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introduction

Historically:

Automated logical reasoning achieved through uniform
theorem-proving procedures for First Order Logic

(e.g., resolution, superposition, and tableaux calculi)

Limited success:

Uniform proof producedure for FOL are not always the best
compromise between expressiveness and efficiency
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introduction

Last 20 years: R&D has focused on

∙ expressive enough decidable fragments of various logics

∙ incorporating domain-specific reasoning, e.g., on:
∙ temporal reasoning
∙ arithmetic reasoning
∙ equality reasoning
∙ reasoning about certain data structures
(arrays, lists, finite sets, …)

∙ combining specialized reasoners modularly
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introduction

Two successful examples of this trend:

SAT: propositional formalization, Boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but
involved encodings

SMT: first-order formalization, Boolean +
domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

This tutorial: an overview of SMT and its applications
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the basic smt problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example
n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols
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smt solvers

Are highly efficient tools for the SMT problem based on
specialized logic engines

Are changing the way people solve problems in Computer
Science and beyond:

∙ instead of building a special-purpose tool
∙ translate problem into a logical formula
∙ use an SMT solver as backend reasoner

Not only easier, often better

8



smt solvers

Are highly efficient tools for the SMT problem based on
specialized logic engines

Are changing the way people solve problems in Computer
Science and beyond:

∙ instead of building a special-purpose tool
∙ translate problem into a logical formula
∙ use an SMT solver as backend reasoner

Not only easier, often better

8



smt solvers

Are highly efficient tools for the SMT problem based on
specialized logic engines

Are changing the way people solve problems in Computer
Science and beyond:

∙ instead of building a special-purpose tool
∙ translate problem into a logical formula
∙ use an SMT solver as backend reasoner

Not only easier, often better

8



the explosion of smt

“Satisfiability Modulo Theories” OR “SMT Solver”
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popular smt solvers

Citations Google Scholar Hits
Z3 5,0681 7,870

CVC Lite, CVC 3, 4 1,5602 2,030
Yices 1, 2 9723 2,430

MathSat 3, 4, 5 6284 1,010

1[DMB08], 2018 ETAPS Test of Time Award to Z3 developers
2 [BT07, BT07, BCD+11]
3[DdM06b, Dut14]
4[BBC+05b, BCF+08, CGSS13]
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some applications of smt

Model Checking
(in)finite-state systems
hybrid systems
abstraction refinement
state invariant
generation

interpolation

Type Checking
dependent types
semantic subtyping
type error localization

Program Analysis
symbolic execution

program verification
verification in separation logic
(non-)termination
loop invariant generation
procedure summaries
race analysis
concurrency errors detection

Software Synthesis
syntax-guided function synthesis
automated program repair
synthesis of reactive systems
synthesis of self-stabilizing systems
network schedule synthesis
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more applications of smt

Security
automated exploit
generation

protocol debugging
protocol verification
analysis of access control
policies

run-time monitoring

Compilers
compilation validation
optimization of arithmetic
computations

Software Engineering
system model consistency
design analysis
test case generation
verification of ATL
transformations

semantic search for code reuse
interactive (software)
requirements prioritization

generating instances of
meta-models
behavioral conformance of
web services

12



even more applications of smt

Planning
motion planning
nonlinear PDDL planning

Machine Learning
verification of deep NNs

Business
verification of business rules
spreadsheet debugging

13



more information on smt

Handbook chapters and books [BSST09, BT18, BM07, KS08]

Online

∙ SMT-LIB at http://smt-lib.org
∙ SMT-COMP at http://smt-comp.org

14
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legend

v value — i.e., distinguished variable-free term

φ[x] formula with free vars from x = (x1, . . . , xn)

φ[x 7→ v] formula obtained by replacing free occurrences of
variables from x in φ with corresponding values
from v = (v1, . . . , vn)

x = v x1 = v1 ∧ · · · ∧ xn = vn
z ⊆ x every element of z occurs in x
M |= φ model M satisfies formula φ

φ |=T ψ formula φ entails formula ψ in theory T
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smt solver basic functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or
incompleteness
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smt solver output: satisfying assignments

Background theory T

SMT
Solver

φ[x] α
sat

α is a satisfying assignment for x = (x1, . . . , xn):

1. α = {x1 7→ v1, . . . , xn 7→ vn} for some values v = (v1, . . . , vn)
2. M |= φ[x 7→ v] for some model M of T

Note.
x may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)
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smt solver output: backbones

Background theory T

SMT
Solver

φ[x]
z1 = v1

...
zm = vm

sat

z = v is a backbone for φ:

1. z ⊆ x
2. φ |=T z = v
3. z is maximal (or largish)
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smt solver output: sat cores

Background theory T

SMT
Solver

φ[x]
z1 = v1

...
zm = vm

sat

z = v is a sat core for φ:

1. z ⊆ x
2. y = x \ z
3. ∀y (φ ∧ z = v) is satisfiable in T
4. z is minimal (or smallish)
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smt solver output: unsat cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:

1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T
3. {ψ1, . . . , ψm} is minimal (or smallish)
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smt solver output: proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:

1. π is a proof term in some formal proof system
2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker
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extended functionality: interpolation

Background theory T

SMT
Solver

φ1[x1],
φ2[x2]

ψ[x]unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2
2. x = x1 ∩ x2
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extended functionality: prime implicate computation

Background theory T

SMT
Solver

φ[x] ψ[x]sat

ψ is a prime implicate of φ:

1. ψ is a disjunction of literals
2. φ |=T ψ

3. there is no disjunction of literals ψ′ /∈ {φ,ψ} s.t.
φ |=T ψ

′ and ψ′ |=T ψ

24
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extended functionality: abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1. Γ, ψ is satisfiable in T
2. Γ, ψ |=T φ

3. ψ is maximal, e.g., with respect to |=T
(if ψ′ satisfies 1 and 2 and ψ |=T ψ

′ then ψ′ |=T ψ)

25
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extended functionality: quantifier elimination

Background theory T

SMT
Solver

Γ[x], φ[x, y] ψ[x]

ψ is a projection of φ over y with respect to Γ:

1. Γ |=T ψ ