functions is that they ignore the
cost asymmetry between the majority class and the minor-
ity one. To resolve this issue, cost-sensitive loss functions
have been proposed, which give different costs to differ-
ent classes: `c(f(x), y) = c+I(y = 1)`(f(x)) + c−I(y =
−1)`(−f(x)), where c = (c+, c−) is the cost vector that
controls the balance between the two loss terms. How to de-
cide the value of c+ and c− remains an issue. Previous works
use ad-hoc approaches to set up these parameters (Wang,
Zhao, and Hoi 2012). However, there is no guarantee that
these ad-hoc approaches use appropriate values for c+ and
c−. In addition, if c+ and c− are changing during the train-
ing, it is difficult to analyze the performance of the learned
classifier. Another commonly used practice in batch learning
is by a cross-validation approach that tunes the values of c+
and c− based on the offline performance on a separate val-
idation set. Nevertheless, in online learning a separate vali-
dation set is usually not available and even if it is available
there is no guarantee that the distribution of the examples
in the validation set is the same as the received examples in
online learning.

To address these issues, we propose an online learning
framework of multiple cost-sensitive learning. The motiva-
tion is that if multiple classifiers with a number of c are
learned simultaneously, there must exist one setting that is
most appropriate to the data. Without loss of generality,
we assume c+ + c− = 1 and as a result one parameter
c+ ∈ (0, 1) is needed to be set. To construct the pool of
multiple values of c+, we discretize (0, 1) into K evenly
distributed values θ1, . . . , θK , i.e., θj = j/(K + 1). With
the value of c+ = 1− θj/2, the corresponding cost sensitive
loss is denoted by

`jc(f(x), y) =(1− θj/2)I(y = 1)`(f(x))

+ (θj/2)I(y = −1)`(−f(x))
(1)

The reason that we divide θj by 2 will be clear
when we present the theoretical justification. Then we
learn K sequences of classifiers f1

t (·), f2
t (·), . . . , fKt (·) si-

multaneously in online learning, with each sequence of
f jt (·), t = 1, . . . , T to minimize the associated regret RjT =∑T
t=1 `

j
c(f

j
t (xt), yt)−minf

∑T
t=1 `

j
c(f(xt), yt).

A remaining issue is how to choose a classifier from K
candidates to predict xt at the t-th iteration. Based on our
motivation, a greedy approach is to track the “performance”
of K classifiers and select the best performer on historical
examples. However, it may lead to overfitting problems. We
thus propose a theoretically sound randomized method that
selects a classifier for prediction according to a distribution
pt = (p1

t , . . . , p
K
t )> such that

∑
j p

j
t = 1 and ptj ≥ 0. To

compute the sampling probabilities, we use the following

Algorithm 1 A Framework of Online Multiple Cost-
sensitive Learning
1: Input: the number of classifiers K
2: Initialize p1 = (1/K, . . . , 1/K), f j1 (x) = 0, j = 1, . . . ,K
3: for t = 1, . . . , T do
4: Receive an example xt
5: Sampling a classifier f jt by choosing jt according to

Pr(j) = pjt
6: Compute a predicted label ỹt = sign(f tjt(xt))
7: Receive the true label yt
8: for j = 1, . . . ,K do
9: Update the classifier f jt+1(·) = A(f jt (·),xt, yt)

10: Update the performance M j
t+1 =M(y1:t, f

j
1:t)

11: end for
12: Update the sampling probabilities pt+1 according to (2)
13: end for

formula

pjt =
exp(γM j

t )∑K
j=1 exp(γM j

t )
, j = 1, . . . ,K, (2)

where γ > 0 is a learning rate hyper-parameter, and M j
t

is some favorite performance measure (the higher the bet-
ter, e.g., F-measure, AUROC, AUPRC, etc.) on historical
examples (xτ , yτ ), τ = 1, . . . , t − 1 using the predictions
f j1 , . . . , f

j
t−1 of the j-th sequence of classifiers. From the

Equation (2), classifier with higher performance will have
a higher probability to be selected for making the predic-
tion. Note that when γ → ∞, the above approach reduces
to the greedy approach. We would like to emphasize that the
sampling probabilities defined above are similar to that in
exponentially weighted average algorithm (Littlestone and
Warmuth 1994) for selecting the best expert advice but with
a key difference. In the learning with expert advice problem,
the sampling probabilities are computed based on the cumu-
lative loss

∑t−1
τ=1 `

j
t of different experts indexed by j, while

our sampling probabilities are computed based on interest-
ing performance measure that is suited for imbalanced data.

