Combined Satisfiability
Modulo Parametric Theories

. Sava Krstic*, Amit Goel*, Jim Grundy*, and Cesare Tinelli **

*Strategic CAD Labs, Intel

**The University of lowa

Intel’'07 — p.1/3

This Talk

Based on work in

B S. Krsti¢, A. Goel, J. Grundy, and C. Tinelli.
Combined Satisfiability Modulo Parametric Theories
TACAS’'07, 2007.

W S. Krstic and A. Goel.
Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL .
FroCoS, 2007.

Intel’'07 — p.2/3

Contribution

Nelson-Oppen framework for theories in parametrically polymorphic
logics—a fresh foundation for design of SMT solvers

Highlights

B Endowing SMT with a rich typed input language that can model
arbitrarily nested data structures

B Completeness of a Nelson-Oppen-style combination method
proved for theories of all common datatypes

B Troublesome stable infiniteness condition replaced by a natural
notion of type parametricity

M [ssue of handling finite-cardinality constraints exposed as
crucial for completeness

Intel’'07 — p.3/3

SAT Modulo Theories (SMT)

There are decision procedures for (fragments of) logical theories of
common datatypes

Use them to decide validity/satisfiability of queries, quantifier-free
formulas, that involve symbols from several theories

Bfo)=2 = fQx—f(z)==x [70F + Tint]
M head(a) = f(z)+1 ... [TuF + Tint + TList]

The underlying logic is classical (unsorted or many-sorted)
first-order logic

Intel’'07 — p.4/3

SMT Solvers over Multiple
Theories

G. Nelson, D. C. Oppen Simplification by cooperating decision
procedures, 1979

Input:

M theories 74, ...,7, with disjoint signatures >+,,%,

M decision procedures P; for the 7;-satisfiability of sets of
>, -literals

Output:

M a decision procedure for (7; + - - - + 7,,)-satisfiability of sets of
(X1 + -+ 2,)-literals.

Intel’'07 — p.5/3

SMT Solvers over Multiple
Theories

Input:
M theories 74, ..., 7, with disjoint signatures X,...,%,
M decision procedures P; for the 7;-satisfiability of sets of
>.;-literals
. Output:

M a decision procedure for (7; + - - - + 7,,)-satisfiability of sets of
(X1 + -+ 2,)-literals.

Main ldea:

1. Input S is purified into equisatisfiable S,5,;

2. each P; works on S; but propagates to the others any entailed
equalities between shared variables.

Intel’'07 — p.6/3

Nelson-Oppen: Example

7, = theory of lists 7> = linear arithmetic

Input set:

(11 # 1o,

head(l2) < =,

S = ¢ 1 =tail(l2),

lh =x::1,

| head(l) — head(tail l1) 4+ = < head(l2)

Purified sets:

rll # l27
y1 = head(l2),
Y1 S L,
S1 =41 = tail(l2), Sy =
Y2 —Ys + T <Y1
lh =x:: 1,
 y2 = head(l), y3 = head(tail [1)

Intel’'07 — p.7/3

Nelson-Oppen: Example

S1

1 # 1o

y1 = head(ly)

[= tail(l3)
li=x::1

Y2 = head(l)

y3 = head(tail [1)

Y2 — Y3+ <1

Intel’'07 — p.8/3

Nelson-Oppen: Example

S1

1 # 1o

y1 = head(ly)

[= tail(l3)
li=x::1

Y2 = head(l)

y3 = head(tail [1)

—

S
Y1 <
Y2 — Y3+ <1

Y2 = Y3

Intel’'07 — p.8/3

Nelson-Oppen: Example

S1

1 # 1o

y1 = head(ly)

[= tail(l3)
li=x::1

Y2 = head(l)

y3 = head(tail [1)

—

r = 1Y1

S
Y1 <
Y2 — Y3+ <1

Y2 = Y3

Intel’'07 — p.8/3

Nelson-Oppen: Example

r = 1Y1
Unsatisfiable!

