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Machine Learning Introduction

Machine Learning

What is Machine Learning?
Arthur Samule (1959)
”Field of study that gives computers the ability to learn
without being explicitly programmed”
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Machine Learning Introduction

Machine Learning

Traditional Computer Science

picture by courtesy of Killian Weinberger.
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Machine Learning Introduction

Machine Learning

Machine Learning vs. Traditional Computer Science

picture by courtesy of Killian Weinberger.
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Machine Learning Introduction

Machine Learning

Let the Data Speak for itself!

picture by courtesy of Killian Weinberger.
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Machine Learning Introduction

Applications of Machine Learning

Spam Filter
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Machine Learning Introduction

Applications of Machine Learning

Face Recognition
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Machine Learning Introduction

Applications of Machine Learning

Speech Recognition
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Machine Learning Introduction

Applications of Machine Learning
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Machine Learning Introduction

Data Matrices and Machine Learning

The Instance-feature Matrix: X ∈ Rn×d

X =



x>1
x>2
·
·
·

x>n


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Machine Learning Introduction

Data Matrices and Machine Learning

The output vector: y =



y1
y2
·
·
·

yn


continuous yi ∈ R: regression (e.g., house price)
discrete, e.g., yi ∈ {1, 2, 3}: classification (e.g., species of iris)
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Machine Learning Introduction

Data Matrices and Machine Learning

Many machine learning tasks are formulated based on the data matrix X
and the output vector y.

Regression: (minimize the least-squares error)

min
w∈Rd

‖Xw− y‖22

= min
w∈Rd

n∑
i=1

(x>i w− yi )
2

w ∈ Rd refers to the predictive model (or the program as referred at
the beginning)
Prediction on new data: x>new w∗ (w∗ optimizes the objective function)
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Machine Learning Introduction

Data Matrices and Machine Learning

Many machine learning tasks are formulated based on the data matrix X
and the output vector y.

Classification

min
w∈Rd

1
n

n∑
i=1

`(w>xi , yi )︸ ︷︷ ︸
Empirical Loss

+
λ

2 ‖w‖
2
2︸ ︷︷ ︸

Regularization

e.g., yi ∈ {1,−1}
Loss function `(z , y): z = w>x

1. SVMs: (squared) hinge loss `(z, y) = max(0, 1 − yz)p , where p = 1, 2

2. Logistic Regression: `(z) = log(1 + exp(−yz))
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Machine Learning Introduction

Data Matrices and Machine Learning
The Instance-Instance Matrix: K ∈ Rn×n

Similarity Matrix
Kernel Matrix
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Machine Learning Introduction

Data Matrices and Machine Learning
Some machine learning tasks are formulated on the kernel matrix

Clustering
Kernel Methods
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Machine Learning Introduction

Data Matrices and Machine Learning

The Feature-Feature Matrix: C ∈ Rd×d

Covariance Matrix
Distance Metric Matrix
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Machine Learning Introduction

Data Matrices and Machine Learning

Some machine learning tasks requires the covariance matrix
Principal Component Analysis
Dimensionality Reduction
Top-k Singular Value (Eigen-Value) Decomposition of the Covariance
Matrix
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Machine Learning Introduction

Big Data Challenge

Huge amount of data generated every day
Facebook users upload 3 million photos
Goolge receives 3 billion queries
Youtube users upload over 1,700 hours video
Global internet population is 2.1 billion people
247 billion emails sent

http://www.visualnews.com/2012/06/19/how-much-data-created-every-minute/

Do we really need Big Data?

Yang (CS@Uiowa) AMCS seminar April 24, 2015 20 / 68

http://www.visualnews.com/2012/06/19/how-much-data-created-every-minute/ 


Machine Learning Introduction

Big Data Challenge

Huge amount of data generated every day
Facebook users upload 3 million photos
Goolge receives 3 billion queries
Youtube users upload over 1,700 hours video
Global internet population is 2.1 billion people
247 billion emails sent

http://www.visualnews.com/2012/06/19/how-much-data-created-every-minute/

Do we really need Big Data?

Yang (CS@Uiowa) AMCS seminar April 24, 2015 20 / 68

http://www.visualnews.com/2012/06/19/how-much-data-created-every-minute/ 


Machine Learning Introduction

Big Data Challenge

General Visual Recognition Challenge (ImageNet Challenge)

Hundreds of Thousands of Objects
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Machine Learning Introduction

Big Data Challenge

Fine-grained Image Classification

(a) Siberian husky (b) Eskimo dog

Figure 1: Two distinct classes from the 1000 classes of the ILSVRC 2014 classification challenge.

and expensive, especially if expert human raters are necessary to distinguish between fine-grained
visual categories like those in ImageNet (even in the 1000-class ILSVRC subset) as demonstrated
by Figure 1.