Now we can summarize our online multiple cost-sensitive
learning in Algorithm 1. In the remainder of this section, we
discuss how to update the classifier in step 9 and present
a theoretical analysis of the proposed framework of online
multiple cost-sensitive learning (OMCSL). In the next two
sections, we discuss the step 10 that updates the performance
for different measures.

For updating the classifier, we can use any online learn-
ing algorithms as long as they are designed to minimize the
regret, such as online gradient descent (OGD) (Zinkevich
2003), online dual averaging (Xiao 2010), follow the reg-
ularized leader (Kalai and Vempala 2005), and some spe-
cialized algorithms for online classification including online
passive aggressive learning (Crammer et al. 2006), percep-
tron (Shalev-Shwartz and Singer 2005), etc.. Due to the pop-
ularity and simplicity of OGD, we present the online gradi-
ent descent update. For the easy presentation, we here con-
sider f jt (·) as a linear function, namely f jt (x) = x>wj

t . We
thus update wj

t by:

wj
t+1 = wj

t − ηt∇w`
j
c(x
>
t w

j
t , yt), j = 1, . . . ,K. (3)



where ηt is a step size hyper-parameter, which can be set to
a small value or to be decreasing depending on the property
of the loss function (Zinkevich 2003). It is worth noting that
(i) the loss function could include a regularizer on w, e.g.,
λ
2 ‖w‖

2
2; (ii) a bias term can be incorporated by adding an ex-

tra constant feature to x. The proposition below provides the
regret guarantee for the j-th sequence of classifiers. For ease
of presentation, we specialize to the linear function. One can
easily generalize it to a non-linear function from a RKHS.

Proposition 1 (Theorem 3.1 (Hazan 2015)) Let the linear
prediction function f jt (x) = x>wj

t be updated based on (3)
and wj

∗ be the optimal prediction function that minimizes the
cumulative cost-sensitive loss

∑T
t=1 `

j
c(w

>xt, yt). Assume

that
∥∥∇w`

j
c(yx

>w)
∥∥

2
≤ G and

∥∥∥wj
∗

∥∥∥
2
≤ D. By setting

ηt = D
G
√
t
, then we have

RjT =

T∑
t=1

`jc(f
j
t (xt), yt)−

T∑
t=1

`jc(x
>
t w

j
∗, yt) ≤ 3GD

√
T ,

which implies that the averaged regret converges to zero at

a rate of 1/
√
T , i.e, R

j
T

T ≤
3GD√
T

.

Next, we analyze the updating rule of sampling probabil-
ities in (2). We first present a proposition below and then
provide an explanation of it.

Proposition 2 Let Mt = (M1
t , . . . ,M

K
t )> and pt updated

according to (2). Then there exists a γ > 0 such that
p>TMT ≥ max1≤j≤KM

j
T − (VT +

√
VT logK), where

VT = 2
∑T
t=1 ‖Mt −Mt−1‖∞ is the scaled sum of con-

secutive variation of the performance measure.

From the proposition above, we can see that when the varia-
tion of the performance measure is small, the expected per-
formance of the selected classifier (the L.H.S of the inequal-
ity) is close to the best performance measure (the R.H.S). We
emphasize that the lower bound of p>TMT in Proposition 2
is by no means tight. It only explains to some degree why the
employed sampling probabilities make sense. Bounding the
online performance of an non-decomposable measure (e.g.,
F-measure, AUROC and AUPRC) is still very challenging.
In next section, we provide a theoretical analysis of the pro-
posed framework for the F-measure optimization.