Y2 — Y3+ <1

Y2 = Y3

Intel’'07 — p.8/3

Correctness of Nelson-Oppen

B The combination procedure is sound for any 7, ...,7,:

If it returns “Unsatisfiable”, then its input S is unsatisfiable in
T+ + T,

Intel’'07 — p.9/3

Correctness of Nelson-Oppen

B The combination procedure is sound for any 7, ...,7,:

If it returns “Unsatisfiable”, then its input S is unsatisfiable in
T+ + T,

M |t is complete when

Intel’'07 — p.9/3

Correctness of Nelson-Oppen

B The combination procedure is sound for any 71, ...,7,:

If it returns “Unsatisfiable”, then its input S is unsatisfiable in
T+ + T,

M [t is complete when

1. 7;,...,7, are pairwise signature-disjoint, and

Intel’'07 — p.9/3

Correctness of Nelson-Oppen

B The combination procedure is sound for any 71, ...,7,:

If it returns “Unsatisfiable”, then its input S is unsatisfiable in
T+ + T,

M [t is complete when

1. 7;,...,7, are pairwise signature-disjoint, and

2. each 7; is stably-infinite

Intel’'07 — p.9/3

The Notorious Stable
Infiniteness Restriction

A first-order theory 7 is stably infinite if every 7 -satisfiable ground
formula is satisfiable in an infinite model of 7.

Intel’07 — p.10/3!

The Notorious Stable
Infiniteness Restriction

A first-order theory 7 is stably infinite if every 7 -satisfiable ground
formula is satisfiable in an infinite model of 7.

M Helps guarantee that models of pure parts of a query ¢ can be
amalgamated into a model of ¢

Intel’07 — p.10/3!

The Notorious Stable
Infiniteness Restriction

A first-order theory 7 is stably infinite if every 7 -satisfiable ground
formula is satisfiable in an infinite model of 7.

M Helps guarantee that models of pure parts of a query ¢ can be
amalgamated into a model of ¢

M Yields completeness of N-O, but
M it's not immediate to prove
M it's not true in some important cases (e.g., bit vectors)

Intel’07 — p.10/3!

The Notorious Stable
Infiniteness Restriction

A first-order theory 7 is stably infinite if every 7 -satisfiable ground
formula is satisfiable in an infinite model of 7.

M Helps guarantee that models of pure parts of a query ¢ can be
amalgamated into a model of ¢

M Yields completeness of N-O, but
M it's not immediate to prove
M it's not true in some important cases (e.g., bit vectors)

B General understanding: the condition doesn’t matter much—if
you know what you are doing

Intel’07 — p.10/3!

The Notorious Stable
Infiniteness Restriction

A first-order theory 7 is stably infinite if every 7 -satisfiable ground
formula is satisfiable in an infinite model of 7.

M Helps guarantee that models of pure parts of a query ¢ can be
amalgamated into a model of ¢

M Yields completeness of N-O, but
M it's not immediate to prove
M it's not true in some important cases (e.g., bit vectors)

B General understanding: the condition doesn’t matter much—if
you know what you are doing

M Lot of research shows completeness of N-O variants without it:
[Tinelli-Zarba’04], [Fontaine-Gribomont’04], [Zarba’'04],
[Ghilardi et al.'07], [Ranise et al.’05]

Intel’07 — p.10/3!

Why Stable Infiniteness is
Needed

theory of “uninterpreted functions”
75, = theory of Boolean rings (not stably-infinite)

Purified Input:

S1 | 52

fxy) # 21 | 21=0
fly) # 2o |22 =1

There are no equations to propagate: the procedure returns
"satisfiable”

Is that correct?

Intel’07 — p.11/3!

Our Main Points

In combining theories of different data types

1. atyped logic (with parametric types) is a more adequate
underlying logic than unsorted logic

2. parametricity is the key notion not stable infiniteness

Intel’07 — p.12/3!

Dpist = 4

Parametricity, Not Stable
Infiniteness: Example

(I)Int — {

(taill; = tail I
r1 = head ll

To = head l2

|z = head(tail /1)

r=x1+=z

To =21+ 2

r = X9

xr % X1

Parametricity, Not Stable
Infiniteness: Example

(. .
tail [{ = tail [,

1 = headl r=x1+ =2 r=x
Dpist = < ' ' (I)Int{ ' A{ ?

