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Abstract

In this note, we study Nesterov’s accelerated gradient descent method in an online setting and
establish both variational static and dynamic regret bounds using the functional variation, which
“match” previous regret bounds in terms of gradient variation. To the best of our knowledge,
this is the first work to study Nesterov’s accelerated gradient method in an online setting and
our regret bounds are better than previous variational regret bounds in terms of functional
variation.

1 Introduction

Nesterov’s accelerated gradient method and its various variants have been utilized to solve smooth
convex optimization problems in optimization and mathematical programming community. How-
ever, it is under explored for online optimization, where the goal is to minimize the regret. A
natural question arising is whether we can extend the update of accelerated gradient methods to
the online setting and establish improved regret bounds. On the other hand, for online convex
optimization and online strongly convex optimization, online gradient descent has been shown to
achieve optimal (static) 1 regret bounds. Therefore, one potential for achieving improved regret
bounds is to consider online smooth optimization, where the cost functions received at all rounds
are smooth and convex.

Recently, there emerge several studies on developing improved regret bounds for online smooth
optimization using the variation of the cost functions [3, 7, 2, 9, 4, 5, 10]. In particular, these studies
have proposed well-designed online optimization algorithms that maintain and update auxiliary
sequence of solutions besides the sequence of actions. Nonetheless, no work has been done to study
the regret bounds of Nesterov’s accelerated gradient methods applied in the online setting, though
they also maintain auxiliary sequences of solutions. This is the main motivation of the present
work given that Nesterov’s accelerated gradient methods have been very successful for smooth
optimization. In this paper, we study a variant of Nesterov’s accelerated gradient methods, which
can be explained as linear coupling of gradient update and mirror descent update [8, 6, 1]. By
combining the basic convergence analysis of gradient descent method and mirror descent method,

1To differentiate with the dynamic regret bound introduced later.
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we establish improved variational static regret bounds and dynamic regret bounds for online smooth
optimization. In particular, the variational regret bounds are in terms of the functional variation
instead of the gradient variation used in previous studies. To the best of our knowledge, this is the
first work that establishes variational regret bounds for Nesterov’s accelerated gradient method in
an online setting.

2 Preliminaries and Notations

In this section, we present some preliminaries of online convex optimization and some notations.
Let Ω ⊆ Rd be a bounded convex set and ‖ · ‖ be a norm and ‖ · ‖∗ be its conjugate dual norm.

In online convex optimization, at the t-th round the learner needs to play an action xt ∈ Ω ⊆ Rd
and then suffers a loss ft(xt) measured by a convex cost function ft(·) : Ω → R chosen by an
adversary. In order to compute the action in the next round, the learner usually needs to query
for some feedback about the cost function. We consider the most commonly used feedback model,
where the leaner is allowed to query for the gradient of a point yt ∈ Ω, i.e., ∇ft(yt), where yt
is not necessarily equal to the played action xt. The goal of online convex optimization is to
minimize the total cost suffered in a total of T rounds, i.e.,

∑T
t=1 ft(xt). In order to measure the

performance of different online optimization algorithms, a regret can be defined that compares the
performance of the learner to that of a competitor who is assumed to know all the cost functions
in advance. Depending on whether a single comparator or a sequence of comparators is used in the
definition of regret, we can have two notions of regret, i.e., static regret and dynamic regret. Let
x∗ = arg minx∈Ω

∑T
t=1 ft(x) and x∗t = arg minx∈Ω ft(x). The static regret is defined as

RsT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗) =

T∑
t=1

ft(xt)−min
x∈Ω

T∑
t=1

ft(x) (1)

where the performance of the learner is compared to a single best solution that minimizes the total
loss. In contrast, the dynamic regret is defined as

RdT =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) =

T∑
t=1

ft(xt)−
T∑
t=1

min
x∈Ω

ft(x) (2)

where the performance of the learner is compared to a sequence of minimizers for the received cost
functions. Note that since