OMCSL for F-measure
In this section, we first present how to update the online F-
measure, and then show that OMCSL has a solid theoret-
ical foundation for F-measure maximization, in which the
best classifier among the K classifiers will eventually yield
a close-to-optimal F-measure provided that K is sufficiently
large.

Given a sequence of labels y1, . . . , yt and a sequence of
predictions f1, . . . , ft, we can calculate the F-measure by
Ft+1 =

2
∑t
τ=1 ȳτ ŷτ∑t

τ=1 ȳτ+
∑t
τ=1 ŷτ

where ȳt = (yt + 1)/2 ∈ {1, 0}
and ŷt = I(ft > 0). However, directly calculating the on-
line F-measure by going through all examples is expensive,
which requires to store all predictions ft(xt) and yt. Indeed,

the online F-measure can be calculated incrementally. To
this end, we let at =

∑t
τ=1 ȳτ ŷτ and ct =

∑t
τ=1 ȳτ +∑t

τ=1 ŷτ . Then we can calculate Ft+1 = 2at
ct

and update at
and ct incrementally by

at+1 =

{
at + 1, if yt+1 = 1 and ft+1 > 0,
at, otherwise;

ct+1 =

 ct + 2, if yt+1 = 1 and ft+1 > 0,
ct + 1, if yt+1 = 1 or ft+1 > 0,
ct, if yt+1 = −1 and ft+1 ≤ 0.

(4)

A Theoretical Justification
We show that when K is sufficiently large, there exists a se-
quence of classifiers among the K sequences that will even-
tually converge to a classifier that has a close-to-optimal F-
measure. To this end, we assume the data is i.i.d. The anal-
ysis is built on several previous works on the F-measure
maximization (Puthiya Parambath, Usunier, and Grandvalet
2014) and the theory of consistency for cost-sensitive sur-
rogate loss minimization (Scott 2012). To present the re-
sults, we first give some notations. Let h(x) ∈ H : Rd →
{1,−1} denote a classifier and e(h) = (e1(h), e2(h))> de-
note the false negative (FN) error and false positive (FP) er-
ror of h(x), respectively, i.e., e1(h) = Pr(y = 1, h(x) =
−1), e2(h) = Pr(y = −1, h(x) = 1) where Pr(·)
denotes the probability over (x, y). When it is clear from
the context, we write e = e(h) for short. Let P1 denote
the marginal probability of the positive class, i.e., P1 =
Pr(y = 1). Then the F-measure of h(·) on the popula-
tion level can be computed by (Puthiya Parambath, Usunier,
and Grandvalet 2014) F (h) , F (e) = 2(P1−e1)

2P1−e1+e2
. Let

c(τ) = (1− τ
2 ,

τ
2 )>. The following proposition exhibits that

maximizing F-measure is equivalent to minimizing a cost-
sensitive error.
Proposition 3 (Proposition 4 (Puthiya Parambath, Usunier,
and Grandvalet 2014)) Let F∗ = maxe F (e). Then we have
e∗ = arg mine c(F∗)

>e⇔ F (e∗) = F∗.
The above proposition indicates that one can optimize the
following cost-sensitive error

c(F∗)
>e =

(
1− F∗

2

)
e1 +

F∗
2
e2, (5)

to obtain an optimal classifier h∗(x), which will give the
optimal F-measure, i.e., F (h∗) = F∗. However, the cost-
sensitive error in (5) requires knowing the exact value of
the optimal F-measure. To address this issue, we discretize
(0, 1) to have a set of evenly distributed values {θ1, . . . , θK}
such that θj+1−θj = ε0/2, which serve as the candidate val-
ues of F∗. Then we can solve for a series of K classifiers to
minimize the cost-senstive error

h∗j = arg min
h∈H

(
1− θj

2

)
e1 +

θj
2
e2 = c(θj)

>e, j = 1, . . . ,K.

(6)

This explains our choice of θj/2 in (1). The follow-
ing proposition shows that there exists one classifier
among {h∗j , · · · , h∗K} that can achieve a close-to-optimal F-
measure as long as ε0 is small enough.