Another drawback of uniformly increased network size is the dramatically increased use of compu-
tational resources. For example, in a deep vision network, if two convolutional layers are chained,
any uniform increase in the number of their filters results in a quadratic increase of computation. If
the added capacity is used inefficiently (for example, if most weights end up to be close to zero),
then a lot of computation is wasted. Since in practice the computational budget is always finite, an
efficient distribution of computing resources is preferred to an indiscriminate increase of size, even
when the main objective is to increase the quality of results.

The fundamental way of solving both issues would be by ultimately moving from fully connected
to sparsely connected architectures, even inside the convolutions. Besides mimicking biological
systems, this would also have the advantage of firmer theoretical underpinnings due to the ground-
breaking work of Arora et al. [2]. Their main result states that if the probability distribution of
the data-set is representable by a large, very sparse deep neural network, then the optimal network
topology can be constructed layer by layer by analyzing the correlation statistics of the activations
of the last layer and clustering neurons with highly correlated outputs. Although the strict math-
ematical proof requires very strong conditions, the fact that this statement resonates with the well
known Hebbian principle – neurons that fire together, wire together – suggests that the underlying
idea is applicable even under less strict conditions, in practice.

On the downside, todays computing infrastructures are very inefficient when it comes to numerical
calculation on non-uniform sparse data structures. Even if the number of arithmetic operations is
reduced by 100⇥, the overhead of lookups and cache misses is so dominant that switching to sparse
matrices would not pay off. The gap is widened even further by the use of steadily improving,
highly tuned, numerical libraries that allow for extremely fast dense matrix multiplication, exploit-
ing the minute details of the underlying CPU or GPU hardware [16, 9]. Also, non-uniform sparse
models require more sophisticated engineering and computing infrastructure. Most current vision
oriented machine learning systems utilize sparsity in the spatial domain just by the virtue of em-
ploying convolutions. However, convolutions are implemented as collections of dense connections
to the patches in the earlier layer. ConvNets have traditionally used random and sparse connection
tables in the feature dimensions since [11] in order to break the symmetry and improve learning, the
trend changed back to full connections with [9] in order to better optimize parallel computing. The
uniformity of the structure and a large number of filters and greater batch size allow for utilizing
efficient dense computation.

This raises the question whether there is any hope for a next, intermediate step: an architecture
that makes use of the extra sparsity, even at filter level, as suggested by the theory, but exploits our

3
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Machine Learning Introduction

Big Data Challenge

Big Data will be the key to achieve success
Example: 1000 Objects Classification

14 millions of images indexed
surpass human-level performance: top-1 accuracy 78% and top-5
accuracy 95%

Why Learning from Big Data is challenging?
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Machine Learning Introduction

Why Big Data is challenging
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Randomized Algorithms (RA)

Randomized Algorithms

Use some kind of randomization (sampling) to reduce the cost of
computation
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Randomized Algorithms (RA)

Randomized Algorithms

Use some kind of randomization (sampling) to reduce the cost of
computation (e.g., sampling rows or instances)
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Randomized Algorithms (RA)

Randomized Algorithms

Use some kind of randomization (sampling) to reduce the cost of
computation (e.g., sampling columns or features)
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Randomized Algorithms (RA)

Randomized Algorithms

Algorithms:
Stochastic Optimization (e.g., SGD)
Randomized Low-rank Matrix Approximation (e.g., randomized SVD)
Dropout for Deep Learning
Randomized reduction for regression and classification

Benefits:
Faster
More robust (implicit regularization)
Easy to analyze
exploit modern computational architectures
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Randomized Algorithms (RA)

Randomized Feature Reduction for Classification

min
w∈Rd

1
n

n∑
i=1

`(w>xi , yi ) +
λ

2 ‖w‖
2
2

Randomized feature reduction: x̂i = Axi , where A ∈ Rm×d with
m� d
A: random projection matrix (e.g., Gaussian entries)
Solve the reduced problem

min
u∈Rm

1
n

n∑
i=1

`(u>x̂i , yi ) +
λ

2 ‖u‖
2
2
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Randomized Algorithms (RA)

Why does Randomized Reduction Works?