∑T
t=1 minx∈Ω f(x) ≤ minx∈Ω

∑T
t=1 ft(x), therefore the dynamic regret is

always larger than the static regret. Moreover, it is known that in the worst case it is impossible to
achieve a sublinear dynamic regret bound unless a regularity measure is imposed on the sequence
of loss functions [2, 10]. In literature, three regularity measures have been used, namely functional
variation, gradient variation and path variation. The functional variation is defined as

V f
T =

T∑
t=1

max
x∈Ω
|ft(x)− ft+1(x)| (3)

The gradient variation is defined as

V g
T =

T∑
t=1

max
x∈Ω
‖∇ft(x)−∇ft+1(x)‖2∗ (4)
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Table 1: Summary of variational regret bounds for online smooth optimization under gradient
feedback.

Regret Type Reference Bound Algorithm Remark

[3, 7] O
(√

V g
T

)
Optimistic Mirror Descent

static Present work O

(√
V f
T

)
Online Accelerated Gradient Descent

[4] O(V p
T

√
T ) Online Mirror Descent

[2] O((V f
T )1/3T 2/3) Restarted Online Gradient Descent

[10] O(
√
V p
T T ) Online Gradient/Mirror Descent

dynamic [10] O(V p
T ) Online Gradient/Mirror Descent vanishing gradient

[5] O(
√
V p
T V

g
T ) Optimistic Mirror Descent

Present work O(
√
V p
T V

f
T ) Online Accelerated Gradient Descent

The path variation is given by

V p
T =

T∑
t=1

‖x∗t − x∗t+1‖ (5)

A sublinear dynamic regret bound is achievable only when V
f/g/p
T ≤ o(T ) [2, 10]. Several variational

regret bounds have been established. In Table 1, we summarize the variational static and dynamic
regret bounds developed in previous works and the present work to facilitate the comparison. Note
that the listed results focus on the similar setting as considered in this paper. Before ending this
section, we introduce some notations and assumptions. Let ω(x) be a 1-strongly convex function
with respect to ‖ · ‖, i.e.,

ω(x) ≥ ω(y) + 〈∇ω(y),x− y〉+
1

2
‖x− y‖2

Denote by V (x,y) the Bregman divergence induced by ω(x), i.e.,

V (x,y) = ω(x)− ω(y)− 〈∇ω(y),x− y〉

In the sequel, we will make the following assumptions.

Assumption 1. Suppose Ω is bounded so that there exists R > 0 such that V (x,y) ≤ R for all
x,y ∈ Ω.

Assumption 2. Suppose each cost function ft(x) : Ω→ R is bounded, i.e., there exists B > 0 such
that 0 ≤ ft(x) ≤ B for all t = 1, . . . , T .

Assumption 3. Suppose all the cost functions ft(x) : Ω→ R are convex and L-smooth, i.e., ft(x)
satisfies

ft(x) ≥ ft(y) + 〈∇ft(y),x− y〉 (6)

and

‖∇ft(x)−∇ft(y)‖∗ ≤ L‖x− y‖ (7)
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Algorithm 1 Online Accelerated Gradient Decent Method

1: Initialization: x1 = z1 ∈ Ω
2: for t = 1, . . . , T do
3: Play xt
4: Compute yt = τzt + (1− τ)xt and Query for the gradient of the loss function ft(x) at yt
5: Update xt+1 by

xt+1 = arg min
y∈Ω

γ

2
‖y − yt‖2 + 〈∇ft(yt),y − yt〉

6: Update zt+1 by
zt+1 = arg min

y∈Ω
〈α∇ft(yt),y − zt〉+ V (y, zt)

7: end for

3 Online Accelerated Gradient Descent Method

In this section, we will first present a variant of Nesterov’s accelerated gradient methods and then
extend it to the online setting. Then we establish its variational regret bounds.

3.1 Nesterov’s Accelerated Gradient Descent Method

Nesterov’s accelerated gradient descent methods have been used widely for solving smooth opti-
mization problem. Consider the following optimization problem

min
x∈Ω

f(x) (8)

where f(x) is a convex and L-smooth function. There are several variants of Nesterov’s accelerated
gradient methods. Here, we consider a particular variant that can be explained as the linear
coupling of the gradient descent method and the mirror descent method. The updates of this
variant are given by t = 1, . . . , T − 1:

yt = τzt + (1− τ)xt (9)

xt+1 = min
y∈Ω

L

2
‖y − yt‖2 + 〈∇f(yt),y − yt〉 (10)

zt+1 = min
y∈Ω
〈α∇f(yt),y − zt〉+ V (y, zt) (11)

Note that the update in (10) is the gradient descent update and the update in (11) is the mirror
descent update.

