
Contract-based Compositional Verification
of Infinite-State Reactive Systems

Cesare Tinelli

VSTTE 2018 — July 18-19, 2018, Oxford, UK

Acknowledgments

Collaborators:

Adrien Champion*, Christoph Sticksel*, Arie Gurfinkel, Temesghen
Kahsai, Daniel Larraz*, Alain Mebsout*, Mudathir Mohamed,
Baoluo Meng, Ruoyu Zhang

(*) Senior Kind 2 developer

Embedded Software

• Used to control the behavior of physical devices

• Typically reactive: continually map inputs and internal state to
outputs

• Often mission- or safety-critical

• Developed modularly from components

• Development model-based

Model-based Software Development

• Software components modeled formally as computational
systems

• Synchronous/asynchronous computational model

• Formal system and components amenable to formal analysis

• Expected behavior specified in terms of safety/liveness
properties

• Great progress in last two decades in automating verification

• Compositional reasoning crucial for scalability

This Talk

Experiences in

• designing a contract language on top of a synchronous,
dataflow modeling language for embedded software

• leveraging contracts for
modular and incremental development
compositional model checking

Discussion of

• implementation in the Kind 2 model checker

• a case study with a realistic system

Compositional Reasoning: Assume-Guarantee Paradigm

Setting [McMillan, 1999, Bobaru et al., 2008]:

• (Reactive) system is composed of several components

• Every component C [x, y] with inputs x and outputs y has a
contract:

a set A[x, y] of assumptions on C ’s current input and past I/O
behavior
a set G[x, y] of guarantees on expected behavior,
provided assumptions A[x, y] hold

Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions satisfy

�A ⇒ �G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy �A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1

Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions satisfy

�A ⇒ �G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy �A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1

Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions satisfy

�A ⇒ �G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy �A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1

Modeling Reactive System Components in Lustre

Lustre: a synchronous dataflow language [Halbwachs et al., 1992]

Synchronous:
all components run in parallel, based on a universal clock

Dataflow:
inputs, outputs, variables, constants are all infinite streams of
values

Reactive:
components run forever
at each clock tick, they compute outputs from current inputs
and state before the next clock tick

Declarative:
components defined by set of equations, no statements

Modeling Reactive System Components in Lustre

Lustre: a synchronous dataflow language [Halbwachs et al., 1992]

Synchronous:
all components run in parallel, based on a universal clock

Dataflow:
inputs, outputs, variables, constants are all infinite streams of
values

Reactive:
components run forever
at each clock tick, they compute outputs from current inputs
and state before the next clock tick

Declarative:
components defined by set of equations, no statements

Modeling Reactive System Components in Lustre

Lustre: a synchronous dataflow language [Halbwachs et al., 1992]

Synchronous:
all components run in parallel, based on a universal clock

Dataflow:
inputs, outputs, variables, constants are all infinite streams of
values

Reactive:
components run forever
at each clock tick, they compute outputs from current inputs
and state before the next clock tick

Declarative:
components defined by set of equations, no statements

A Simple Lustre Component

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0 ;
tel

Circuit view:

x

+

y /

2.0

out

A Simple Lustre Component

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0 ;
tel

Circuit view:

x

+

y /

2.0

out

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0 ;
tel

Mathematical view:

∀i ∈ N, outi =
xi + yi

2

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

4.0+6.0
2.0

4.0 6.0

5.0

1

0.0+7.0
2.0

0.0 7.0

3.5

2

1.0+1.0
2.0

1.0 1.0

1.0

3

7.0+1.0
2.0

7.0 1.0

4.0

Combinational programs

• Basic types: bool , int , real

• Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

• Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

• All customary operators are provided

Combinational Components

Conditional expressions

Local variables

node max (a,b: real) returns (out: real);
var

c: bool;
let

out = if c then a else b;
c = a >= b;

tel

• Equation order does not matter

• Set of equations, not sequence of statements

• Causality is resolved syntactically

Combinational Components

Conditional expressions

Local variables

node max (a,b: real) returns (out: real);
var

c: bool;
let

out = if c then a else b;
c = a >= b;

tel

• Equation order does not matter

• Set of equations, not sequence of statements

• Causality is resolved syntactically

Stateful Components

Previous operator pre :
(pre x)0 undefined
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:
x x0 x1 x2 x3 x4 x5 . . .

pre x // x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 y5 . . .

x -> y x0 y1 y2 y3 y4 y5 . . .
2 2 2 2 2 2 2 . . .

2 -> (pre x) 2 x0 x1 x2 x3 x4 . . .

Stateful Components

Previous operator pre :
(pre x)0 undefined
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:
x x0 x1 x2 x3 x4 x5 . . .

pre x // x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 y5 . . .

x -> y x0 y1 y2 y3 y4 y5 . . .
2 2 2 2 2 2 2 . . .

2 -> (pre x) 2 x0 x1 x2 x3 x4 . . .

Modularity

Components defined as nodes parametrized by inputs

Can have several outputs

Can be understood as macros

node MinMaxSoFar (X : real) returns (Min, Max : real);
let

Min = X -> if (X < pre Min) then X else pre Min ;
Max = X -> if (X > pre Max) then X else pre Max ;

tel

node MinMaxAverageSoFar (X: real) returns (Y: real) ;
var Min, Max: real ;
let

Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;

tel

CocoSpec Contract Language

Our extension of Lustre with contracts [Champion et al., 2016a]

Objectives:

• follow assume-guarantee paradigm

• ease process of writing and reading formal specifications

• facilitate automatic verification of specs

• improve feedback to user after analysis

• partition information for specification-driven test generation

Contract-based specification

Contracts over components

• describe their behavior under some assumptions

• correspond to requirements from specification documents

Contract Example

stopwatch(toggle, reset) → count

Assumptions:
reasonable input ¬(reset ∧ toggle)

Guarantees:
output range count ≥ 0, initially 0
resetting reset implies count is 0
running ¬reset ∧ on implies count increases by 1
stopped ¬reset ∧ ¬on implies count does not change

Contract Example

node stopwatch(toggle, reset: bool) returns (c: int);
(*@contract

var on: bool = toggle ->
(pre on and not toggle) or (not pre on and toggle) ;

assume not (reset and toggle) ;
guarantee c = 0 -> c >= 0 ;

guarantee reset => c = 0 ;
guarantee (not reset and on) => c = (1 -> pre c + 1) ;
guarantee (not reset and not on) => c = (0 -> pre c) ;

*)
let ... tel

Contracts as an Abstraction Mechanism

A component’s contract is usually simpler than the component’s
definition

A contract is a declarative over-approximation of the component

Contracts enable modular and compositional analyses in alternative
to a monolithic one

In compositional analyses we abstract away the complexity of a
subsystem by its contract

Monolithic Analysis

Monolithic:

• analyze the top level

• considering the whole system

However:

• complete system might be too complex

• changing subcomponents voids old results

• correctness of subcomponents is not
addressed

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4

Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up
1 2

3

4

Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2

3

4

Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4

Compositional and Modular: Benefits

If all components are valid, without refinement:

• the system as a whole is correct

• changing a component by a different, correct
one does not impact the correctness of the
whole system 1 2

3

4

Compositional and Modular: Benefits

If all components are valid, with refinement:

• the system as a whole is correct

• but the contracts are not good enough for a compositional
analysis to succeed

Refinement gives hints as to why

Compositional and Modular: Benefits

If we had to refine component 1 to prove 3 correct,
that’s probably because 1’s contract is too weak

1 2

3

4

Compositional and Modular: Benefits

If after refining all sub-components we still cannot
prove 3 correct, that’s because

• the assumptions of 3 are too weak, and/or

• the guarantees of 3 do not hold
1 2

3

4

Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Modes: Example

stopwatch(toggle, reset) → count

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count is 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change

Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Assume-Guarantee contracts do not adequately capture this sort of
specifications . . .

. . . because modes are simply encoded as conditional guarantees

Solution

Represent modes explicitly in the contract

A mode consists of a require (req) and an ensure (ens) clause

• expresses a transient behavior

• corresponds to a guarantee req⇒ ens

⇒ separation between global behavior (guarantees)
and transient behavior (modes)

Modes in Contract

A set of modes M can be added to a contract

Its semantics is an assume-guarantee pair 〈A, G〉 with

A ≡
∨

m∈M
reqm

G ≡
∧

m∈M
(reqm ⇒ ensm)

Note: reqm’s need not be mutually exclusive

Modes: Example

stopwatch(toggle, reset) → count

var on: bool = toggle -> (pre on and not toggle) or (not pre on and
toggle) ;

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count = 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change

Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors

Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors

CocoSpec Contracts for Lustre

A CocoSpec contract is

• a set of assumptions,

• a set of guarantees, and

• a set of modes

Can contain internal variables

It can use specification nodes

Can be inlined in a node or stand-alone

Stand-alone contracts can be imported and instantiated

Stand-alone Contract with Modes

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;

assume not (rst and tgl) ;
guarantee c = 0 -> c >= 0 ;

mode resetting (
require rst ; ensure c = 0 ;) ;

mode running (
require not rst and on ; ensure c = (1 -> pre c + 1) ;) ;

mode stopped (
require not rst and not on ; ensure c = (0 -> pre c) ;) ;

tel

node stopwatch(toggle, reset: bool) returns (count: int) ;
(*@contract import stopwatch_spec(toggle, reset) returns (count) ; *)
let ... tel

Additional Features

In contracts, one can

• refer to modes in formulas (with ::<mode_name>)

• call contract-free nodes

node count(b: bool) returns (count: int) ;
let

count = (if b then 1 else 0) + (0 -> pre count) ;
tel

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

...
mode running (...) ;
mode stopped (...) ;
...
guarantee not (::running and ::stopped) ;
guarantee count(::resetting) > 0 => c < count(true) ;

tel

Modes: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily

Modes: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily

Modes: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information

Modes: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information

Modes: Advantages

Test generation:

• can generate witnesses for abstract executions

• thus obtaining specification-based, implementation-agnostic
test cases from the model

CocoSpec Support

CocoSpec is fully supported by Kind 2 model checker

Kind 2 [Champion et al., 2016b]:

• multi-engine SMT-based safety checker for Lustre models

• competitive with state-of-the-art checkers for infinite-state
systems

• engines run concurrently and cooperatively

• can run modular / compositional, mode-aware analysis

• implements all the features discussed so far

• used at Rockwell Collins, GE, Peugeot, . . .

Case Study: Transport Class Model (TCM)

System developed by NASA Langley in Simulink [Brat et al., 2015]

Generic model of a mid-size, twin-engine transport aircraft
[Hueschen, 2011]

System requirements elicited from Federal Avionic Regulations

Case Study: Transport Class Model (TCM)

We formalized in Lustre TCM’s mode logic + autopilot controllers
[Champion et al., 2016a]

• looks arbitrarily far in the past

• non-linear arithmetic expressions

Hi-level architecture:

Autopilot

Mode Logic Longitudinal Controller

Altitude Controller FPA Controller

Case Study: Transport Class Model (TCM)

We formalized in Lustre TCM’s mode logic + autopilot controllers
[Champion et al., 2016a]

• looks arbitrarily far in the past

• non-linear arithmetic expressions

Hi-level architecture:

Autopilot

Mode Logic Longitudinal Controller

Altitude Controller FPA Controller

Case Study: Transport Class Model (TCM)

TCM formalization in CoCoSpec+Lustre and analysis with Kind 2

• Guessed contracts for subcomponents mostly by trial and error
(auto-active model checking?)

• Mode-related feedback invaluable for us, not aviation experts,
to specify TCM

• Additional contracts added to abstract non-linear arithmetic
expressions

• Monolithic analysis unsuccessful after several hours

• Modular and compositional analysis successful on the whole
subsystem (including non-linear exprs) in under 2 minutes

Conclusion

Mode-based Assume-Guarantee Contracts:

• more scalable verification thanks to compositional reasoning

• bring contract language closer to specification documents

• improve user feedback (blame assignment, abstract cex traces)

• raise trust in specification, improve maintainability, . . .

• enable specification-based test generation

http://kind.cs.uiowa.edu/

Thanks!

http://kind.cs.uiowa.edu/

Bobaru, M. G., Pasareanu, C. S., and Giannakopoulou, D.
(2008).
Automated assume-guarantee reasoning by abstraction
refinement.
In Gupta, A. and Malik, S., editors, Computer Aided
Verification, 20th International Conference, CAV 2008, volume
5123 of Lecture Notes in Computer Science. Springer.

Brat, G., Bushnell, D. H., Davies, M., Giannakopoulou, D.,
Howar, F., and Kahsai, T. (2015).
Verifying the safety of a flight-critical system.
In Bjørner, N. and de Boer, F. S., editors, FM 2015: Formal
Methods - 20th International Symposium, 2015, volume 9109
of Lecture Notes in Computer Science. Springer.

Champion, A., Gurfinkel, A., Kahsai, T., and Tinelli, C.
(2016a).

CoCoSpec: A mode-aware contract language for reactive
systems.
In De Nicola, R. and Kühn, E., editors, Proceedings of the 8th
International Conference on Software Engineering and Formal
Methods, Vienna, Austria", volume 9763 of Lecture Notes in
Computer Science, pages 347–366. Springer.

Champion, A., Mebsout, A., Sticksel, C., and Tinelli, C.
(2016b).
The Kind 2 model checker.
In Chaudhuri, S. and Farzan, A., editors, Computer Aided
Verification, 28th International Conference, CAV 2016, Lecture
Notes in Computer Science. Springer.
(To appear).

Halbwachs, N., Lagnier, F., and Ratel, C. (1992).
Programming and verifying real-time systems by means of the
synchronous data-flow language LUSTRE.

IEEE Trans. Software Eng., 18(9).

Hueschen, R. M. (2011).
Development of the Transport Class Model (TCM) aircraft
simulation from a sub-scale Generic Transport Model (GTM)
simulation.
Technical report, NASA, Langley Research Center.

McMillan, K. L. (1999).
Circular compositional reasoning about liveness.
In Pierre, L. and Kropf, T., editors, Correct Hardware Design
and Verification Methods, 10th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 1999, volume 1703 of
Lecture Notes in Computer Science. Springer.

	Conclusion