Proposition 4 Let {θ1, . . . , θK} be a set of values evenly
distributed in (0, 1) such that θj+1 − θj = ε0/2. Then there
exists h∗j ∈ {h∗j , · · · , h∗K} such that F (h∗j ) ≥ F∗ − 2ε0B

P1
,

where B = maxe ‖e‖2.
Remark: The above proposition also implies an interesting
result that the smaller P1 (i.e., more imbalanced of the data),
the larger gap between F (h∗j ) and F∗ (i.e., more difficult to
optimize the F-measure).

Proposition 4 only provides the guarantee on the opti-
mal classifiers {h∗j , · · · , h∗K}. In practice, one cannot obtain
these optimal classifiers because the distribution of the data
is unknown. The following proposition shows that as long as
the obtained classifiers achieve a cost-sensitive error close to
the optimal classifiers, a similar guarantee to that in Propo-
sition 4 holds.
Proposition 5 Let {θ1, . . . , θK} be a set of values evenly
distributed in (0, 1) such that θj+1 − θj = ε0/2. Let
{ĥ1, . . . , ĥK} be a set of classifiers that minimize the
cost-sensitive errors in (6) to a certain degree such that
c(θj)

>e(ĥj) ≤ c(θj)
>e(h∗j )+ε1. Then there exists ĥj such

that F (ĥ∗j ) ≥ F∗ −
(2ε0B+ε1)

P1
, where B = maxe ‖e‖2.

Remark: The result in Proposition 4 is a special case of
Proposition 5 when ε1 = 0. Proposition 5 is a corollary of
Proposition 5 in (Puthiya Parambath, Usunier, and Grand-
valet 2014).

Finally, we are ready to present the theoretical guarantee
on the presented OMCSL algorithm for the F-measure max-
imization.
Theorem 1 Let {θ1, . . . , θK} be a set of values evenly dis-
tributed in (0, 1) such that θj+1 − θj = ε0/2, wj

t , t =
1, . . . , T be a sequence updated according to (3) based on
the j-th cost-sensitive loss in (1) such that ‖wj

t‖2 ≤ D,
and ŵj

T =
∑T
t=1 w

j
t/T . Assume (xt, yt), t = 1, . . . , T

are i.i.d. samples such that ‖xt‖2 ≤ R and the loss func-
tion `(z) = max(0, 1 − z) is the hinge loss. There exists a
j ∈ {1, . . . ,K} with a probability 1− δ such that

F (ĥjT ) ≥ F∗ −
2ε0B + 3RD(1 + ln(2/δ))/

√
T

P1

where ĥjT (x) = sign(x>ŵj
T ).

Remark: The theorem implies that when T → ∞, there
exists a classifier ĥjT = sign(x>ŵj

T ) achieves a close-to-
optimal F-measure as long as ε0 is small enough. The proof
is presented in the supplement.

OMCSL for AUROC and AUPRC
In this section, we briefly present how to update AUROC
and AUPRC in an online fashion. The challenge of updat-
ing AUROC and AUPRC in the online setting lies at that we
need to compare the present example to historically received
examples in terms of predictions. A naive way to achieve
this is to store the labels and predictions of all classifiers
for historically received examples. However, this would in-
crease the memory requirements, which is usually not al-
lowed in online learning. To avoid storing the labels and pre-
dictions of all examples, we introduce two hash tables L+
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Figure 1: Online performance.

and Lt− with a fixed length of m that partitions (0, 1) into m
ranges (0, 1/m), (1/m, 2/m), . . . , ((m− 1)/m, 1). For i ∈
{1, . . . ,m}, L+

t [i] stores the number of positive examples
before the t-th iteration (including the t-th iteration) whose
predictions f are such that σ(f) ∈ [(i − 1)/m, i/m) 1, and
L−t [i] stores the number of negative examples before the t-
th iteration (including t-th iteration) whose predictions f are
such that σ(f) ∈ [(i− 1)/m, i/m).