The Johnson-Lindenstrauss Lemma (Johnson & Lindenstrauss (1984)).
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Randomized Algorithms (RA)

Question

How can we recover a model in original high-dimensional space?
Usually features in original feature space have meanings (e.g., genes,
words)
Finding a model in the original feature space can help understand the
importance of different features
Help us design better strategies (e.g., for controlling risk of a disease)
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Randomized Feature Reduction for Classification

w∗ = arg min
w∈Rd

1
n

n∑
i=1

`(w>xi , yi ) +
λ

2 ‖w‖
2
2

xi ∈ Rd , expensive when d is very very large, e.g., millions or billions
Randomized feature reduction: x̂i = Axi , where A ∈ Rm×d with
m� d
Solve the reduced problem

u∗ = arg min
u∈Rm

1
n

n∑
i=1

`(u>x̂i , yi ) +
λ

2 ‖u‖
2
2

Question: How to obtain a good model ŵ∗ in the original feature space?
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

A Naive Approach

u∗ = arg min
u∈Rm

1
n

n∑
i=1

`(u>x̂i , yi ) +
λ

2 ‖u‖
2
2

u∗ = arg min
u∈Rm

1
n

n∑
i=1

`(u>Axi , yi ) +
λ

2 ‖u‖
2
2

Naive Recovery:
ŵ∗ = A>u∗ ∈ Rd

Problem: ŵ∗ could be a very bad solution

‖ŵ∗ −w∗‖2 ≥ Ω

√d −m
d ‖w∗‖2


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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Dual Recovery
(COLT’13, IEEE-IT’14)
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Our Approach: Dual Recovery

The Dual Problem: (using Fenchel conjugate)

`∗i (αi ) = max
αi

αiz − `(z , yi )

Primal w∗ = arg min
w∈Rd

1
n

n∑
i=1

`(w>xi , yi ) +
λ

2 ‖w‖
2
2

Dual α∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>XX>α

w∗ = − 1
λnX>α∗
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Our Approach: Dual Recovery
Important Implication from the Dual: w∗ lies in the row space of the data
matrix X ∈ Rn×d

the Naive approach: ŵ∗ = A>u∗
Dual Recovery: w̃∗ = − 1

λnX>α̂∗, where

α̂∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>X̂ X̂>α

X̂ = XA> ∈ Rn×m

Our theorem: under low-rank assumption of the data matrix X (e.g.,
rank(X ) = r), with a high probability 1− δ,

‖w̃∗ −w∗‖2 ≤
ε

1− ε‖w∗‖2, where ε = Θ

√ r log(r/δ)

m


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n
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Can you remove low-rank assumption?
Yes, we can. How?

by exploiting the sparsity of the dual variables
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Dual-sparse Recovery
(To appear in ICML’15)
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Our Recent work on RA for Big Data Optimization Randomized Reduction and Recovery

Can you remove low-rank assumption?
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Our Recent work on RA for Big Data Optimization Dual-sparse Randomized Reduction and Recovery

Our New Approach: Dual-sparse Recovery

Dual-sparse Recovery: w̃∗ = − 1
λnX>α̂∗, where

α̂∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>X̂ X̂>α− τ

n‖α‖1

Our theorem: if α∗ is s-sparse, with a high probability 1− δ,

‖w̃∗ −w∗‖2 ≤ ε‖w∗‖2, where ε = Θ

√s log(n/δ)

m


Exploit Convex Optimization theory, JL lemma, Compressive Sensing
theory
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Our Recent work on RA for Big Data Optimization Dual-sparse Randomized Reduction and Recovery

Our New Approach: Dual-sparse Recovery

Dual-sparse Recovery: w̃∗ = − 1
λnX>α̂∗, where

α̂∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>X̂ X̂>α− τ

n‖α‖1

Our theorem: if α∗ is s-sparse, with a high probability 1− δ,

‖w̃∗ −w∗‖2 ≤ ε‖w∗‖2, where ε = Θ

√s log(n/δ)

m


Exploit Convex Optimization theory, JL lemma, Compressive Sensing
theory
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Our Recent work on RA for Big Data Optimization Results

Results

Yang (CS@Uiowa) AMCS seminar April 24, 2015 46 / 68



Our Recent work on RA for Big Data Optimization Results

Dual Recovery vs Naive Recovery
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Our Recent work on RA for Big Data Optimization Results

Dual-sparse Recovery
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Our Recent work on RA for Big Data Optimization Results

Big Data Experiments

KDDcup Data: n = 8, 407, 752, d = 29, 890, 095, 10 machines
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Take-home Messages

Messages

Machine Learning is changing our life

Machine Learning is not just about Programming

Big Data brings ground-breaking advances

Randomized Algorithms are useful for Big Data

If you are interested in any of these topics, I am happy to discuss with
you.
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Take-home Messages

Thank You!