To = headls To = X1+ 2 xr % X1

|z = head(tail /1)

T1 Lo x [T1 Lo X 2
L b =70 Puist UA . =7 Pt UA
< A o Q[A,o] [o,o] 1 2 21

Intel’07 — p.13/3!

Parametricity, Not Stable
Infiniteness: Example

§
tail [; = tail l5

By = < 1 ead (1 By — r=x1+ %2 A — r = X9
To = head 12

|z = head(tail /1)

[[
e : ’ Izﬂist (I)LiSt UA s ‘:’Znt (I)mt UA
A oo[A,o][o,o] 1 2 21

7List knows nothing about Z and cannot distinguish (A, e) from any pair
(m,n) of distinct integers:

Intel’07 — p.13/3!

Parametricity, Not Stable
Infiniteness: Example

§
tail [; = tail l5

By = < xrq ead lq B — r=x1+ %2 A — r = X9
To = head 12

|z = head(tail /1)

[[
e : ’ Izﬂist (I)LiSt UA s ‘:ﬁnt (I)mt UA
A QQ[A,Q][Q,Q] 1 2 21

7List knows nothing about Z and cannot distinguish (A, e) from any pair
(m,n) of distinct integers:

1 To I [[
(b ' ?)@ListUAaswell

m n n |m,n| |n,n

Intel’07 — p.13/3!

(I)List = <

Parametricity, Not Stable
Infiniteness: Example

§
tail [; = tail l5

1 = head | r=x1+z2 Tr =2
1 1 B, — 1 A — 2
ZCQIheadlg

L1 L9
A o

|z = head(tail /1)

r I X1 To T 2
) Izﬂist (I)LiSt UA () ‘:ﬁnt (I)mt UA

o (A o] [0 0 1 221

7List knows nothing about Z and cannot distinguish (A, e) from any pair
(m,n) of distinct integers:

to construct a model for ® ;. U @1, U A, we can use the blue
assignment to x1, zo, x

Intel’07 — p.13/3!

Real Issue in NO Combination

Not so much getting stable-infiniteness right, but

getting underlying logic right

Intel’07 — p.14/3!

Real Issue in NO Combination

Not so much getting stable-infiniteness right, but

getting underlying logic right

| Our proposal

FOLP: A first order logic with parametrized type constructors and
type variables

Essentially, the applicative fragment of HOL

Intel’07 — p.14/3!

FOLP Syntax

Types

V', an infinite set of type variables
EX: Q, 67 aq, 517 .-

O, a set of type operators, symbols with associated arity n > 0
Ex: Bool/0, Int/0, List/1, Arr/2, =/2, ...

Types(O, V), set of types, terms over O,V
Ex: Int, List(«), List(Int), Arr(Int,List(c)), List(a) = Int, ..

Intel’07 — p.15/3!

FOLP Syntax

First-order Types: TypesoverO\ {=},V

Constants: K, set of symbols each with an associated principal
type

Ex: —|—Bool’ —Bool=Bool _a,a=Bool +Int,|nt:>Int

cons®List(@)=List(a) aggAr(ef)a=8

Term Variables: X, for each 7 € Types(O, V), an infinite set of
symbols annotated with 7

Ex: T, yList(ﬁ)7 Zoz:>oz’ :CArr(Int,BooI)’

Intel’07 — p.16/3!

FOLP Syntax

Signatures: pairs X = (O | K) with
B O always containing = and Bool
B K always containing =®=Bool jteBocha.a=a gnq

the usual logical constants —Beel=Beol = ABool,Bool=Bool = = °

Y.-Terms of First-order Type 7: T,.(K, X), defined as usual

Ex: o!nt=Bool ylnt, (read aArr(Int,List(ﬁ)) ilnt) _ :CLiSt(ﬁ),

First-order (Quantifier-free) Formulas: Terms in Tgeo (K, X)

Intel’07 — p.17/3!

FOLP Semantics

Structures of signature ¥ = (O | K)

Pair S of
1. an interpretation (_)° of type operators F' as set operators

2. an interpretation (_)® of constants f as set-indexed families of
functions (with index determined by TypeVars(7) where f7)

s.t. Bool, =, and =, ite, A, ... are the interpreted in the usual way.