Given L+
t and L−t , we can show that AUROCt+1 can be

updated approximately using the two hash tables. In partic-
ular, if yt+1 = 1, we have AUROCt+1 =

N+
t

N+
t +1

AUROCt +

1
(N+

t +1)N−t

(∑i
j=1 L

−
t [j] + L−t [i+ 1]/2

)
, where i is the

largest index such that i/m ≤ σ(ft+1), and if yt+1 =

−1, we update it by AUROCt+1 =
N−t
N−t +1

AUROCt +

1
N+
t (N−t +1)

(∑m−1
j=i+1 L

+
t [j] + L+

t [i]/2
)
, where i is the

smallest index such that i/m ≥ σ(ft+1).
Similarly, by using L+

t and L−t , we derive the online up-
date of AUPRCt as below: AUPRCt+1 = 1

2

∑m−1
i=0 (R(i) −

R(i+ 1))(P(i) + P(i+ 1)). where R(i) =
∑m
j=i+1 L

+
t [j]

N+
t

, and

P(i) =
∑m
j=i+1 L

+
t [j]∑m

j=i+1 L
+
t [j]+

∑m
j=i+1 L

−
t [j]

. The overall time com-

plexity of computing AUROCt+1 and AUPRCt+1 is O(m).
Detailed development of the online update of AUROC and
AUPRC can be found in Appendix C.

Experiments
In this section, we evaluate OMCSL for optimizing three
measures, F-measure, AUROC and AUPRC, and compare

1σ(f) is the sigmoid function defined in Table 1.



Table 3: Average prediction performance on the testing set over 25 trials.

Methods covtype1v5 w8a aloi-1
Fmeasure AUROC AUPRC Fmeasure AUROC AUPRC Fmeasure AUROC AUPRC

OPAUC – 0.9813 – – 0.9602 – – 0.9993 –
OFO-h 0.7071 – – 0.6616 – – 0.2596 – –
OCS1-h 0.5204 0.5000 0.4999 0.4948 0.4761 0.4726 0.3148 0.4285 0.3148
OCS2-h 0.5035 0.5035 0.4820 0.4478 0.4478 0.4478 0.1062 0.1204 0.0311
iOOB-h 0.1180 – – 0.0837 – – 0.0021 – –
iUOB-h 0.1174 – – 0.0839 – – 0.0021 – –

OMCSL-h 0.6449 0.9809 0.7042 0.7147 0.9598 0.7087 0.4560 0.9996 0.7732
OFO-l 0.6600 – – 0.6325 – – 0.1407 – –
OCS1-l 0.5230 0.5627 0.5230 0.5156 0.5156 0.6381 0.4473 0.4966 0.6176
OCS2-l 0.5044 0.5044 0.5044 0.4405 0.4511 0.6241 0.1429 0.0237 0.4760
iOOB-l 0.1356 – – 0.0907 – – 0.0038 – –
iUOB-l 0.1256 – – 0.0903 – – 0.0026 – –

OMCSL-l 0.6597 0.9823 0.7187 0.6891 0.9551 0.7086 0.5197 0.9998 0.8208
† Suffixes “-h” and “-l” stand for the algorithms with hinge loss and logistic loss respectively. The top results are in bold.
* For OFO and OPAUC which directly optimize a specific measure, we omit their results in other measures indicated by “–”. iOOB and iUOB are resampling

based ensemble algorithms which predict a new instance by voting, rather than decision values. Therefore, AUROC and AUPRC are unavailable, indicated
by “–”.

Table 4: Average absolute error between ĉ+ predicted by OMCSL and c∗+.

Methods w8a aloi-1 covtype-1vs5
Fmeasure AUROC AUPRC Fmeasure AUROC AUPRC Fmeasure AUROC AUPRC

OMCSL-h 0.059 0.052 0.137 0.084 0.016 0.154 0.010 0.004 0.052
OMCSL-l 0.078 0.023 0.127 0.144 0.003 0.165 0.005 0 0

Table 2: Data statistics.
Datasets #Examples #Features #Pos:#Neg

covtype1v5 211,840 54 1:22.3
w8a 64,700 300 1:32.5

aloi-1 108,000 128 1:999

with competing online learning algorithms on three pub-
lic imbalanced datasets. Table 2 lists the statistics of used
three datasets. To construct imbalanced data from multiclass
datasets covtype, we sample instances of the fifth class
as positive and instances of the first class as negative, de-
noted by covtype1v5. Similarly, for aloi, we sample
instances of the first class as positive, and the rest as neg-
ative, denoted by aloi-1. For each dataset, we randomly
sample 4/5 instances as the training set and the rest 1/5 as the
testing set. We repeat the experiment on 25 various random
splits and report the average results.