Yang (CS@Uiowa) AMCS seminar April 24, 2015 53 / 68



Take-home Messages

Randomized Algorithms for
Optimization

Yang (CS@Uiowa) AMCS seminar April 24, 2015 54 / 68



Take-home Messages

Stochastic Gradient Descent in Machine Learning

F (w) =
1
n

n∑
i=1

`(w>xi , yi ) +
λ

2 ‖w‖
2
2

let it ∈ {1, . . . , n} uniformly randomly sampled

key equation: Eit [∇`(w>xit , yit ) + λw] = ∇F (w)

computation is cheaper O(d) compared with full gradient O(nd)

wt = (1− γtλ)wt−1 − γt∇`(w>t−1xit , yit)
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Take-home Messages

Stochastic Coordinate Descent
Randomized*Coordinate*Descent*in

2D

a2=b2
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Take-home Messages

Research on Stochastic Optimization

Establish Fast Convergence Rate for various learning problems.
Convex Optimization Theory
Our Research

SGD with only one projection for complex domains (NIPS’12)
Distributed Stochastic Dual Coordinate Ascent (NIPS’13)
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Take-home Messages

Randomized Reduction
Methods
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Take-home Messages

Over-constrained Least Squares Regression (LSR)

min
w∈Rd

‖Xw− y‖2, where X ∈ Rn×d , n� d

Randomized Reduction A ∈ Rm×n : Rn → Rm, m� n
minw∈Rd ‖(AX )w− (Ay)‖2
Time complexity: O(nd2)→ o(nd2)

Mahoney (2011)
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Take-home Messages

Research on Randomized Over-constrained LSR

w∗ = arg min
w∈Rd

‖Xw− y‖2

ŵ∗ = arg min
w∈Rd

‖(AX )w− (Ay)‖2

What is a appropriate reduction matrix A ∈ Rm×n?
The error bound of ‖ŵ∗ −w∗‖2
Convex optimization theory, random matrix theory
Our Research

A New Sampling Distribution for A (to appear in ICML’15)
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Take-home Messages

Randomized Algorithms for
Low-rank Matrix
Approximation
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Take-home Messages

low-rank matrix approximation

Many machine learning problems require computing the top-k components
of the singular value decomposition (SVD)

Principal Component Analysis
Latent Semantic Indexing (information retrieval)

Given a m × n large matrix, how to efficiently compute its top-k
components (SVD)?
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Take-home Messages

RA for low-rank matrix approximation

Traditional Methods
SVD: O(min(mn2,m2n))

partial SVD (for top-k components): O(mnk)

rank revealing QR factorization: O(mnk)

Randomized Algorithms Halko et al. (2011)
more robust
can be as fast as O(mn log(k))
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Take-home Messages

RA for low-rank matrix approximation

Random Sketching

Random Projection: Ω ∈ Rn×`, ` > k (random projection or random
fourier transform); compute B = AΩ ∈ Rm×`; compute the top-k
components based on B
Column Subset Selection (CSS): sample a subset of columns
CUR decomposition: X = CUR, sample columns and rows
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CUR decomposition for Kernel matrix

the Nyström method
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Research on RA Low-rank Martrix Approximation

The relative error of the approximated low-rank matrix

‖X − X̂k‖2,F ≤ (1 + ε)‖X − Xk‖2,F

Our Research
Better Bounds on the Nyström method (NIPS’12, IEEE-IT)
Better Sampling Distributions for CSS (to appear in ICML’15).
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Why low-rank assumption?

α∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>XX>α

α̂∗ = arg max
α∈Rn

−1
n

n∑
i=1

`∗i (αi )−
1

2λn2α
>XA>AX>α

Let X = UΣV>: V ∈ Rd×r

UΣV>A>AV︸ ︷︷ ︸
BB>

ΣU>, UΣV>V︸ ︷︷ ︸
Ir

ΣU>

B ∈ Rr×m tail bounds for the eigenvalues of a sum of random matrices

‖BB> − I‖2 ≤ O
(√ r

m

)
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