Intel’07 — p.18/3!

FOLP Semantics

Structures of signature ¥ = (O | K)

Pair S of
1. an interpretation (_)° of type operators F' as set operators

2. an interpretation (_)® of constants f as set-indexed families of
functions (with index determined by TypeVars(7) where f7)

s.t. Bool, =, and =, ite, A, ... are the interpreted in the usual way.

Ex 1:

Int®> equals the integers

List° maps an input set A to the set of finite lists over A

Arr® maps input sets I and A to the set of arrays with
Index set I and element set A

Intel’07 — p.18/3!

FOLP Semantics

Structures of signature ¥ = (O | K)

Pair S of
1. an interpretation (_)° of type operators F' as set operators

2. an interpretation (_)® of constants f as set-indexed families of
functions (with index determined by TypeVars(7) where f7)

s.t. Bool, =, and =, ite, A, ... are the interpreted in the usual way.

Ex 2:

head® family {head[A1] | A; is a set} (since head- st (=)
read® family {read[A;, A5] | A1, A, are sets}

(since read”(@1.a2).a1=az)
-+ singleton family (since +'"tInt="nt)

Intel’07 — p.18/3!

FOLP Semantics

For every signature > = (O | K), 3-structure S, type environment ¢,
term environment p, and X-formula ¢,

we can define [_]f , (as expected) to map ¥-formulas to {true, false}

Intel’07 — p.19/3!

FOLP Semantics

For every signature > = (O | K), 3-structure S, type environment ¢,
term environment p, and X-formula ¢,

we can define [_];f , (as expected) to map ¥-formulas to {true, false}

Satisfiability
@ IS satisfied in S by . and p, written «, p =5 o, If [gp]fp = true

@ Is satisfiable In S'if +,p =s ¢ for some . and p

Intel’07 — p.19/3!

FOLP Semantics

For every signature > = (O | K), 3-structure S, type environment ¢,
term environment p, and X-formula ¢,

we can define [_]f , (as expected) to map ¥-formulas to {true, false}

Satisfiability
@ IS satisfied in S by . and p, written «, p =5 o, If [gp]fp = true

@ Is satisfiable In S'if +,p =s ¢ for some . and p

Cardinality Constraints
(Meta)Expressions of the form a = n withn > 0

a = n Is satisfied in S by ¢, p, written «.p =5 a = n, If |1 (a)| =n

Intel’07 — p.19/3!

The Equality Structure

KEq — :oz,04:>Boo|7 —|-Boo|7 _lBoo|:>Boo|7 iteBooI,a,oz:>oc
ZEq — <BOO|,=> | KEq>
Seq = the unique Xg,-structure

9 0 o e

Intel’07 — p.20/3!

The Equality Structure

__a,a=Bool Bool Bool=Bool :; .Bool,a,a=«
—aa=Bool TBool _ iteBooke

’ 9 0 o e

ZEq = <BOO|,:> | KEq>

Seq = the unique Xgq-structure

Note: Sgq models
M the logical constants of FOL= and

M the “uninterpreted functions” data type, by means of
higher-order term variables (z®t>®n=)

Intel’07 — p.20/3!

The Equality Structure

Let
KEq — :oz,oz:>Boo|7 —|—Boo|’ _lBoo|:>Boo|’ iteBooI,a,oz:>oz’ o
ZEq = <BOO|, = | KEq>
Seq = the unique Xgq-structure

Note: Sgq models
M the logical constants of FOL= and

M the “uninterpreted functions” data type, by means of
higher-order term variables (z®t>®n=)

Fact: The satisfiability in Sg, of first-order Xg,-formulas is decidable
(with the usual congruence closure algorithms)

Intel’07 — p.20/3!

Parametricity [TACAS'O7/]

A structure is parametric if it interprets
all its type operators, except =, as parametric set operators and
all its constants as parametric function families

Intel’07 — p.21/3!

Parametricity [TACAS'O7/]

A structure is parametric If it interprets
all its type operators, except =, as parametric set operators and
all its constants as parametric function families

B Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

Intel’07 — p.21/3!