We compare the proposed OMCSL method with several
state of the art online learning algorithms, namely OCS1,
OCS2 (Wang, Zhao, and Hoi 2012), OFO (Busa-Fekete et al.
2015), OPAUC (Gao et al. 2013), and iOOB, iUOB (Wang,
Minku, and Yao 2015). Among them, OFO and OPAUC di-
rectly optimize the target measures (i.e., F-measure and AU-
ROC, respectively), OCS1 and OCS2 are both cost-sensitive
online methods, iOOB and iUOB are resampling based en-
semble methods (oversampling and undersampling). Since
the latter two algorithms apply voting to predict a new in-
stance, rather than decision values, we only compute F-
measure for them. To examine the performance of using
different loss functions, we investigate both the hinge loss
and the logistic loss in the experiment and denote these two

loss functions by suffixing “-h” and “-l” to the corresponding
methods respectively. Note that OPAUC is designed only for
square loss, thus we only report one result for OPAUC. The
details of hyperparameters of these methods can be found in
Appendix D.

Results
We evaluate and compare both online performance on train-
ing data and testing performance on testing data. Note that
the testing performance is to evaluate the returned models on
the testing data in batch, which demonstrates the generaliza-
tion ability of different online learning algorithms. Table 3
lists the prediction performance on testing data of various al-
gorithms. Fig. 1(a), Fig. 1(b) and Fig. 1(c) demonstrate the
averaged online performance (i.e., F-measure, AUROC and
AUPRC) of various algorithms on three datasets over 25 tri-
als. As can be observed from both online performance and
testing performance, OMCSL achieves better performance
than cost-sensitive online algorithms and resampling based
online algorithms. The three figures also exhibit a clear trend
that when the ratio of positive examples to the negative ex-
amples increases, the advantage of OMCSL becomes more
striking. Compared to the methods that directly optimize tar-
get measure, i.e., OFO and OPAUC, OMCSL achieves com-
petitive if not better performance.

An important reason that OMCSL achieves satisfactory
performance is the capability to select a close-to-optimal
cost vector [c+, c−], which is also exhibited by our the-
oretical analysis for F-measure optimization. To investi-
gate this property, we perform online cost-sensitive learn-
ing with the same costs used in OMCSL, i.e., c+ =
{0.55, 0.60, 0.65, ..., 0.95}, respectively to find the best cost



according to the overall online performance, which we de-
note by c∗+. To compare the selected best cost (correspond-
ing to the largest selection probability) by the proposed OM-
CSL, we average c+ selected by OMCSL in the last 5,000
iterations as an estimate of the best cost, which we denote
by ĉ+. Then we compute the absolute error between c∗+ and
ĉ+, i.e., err = |c∗+ − ĉ+|, and report the average error over
25 trials in Table 4. Our observation is that ĉ+ predicted by
OMCSL is often close to c∗+ given that the step length for
search of c+ is set to 0.05. This property is particularly cru-
cial in the online scenario due to the requirement of going
through the training data only once. The proposed OMCSL
provides an accurate estimation of the optimal cost.

Conclusion
In this work, we present a unified online learning frame-
work for imbalanced data. The proposed algorithm simulta-
neously trains multiple classifiers with various cost, and pre-
dicts by randomly selecting a classifier based on a distribu-
tion determined by online performance of individual learn-
ers. A rigorous theoretical justification for the F-measure
maximization is provided. Empirical studies demonstrate the
superior performance of OMCSL and its capability to select
satisfactory costs.
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