3.2 Online Accelerated Gradient Descent Method

The online Nesterov’s accelerated gradient descent method is presented in Algorithm 1. The regret
bounds of online accelerated gradient descent method are presented in the following two theorems.
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Theorem 4. (Variational Static Regret Bound) Suppose γ ≥ max{L, B+V f
T

R }, α =
√

R

γ(B+V f
T )

and

τ = 1
αγ ≤ 1. We have

RsT ≤ 2

√
γR(B + V f

T )

Theorem 5. (Variational Dynamic Regret Bound) Assume ω(x) is Lipschitz continous such that

V (x, z) − V (y, z) ≤ G‖x − y‖ for all x,y, z ∈ Ω. Suppose γ ≥ max{L, B+V f
T

R+GV p
T
}, α =

√
R+GV p

T

γ(B+V f
T )

and τ = 1
αγ ≤ 1. We have

RdT ≤ 2

√
γ(B + V f

T )(R+GV p
T )

To prove the above two theorems. We first prove a series of lemmas.

Lemma 1. Let z+ = arg miny∈Ω φ(y) + V (y, z). Then for any y ∈ Ω we have

φ(y) + V (y, z) ≥ φ(z+) + V (z+, z) + V (y, z+)

Lemma 2. Suppose γ ≥ L. For any u ∈ Ω

ft(xt+1)− ft(yt) ≤
γ

2
‖xt+1 − yt‖2 + 〈∇ft(yt),xt+1 − yt〉 ≤

γ

2
‖u− yt‖2 + 〈∇ft(yt),u− yt〉

Lemma 3. Suppose τ = 1
αγ For any x ∈ Ω, we have

α〈∇ft(yt), zt − x〉 ≤ α2γ(ft(yt)− ft(xt+1)) + V (x, zt)− V (x, zt+1)

Proof of Lemma 3. Using Lemma 1 for the update of zt+1 we have

α〈∇ft(yt),x− zt〉+ V (x, zt) ≥ α〈∇ft(yt), zt+1 − zt〉+ V (zt+1, zt) + V (x, zt+1)

≥ α〈∇ft(yt), zt+1 − zt〉+ V (x, zt+1) +
1

2
‖zt − zt+1‖2

Therefore

α〈∇ft(yt), zt − x〉 ≤ V (x, zt)− V (x, zt+1) + α〈∇ft(yt), zt − zt+1〉 −
1

2
‖zt − zt+1‖2

Letting u = τzt+1 + (1− τ)xt. Then yt − u = τ(zt − zt+1) and

α〈∇ft(yt), zt − zt+1〉 −
1

2
‖zt − zt+1‖2 =

α

τ
〈∇ft(yt),yt − u〉 − 1

2τ2
‖yt − u‖2

= α2γ
(
〈∇ft(yt),yt − u〉 − γ

2
‖yt − u‖2

)
≤ α2γ(ft(yt)− ft(xt+1))

Thus,

α〈∇ft(yt), zt − x〉 ≤ V (x, zt)− V (x, zt+1) + α2γ(ft(yt)− ft(xt+1))
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Lemma 4. Suppose γ ≥ L and τ = 1
αγ For any x ∈ Ω, we have

α(ft(xt)− ft(x)) ≤ α2γ(ft(xt)− ft(xt+1)) + V (x, zt)− V (x, zt+1)

Proof of Lemma 4.