Parametricity [TACAS'O7/]

A structure is parametric If it interprets
all its type operators, except =, as parametric set operators and
all its constants as parametric function families

B Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

M Natural property of data types

Intel’07 — p.21/3!

Parametricity [TACAS'O7/]

A structure is parametric If it interprets
all its type operators, except =, as parametric set operators and
all its constants as parametric function families

B Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

M Natural property of data types

M States precisely the informal notion that

certain type operators and function symbols have a
uniform interpretation over the possible values of the
type variables

Intel’07 — p.21/3!

Parametricity [TACAS'O7/]

A structure is parametric If it interprets
all its type operators, except =, as parametric set operators and
all its constants as parametric function families

B Parametricity of type operators and constants similar (but not
comparable) to Reynold’s parametricity

M Natural property of data types

M States precisely the informal notion that

certain type operators and function symbols have a
uniform interpretation over the possible values of the
type variables

M Plays the role of stable-infiniteness in Nelson-Oppen

Intel’07 — p.21/3!

Parametric Structures

Fact: All structures of practical interest are parametric in our sense
Elnt — <Int ‘ Olnt 1Int +Int2—>lnt _Int?=Int ><Int2—>lnt <Int2—>Boo| N >
Sar = (Arr | mk_arrP=Am(@8) reqdlAm(@d).al=8 yjrelAr(a.B).a.fl—Ar(a,8)y

[oz,List(oz)]—>List(04)7 ni|LiSt(a), headList(a)—>a |List(a)—>List(a)>

YList = (List | cons , tai

D = <>< | <_’_>[Oé,5]—>oz><57fstaxﬁ—>a7sndaxﬁ_>g>

D IBitVec32 = - - -

ESetS — ...

EMultisets — ...

(All the above signatures implicitly include the signature Xg,)

Intel’07 — p.22/3!

Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ¥g,

Intel’07 — p.23/3!

Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ¥g,

Combination of Disjoint Signhatures X, X5
j X1+ 2o = <01 U Os | K4 UK2> where 2 = <Oz | Kz>

Intel’07 — p.23/3!

Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ¥g,

Combination of Disjoint Signhatures X, X5
X1+ 2o = <01 U Os | K U K2> where 2 = <Oz | Kz>

Combination of Signature-Disjoint Structures S1, S

(X1 + Xg)-sStructure S; + S» that interprets X;-symbols exactly like S;
fori=1,2.

Intel’07 — p.23/3!

Combining Signatures and
Structures

Disjoint Signatures

Signatures that share exactly the symbols of ¥g,

Combination of Disjoint Signhatures X, X5
X1+ 2o = <01 U Os | K U K2> where 2 = <Oz | Kz>

Combination of Signature-Disjoint Structures S1, S

(X1 + Xg)-sStructure S; + S» that interprets X;-symbols exactly like S;
fori=1,2.

Note: Modulo isomorphism, + is an ACU operator with unit Sgq

Intel’07 — p.23/3!

Pure and Semipure Terms

Let Sy,...,S, be structures with disjoint signatures ¥; = (O; | K;)

Wecalla (31 +---+X,)-term
M ;-semipure if it has signature (O, U---UO,, | K;)
M ;-pure if it has signature (O; | K;)

EXx

21 — <|nt | Olnt’ 1Int’ _|_Int,lnt:>lnt7 _Int:>lnt7 Slnt,lnt:>BooI

)

22 — <Arr | readArr(a7B)aa:>5’WriteArr(aaﬁ))aaﬁjArr(aaﬁ)>

1_Semipure: read(aArr(lnt,lnt)j,L'Int)’ ajArr(Int,B)) aArr(Int,Arr(Int,Int))

1-pure: read(aArr(a,a),@'a)j ahri(@f) - gArr(aArr(51,52))

Intel’07 — p.24/3!

