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Embedded Software

• Used to control the behavior of physical devices

• Typically reactive: continually map inputs and internal state to
outputs

• Often mission- or safety-critical

• Developed modularly from components

• Development model-based



Model-based Software Development

• Software components modeled formally as computational
systems

• Synchronous/asynchronous computational model

• Formal system and components amenable to formal analysis

• Expected behavior specified in terms of safety/liveness
properties

• Great progress in last two decades in automating verification

• Compositional reasoning crucial for scalability



This Talk

Experiences in

• designing a contract language on top of a synchronous,
dataflow modeling language for embedded software

• leveraging contracts for
modular and incremental development
compositional model checking

Discussion of

• implementation in the Kind 2 model checker

• a case study with a realistic system



Compositional Reasoning: Assume-Guarantee Paradigm

Setting [McMillan, 1999, Bobaru et al., 2008]:

• (Reactive) system is composed of several components

• Every component C [x, y] with inputs x and outputs y has a
contract:

a set A[x, y] of assumptions on C ’s current input and past I/O
behavior
a set G[x, y] of guarantees on expected behavior,
provided assumptions A[x, y] hold



Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions satisfy

�A ⇒ �G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy �A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1
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Modeling Reactive System Components in Lustre

Lustre: a synchronous dataflow language [Halbwachs et al., 1992]

Synchronous:
all components run in parallel, based on a universal clock

Dataflow:
inputs, outputs, variables, constants are all infinite streams of
values

Reactive:
components run forever
at each clock tick, they compute outputs from current inputs
and state before the next clock tick

Declarative:
components defined by set of equations, no statements
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A Simple Lustre Component

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0 ;
tel

Circuit view:
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A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0 ;
tel

Mathematical view:

∀i ∈ N, outi =
xi + yi

2
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A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel
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Combinational programs

• Basic types: bool , int , real

• Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

• Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

• All customary operators are provided



Combinational Components

Conditional expressions

Local variables

node max (a,b: real) returns (out: real);
var

c: bool;
let

out = if c then a else b;
c = a >= b;

tel

• Equation order does not matter

• Set of equations, not sequence of statements

• Causality is resolved syntactically
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Stateful Components

Previous operator pre :
(pre x)0 undefined
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:
x x0 x1 x2 x3 x4 x5 . . .

pre x // x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 y5 . . .

x -> y x0 y1 y2 y3 y4 y5 . . .
2 2 2 2 2 2 2 . . .

2 -> (pre x) 2 x0 x1 x2 x3 x4 . . .
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Modularity

Components defined as nodes parametrized by inputs

Can have several outputs

Can be understood as macros

node MinMaxSoFar ( X : real ) returns ( Min, Max : real );
let

Min = X -> if (X < pre Min) then X else pre Min ;
Max = X -> if (X > pre Max) then X else pre Max ;

tel

node MinMaxAverageSoFar ( X: real ) returns ( Y: real ) ;
var Min, Max: real ;
let

Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;

tel



CocoSpec Contract Language

Our extension of Lustre with contracts [Champion et al., 2016a]

Objectives:

• follow assume-guarantee paradigm

• ease process of writing and reading formal specifications

• facilitate automatic verification of specs

• improve feedback to user after analysis

• partition information for specification-driven test generation



Contract-based specification

Contracts over components

• describe their behavior under some assumptions

• correspond to requirements from specification documents



Contract Example

stopwatch(toggle, reset) → count

Assumptions:
reasonable input ¬(reset ∧ toggle)

Guarantees:
output range count ≥ 0, initially 0
resetting reset implies count is 0
running ¬reset ∧ on implies count increases by 1
stopped ¬reset ∧ ¬on implies count does not change



Contract Example

node stopwatch(toggle, reset: bool) returns (c: int);
(*@contract

var on: bool = toggle ->
(pre on and not toggle) or (not pre on and toggle) ;

assume not (reset and toggle) ;
guarantee c = 0 -> c >= 0 ;

guarantee reset => c = 0 ;
guarantee (not reset and on) => c = (1 -> pre c + 1) ;
guarantee (not reset and not on) => c = (0 -> pre c) ;

*)
let ... tel



Contracts as an Abstraction Mechanism

A component’s contract is usually simpler than the component’s
definition

A contract is a declarative over-approximation of the component

Contracts enable modular and compositional analyses in alternative
to a monolithic one

In compositional analyses we abstract away the complexity of a
subsystem by its contract



Monolithic Analysis

Monolithic:

• analyze the top level

• considering the whole system

However:

• complete system might be too complex

• changing subcomponents voids old results

• correctness of subcomponents is not
addressed

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up
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Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2
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Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples
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Compositional and Modular: Benefits

If all components are valid, without refinement:

• the system as a whole is correct

• changing a component by a different, correct
one does not impact the correctness of the
whole system 1 2

3

4



Compositional and Modular: Benefits

If all components are valid, with refinement:

• the system as a whole is correct

• but the contracts are not good enough for a compositional
analysis to succeed

Refinement gives hints as to why



Compositional and Modular: Benefits

If we had to refine component 1 to prove 3 correct,
that’s probably because 1’s contract is too weak

1 2

3

4



Compositional and Modular: Benefits

If after refining all sub-components we still cannot
prove 3 correct, that’s because

• the assumptions of 3 are too weak, and/or

• the guarantees of 3 do not hold
1 2

3

4



Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that



Modes: Example

stopwatch(toggle, reset) → count

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count is 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Assume-Guarantee contracts do not adequately capture this sort of
specifications . . .