α(ft(yt)− ft(x)) ≤ α〈∇ft(yt),yt − x〉 = α〈∇ft(yt),yt − zt〉+ α〈∇ft(yt), zt − x〉

≤ α(1− τ)

τ
〈∇ft(yt),xt − yt〉+ α〈∇ft(yt), zt − x〉

≤ (α2γ − α)(ft(xt)− ft(yt)) + α2γ(ft(yt)− ft(xt+1)) + V (x, zt)− V (x, zt+1)

= αft(yt) + (α2γ − α)ft(xt)− α2γft(xt+1) + V (x, zt)− V (x, zt+1)

Then

α(ft(xt)− f(x)) ≤ α2γ(ft(xt)− ft(xt+1)) + V (x, zt)− V (x, zt+1)

Proof of Theorem 4. Let x = x∗ = arg minx∈Ω
∑T

t=1 ft(x) in Lemma 4, we sum the above inequality
over t = 1, . . . , T , we have

α
T∑
t=1

(ft(xt)− ft(x∗)) ≤ α2L
T∑
t=1

(ft(xt)− ft(xt+1)) + V (x∗, z0)− V (x∗, zT+1)

≤ α2γ
T∑
t=1

(ft(xt)− ft+1(xt+1) + ft+1(xt+1)− ft(xt+1)) + V (x∗, z0)

= α2γ(f1(x1)− fT+1(xT+1)) + α2γ
T∑
t=1

(ft+1(xt+1)− ft(xt+1)) + V (x∗, z0)

≤ α2γB + α2γV f
T +R

Then we can bound the static regret by

T∑
t=1

(ft(xt)− ft(x∗)) ≤ αγ(B + V f
T ) +

R

α

By optimizing over α, i.e., letting α =
√

R

γ(B+V f
T )

, we obtain the following static regret bound

T∑
t=1

(ft(xt)− ft(x∗)) ≤ 2

√
γR(B + V f

T ) (12)

Finally, we note that αγ =

√
Rγ

B+V f
T

≥ 1, therefore τ = 1/(αγ) ≤ 1.
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Proof of Theorem 5. Let x = x∗t = arg minx∈Ω ft(x) in Lemma 4, we have

ft(xt)− ft(x∗t ) ≤ αγ(ft(xt)− ft(xt+1)) +
1

α
V (x∗t , zt)−

1

α
V (x∗t , zt+1)

Summing over t = 1, . . . , T , we have

T∑
t=1

(ft(xt)− ft(x∗t )) ≤ αγ(B + V f
T ) +

T∑
t=1

(
1

α
V (x∗t , zt)−

1

α
V (x∗t , zt+1)

)

≤ αγ(B + V f
T ) +

R

α
+

1

α

T∑
t=2

(V (x∗t , zt)− V (x∗t−1, zt))

≤ αγ(B + V f
T ) +

R

α
+
G

α

T∑
t=2

‖x∗t − x∗t−1‖

≤ αγ(B + V f
T ) +

R+GV p
T

α

wher the third equality uses the Lipschitz property V (x, z)− V (y, z) ≤ G‖x− y‖. By optimizing

over α, i.e., letting α =

√
R+GV p

T

γ(B+V f
T )

, we get

T∑
t=1

(ft(xt)− ft(x∗t )) ≤ 2

√
γ(B + V f

T )(R+GV p
T )
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A Proof of Lemma 1

By optimality condition of z+, for any y ∈ Ω we have

〈∇φ(z+) +∇V (z+, z),y − z+〉 ≥ 0

By the convexity of φ(y),

φ(y)− φ(z+) ≥ 〈∇φ(z+),y − z+〉

Then

φ(y)− φ(z+) ≥ 〈∇V (z+, z), z+ − y〉

By the definition of V (y, z), we have ∇V (z+, z) = ∇ω(z+)−∇ω(z). Then

φ(y)− 〈∇ω(z),y − z〉 ≥ φ(z+)− 〈∇ω(z), z+ − z〉 − 〈∇ω(z+),y − z+〉

Adding ω(y)− ω(z) to both sides and by noting that

V (y, z) = ω(y)− ω(z)− 〈∇ω(z),y − z〉
V (z+, z) + V (y, z+) = ω(z+)− ω(z)− 〈∇ω(z), z+ − z〉+ ω(y)− ω(z+)− 〈∇ω(z+),y − z+〉

we can finish the proof.
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