Pure and Semipure Terms

Let Sy,...,S, be structures with disjoint signatures ¥; = (O; | K;)

Wecalla (31 +---+X,)-term
M ;-semipure if it has signature (O, U---UO,, | K;)
M ;-pure if it has signature (O; | K;)

Fact For each i-semipure term ¢ we can compute a most specific
pure generalization ¢P"*¢ of ¢

EX
© I,ead(aArr(Int,Pair(Arr(BooI,BooI))) ,L-Int) — xPair(Arr(BooI,Bool))
ePUe : read (a8) = P

Intel’07 — p.24/3!

Pure and Semipure Terms

Let S1,...,S,, be parametric structures with disjoint signatures
% =(0; | Ky)

Proposition A set ®; of i-semipure formulas is
(81 + -+ -+ S,)-satisfiable

Iff
PP U osard js S;-satisfiable
for some suitable set ®¢2r4 of cardinality constraints computable
from &,

EX
o, : { I,ead(aArr(Int,Pair(Arr(BooI,BooI)))7,L-Int) — xPair(Arr(BooI,BooI)) }
PV . [read(aAT(P) @) = 2”7 }

gt {516

Intel’07 — p.25/3!

Why Cardinality Constraints
are Needed

{az.LiSt(a) # :CL-iSt(a fo<i<j<s U {tail(tail fCLISt(a)) = nilh1<i<s

(1)1 : {LIZI,L_ISt(lnt) # L|st Int) }O<z<3<5 U {tall(ta” xL'St(lnt)) — ni|}1§i§5

D, - {xLlst(BooI) # x?st(Bool

. L|st(Boo|))

}0<Z<J<5 U {tall(tall X — ni|}1§i§5

B ¢ and @, are (Sine + Siist)-satisfiable, ¢, is not

Intel’07 — p.26/3!

Why Cardinality Constraints
are Needed

o - {CC,L-LiSt(a) # xList(a }O<z<g<5 U {tall(tall xLlst(a)) _ ni|}1§i§5
D, : {CCI,;ISt(Int) # L|st Int) }O<z<g<5 U {tall(ta” xLlst(Int)) _ nil}1§i§5

D, - {CISI,;ISt(BOOI) # CCIJ_-ISt(BOOI }O<z<g<5 U {tall(tall xLlst(Bool)) _ ni|}1§i§5

B ¢ and @, are (Sine + Siist)-satisfiable, ¢, is not

M S ;:-solver can’'t take ¢, or ®, as input: they are not X ;;;-pure

Intel’07 — p.26/3!

Why Cardinality Constraints
are Needed

o - {CC,L-LiSt(a) # xList(a }O<z<g<5 U {tall(tall xLlst(a)) _ ni|}1§i§5

(1)1 : {CCI,L_ISt(lnt) # L|st Int) }O<z<]<5 U {tall(ta” xL'St(lnt)) — ni|}1§i§5

D, - {lest(BooI) # CIZIJ_-ISt(BOOI L|st(Boo|))

i }O<’L<]<5 U {tall(tail = = ni|}1§i§5
B ¢ and ¢, are (Sin: + SList)-Satisfiable, ¢, is not
M S ;:-solver can’'t take ¢, or ®, as input: they are not X ;;;-pure

B Instead of &4, it gets & = V™" with cardinality constraint ()

Intel’07 — p.26/3!

Why Cardinality Constraints
are Needed

o - {CISI,;iSt(a) # xList(a }O<z<g<5 U {tal|(tal| xLlst(a)) _ ni|}1§i§5

B, - {xlz_lst(lnt) 7& List(Int) }O<Z<]<5 U {tail(tail x'—lS’C('"’C)) _ ni|}1§i§5

D, - {lest(BooI) # ZCIJ_-ISt(BOOI L|st(Boo|))

p }0<@<J<5 U {tal|(tail x = ni|}1§i§5
B ¢ and ¢, are (Sin: + SList)-Satisfiable, ¢, is not

M S ;:-solver can’'t take ¢, or ®, as input: they are not X ;;;-pure
B Instead of &4, it gets & = V™" with cardinality constraint ()

B |nstead of ®,, it gets & = &5 with the cardinality constraint

fa=2)

Intel’07 — p.26/3!