. . . because modes are simply encoded as conditional guarantees



Solution

Represent modes explicitly in the contract

A mode consists of a require (req) and an ensure (ens) clause

• expresses a transient behavior

• corresponds to a guarantee req⇒ ens

⇒ separation between global behavior (guarantees)
and transient behavior (modes)



Modes in Contract

A set of modes M can be added to a contract

Its semantics is an assume-guarantee pair 〈A, G〉 with

A ≡
∨

m∈M
reqm

G ≡
∧

m∈M
(reqm ⇒ ensm)

Note: reqm’s need not be mutually exclusive



Modes: Example

stopwatch(toggle, reset) → count

var on: bool = toggle -> (pre on and not toggle) or (not pre on and
toggle) ;

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count = 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors
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CocoSpec Contracts for Lustre

A CocoSpec contract is

• a set of assumptions,

• a set of guarantees, and

• a set of modes

Can contain internal variables

It can use specification nodes

Can be inlined in a node or stand-alone

Stand-alone contracts can be imported and instantiated



Stand-alone Contract with Modes

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;

assume not (rst and tgl) ;
guarantee c = 0 -> c >= 0 ;

mode resetting (
require rst ; ensure c = 0 ; ) ;

mode running (
require not rst and on ; ensure c = (1 -> pre c + 1) ; ) ;

mode stopped (
require not rst and not on ; ensure c = (0 -> pre c) ; ) ;

tel

node stopwatch(toggle, reset: bool) returns (count: int) ;
(*@contract import stopwatch_spec(toggle, reset) returns (count) ; *)
let ... tel



Additional Features

In contracts, one can

• refer to modes in formulas (with ::<mode_name>)

• call contract-free nodes

node count(b: bool) returns (count: int) ;
let

count = (if b then 1 else 0) + (0 -> pre count) ;
tel

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

...
mode running (...) ;
mode stopped (...) ;
...
guarantee not (::running and ::stopped) ;
guarantee count(::resetting) > 0 => c < count(true) ;

tel



Modes: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily
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Modes: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information
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Modes: Advantages

Test generation:

• can generate witnesses for abstract executions

• thus obtaining specification-based, implementation-agnostic
test cases from the model



CocoSpec Support

CocoSpec is fully supported by Kind 2 model checker

Kind 2 [Champion et al., 2016b]:

• multi-engine SMT-based safety checker for Lustre models

• competitive with state-of-the-art checkers for infinite-state
systems

• engines run concurrently and cooperatively

• can run modular / compositional, mode-aware analysis

• implements all the features discussed so far

• used at Rockwell Collins, GE, Peugeot, . . .



Case Study: Transport Class Model (TCM)

System developed by NASA Langley in Simulink [Brat et al., 2015]

Generic model of a mid-size, twin-engine transport aircraft
[Hueschen, 2011]

System requirements elicited from Federal Avionic Regulations



Case Study: Transport Class Model (TCM)

We formalized in Lustre TCM’s mode logic + autopilot controllers
[Champion et al., 2016a]

• looks arbitrarily far in the past

• non-linear arithmetic expressions

Hi-level architecture:

Autopilot

Mode Logic Longitudinal Controller

Altitude Controller FPA Controller
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Case Study: Transport Class Model (TCM)

TCM formalization in CoCoSpec+Lustre and analysis with Kind 2

• Guessed contracts for subcomponents mostly by trial and error
(auto-active model checking?)

• Mode-related feedback invaluable for us, not aviation experts,
to specify TCM

• Additional contracts added to abstract non-linear arithmetic
expressions

• Monolithic analysis unsuccessful after several hours

• Modular and compositional analysis successful on the whole
subsystem (including non-linear exprs) in under 2 minutes



Conclusion

Mode-based Assume-Guarantee Contracts:

• more scalable verification thanks to compositional reasoning

• bring contract language closer to specification documents

• improve user feedback (blame assignment, abstract cex traces)

• raise trust in specification, improve maintainability, . . .

• enable specification-based test generation



http://kind.cs.uiowa.edu/

Thanks!

http://kind.cs.uiowa.edu/
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