Towards Nelson-Oppen
Combination: Purification

We turn each query @ into the purified form
PpUPLUDPLU---UD,

where

W ® is a set of propositional formulas
By = {p°° =27 =y} eoa 47, With 7 # Bool
B, = {p°°° =9} oy, U{2™ = t},-, With 4, ¢ non-variables,

i-semipure, and not containing logical constants
Ex: f(z)=xzV f(2*xx— f(xr)) >z becomes

bp={pVq} dp={p=y=n2},
Peqg ={y=f(2), u=f(2)} DPm={g=u>z2=2%x2-Y,}

Intel’07 — p.27/3!

Towards a Combination
Theorem

Let
B A be a set of propositional atoms (i.e., Bool-variables)
M X a set of of variables

An assignment M of A is a consistent set of literals with atoms in A

An arrangement A of X Is a set of equational literals corresponding
to a well-typed partition of X

EXx

Partition: {{z™,y™, 2"}, {u™, 02}, {w™}}
A - {$T1 _ yTl,le _ ZTl, u™ = ng) 7T 7§ uTQ7 7T 7§ w7'3}

Intel’07 — p.28/3!

Main Result: A Combination
Theorem for FOLP

Let Sq,...,S,, be signature-disjoint, flexible structures

Main Result;: A Combination
Theorem for FOLP

Let Sq,...,S,, be signature-disjoint, flexible structures

A query
b = PpUPpUDPU---UD,

IS (S1 + - - - + Sp)-satisfiable iff

Intel’07 — p.29/3!

Main Result: A Combination
Theorem for FOLP

Let S1,...,S,, be signature-disjoint, flexible structures

A query
bd = PpgUPpUP;U---UD,

IS (51 + -+ - + Sp,)-satisfiable iff
there is

M an assignment M of the atoms in 5 and
M an arrangement A of the non-Bool variables in

s.t.
1. M= &p
2. M,AE &g

3. (&, UM UAPY U@, s S;-satisfiable foralli = 1,...,n

Intel’07 — p.29/3!

Main Theoretical Requirement:
Flexible Structures

A structure S is flexible if for
M every query o,
B every injective (¢, p) such that (¢, p) =s P,
MeveryacV,
M every k > |i(a)]

| there exist injective (:"P(*), ()} and (4", plovn) satisfying & s.t.

LuP () (5) = 1(B) = o1 (B3) for every 3 # «, and
() («) has cardinality « [up-flexibility]

dOWH(oz) Is countable [down-flexibility]

Intel’07 — p.30/3!

Main Theoretical Requirement:
Flexible Structures

A structure S is flexible if for
M every query o,
B every injective (¢, p) such that (¢, p) =s P,
MeveryacV,
M every k > |i(a)]

| there exist injective (,"P(%), pP(m)) and (,down, pdown) satisfying @ s.t.

Lup () (5) = 1(B) = o1 (B3) for every 3 # «, and
() («) has cardinality « [up-flexibility]

dOWH(Q) Is countable [down-flexibility]

Lemma Every parametric structure is flexible

Intel’07 — p.30/3!

Main Computational
Requirement:. Strong Solvers

We call a solver for S-satisfiability strong if it can process queries
with cardinality constraints.

® Typical S-solvers are not strong

M however, they can be effectively converted into strong solvers
by preprocessing each query

M currently this can be done, specifically for a number of
structures, as In [Ranise et al., FroCoS’05]

M we are working on a (possibly less efficient but) generic
preprocessing mechanism

Intel’07 — p.31/3!

Closest Related Work [Ranise
et al., FroCoS’'05]

Setting (2-theory case):

B Many-sorted logic (with sorts being O-ary type operators)
M Signatures share at most a set of sorts
B One theory is polite over shared sorts, other theory is arbitrary

Main Result:

Theory solvers are combined, soundly and completely, with a
Nelson-Oppen style method that also guesses equalities over some
additional terms computed from the input query.

Intel’07 — p.32/3!

Comparisons with [Ranise et
al., FroCoS’05]

That work vs. This work

B Theory combinations via signhature push-outs
Theory combinations via type parameter instantiation

M Politeness assumption on theories
Flexibility assumption on structures

B Politeness proven per theory
Parametricity as general sufficient condition for flexibility

M |dea of parametricity is implicit in politeness
Parametricity notion fully fleshed out

B Model finiteness issues addressed directly by combination
method
Model finiteness issues encapsulated into strong solvers

Intel’07 — p.33/3!

Some Future Work

B Method(s) for turning solvers into strong solvers
H Implementation (CVC3, DPT)

M Extension to non-disjoint combination
(possibly built on combination framework of [Ghilardi et al.,
2007])

Intel’07 — p.34/3!

Thank you

Parametricity

Intel’07 — p.36/3!

Parametric Type Operators

Fix a signature ¥ = (O | K) and a X-structure S

An n-ary operator F' € O is parametric in S if there exists a related
n-ary operation F* on binary relations

Intel’07 — p.37/3

Parametric Type Operators

Fix a signature ¥ = (O | K) and a X-structure S

An n-ary operator F' € O is parametric in S if there exists a related
n-ary operation F* on binary relations

that

1. preserves partial bijections

2. preserves identity relations

3. distributes over relational composition

Intel’07 — p.37/3

Parametric Type Operators

Fix a signature ¥ = (O | K) and a X-structure S

An n-ary operator F' € O is parametric in S if there exists a related
n-ary operation F* on binary relations

such that

3
I
3
)
Sy
3

for all partial bijections R;: A1 < By, ..., R, :
S1:C1 A, ..., 5,:C, — A,,

1. F*(Ry,...,R,) is a partial bijection in
FS(Ay,...,A,) < F°(By,...,B,)

2. FY(Ry,...,R,) 0 F*S,...,8,) =F%R108:,...,R,08,)

3. Fiidy,,...,ida,) = Wdr(A,.. A

Intel’07 — p.37/3

Parametric Type Operators:
Example

Assume List € O and List® is the list operator

Define List® so thatforall R: A — B
B List’(R) : List®(A) < List® (B)

W (I4,l5) € List*(R) iff 4 = [a1,...,an], lg = [b1,...,b,] and
(a;,b;) € R forall 7.

Intel’07 — p.38/3!

Parametric Type Operators:
Example

Assume List € O and List® is the list operator

Define List* sothatforall R: A — B
B List’(R) : List®(A) < List® (B)

W (I4,l5) € List*(R) iff 4 = [a1,...,an], lg = [b1,...,b,] and
(a;,b;) € R forall 7.

Then List Is parametric in S:

for all composable partial bjections R and S and sets C

1. List*(R) is a partial bijection
2. List*(R) o List*(S) = List*(R o S)
3. List*(idc) = idy s)

Intel’07 — p.38/3!

Parametric Structures

Fix a signature ¥ = (O | K) and a X-structure S

We can define a natural notion of parametricity for function symbols
as well (see [Krstic et al., TACAS'07])

The structure S is parametric if every F € O\ {=} and every f € K
are parametric

Intel’07 — p.39/3!

	This Talk
	Contribution
	SAT Modulo Theories (SMT)
	SMT Solvers over Multiple Theories
	SMT Solvers over Multiple Theories
	Nelson-Oppen: Example
	Nelson-Oppen: Example
	Correctness of Nelson-Oppen
	The Notorious Stable Infiniteness Restriction
	Why Stable Infiniteness is Needed
	Our Main Points
	Parametricity, Not Stable Infiniteness: Example
	Real Issue in NO Combination
	�olp Syntax
	�olp Syntax
	�olp Syntax
	�olp Semantics
	�olp Semantics
	The Equality Structure
	Parametricity [TACAS'07]
	Parametric Structures
	Combining Signatures and Structures
	Pure and Semipure Terms
	Pure and Semipure Terms
	Why Cardinality Constraints are Needed
	Towards Nelson-Oppen Combination: Purification
	Towards a Combination Theorem
	Main Result: A Combination Theorem for FOLP
	Main Theoretical Requirement: Flexible Structures
	Main Computational Requirement: Strong Solvers
	Closest Related Work [Ranise et al., FroCoS'05]
	Comparisons with [Ranise et al., FroCoS'05]
	Some Future Work
	Thank you
	Parametricity
	Parametric Type Operators
	Parametric Type Operators: Example
	Parametric Structures

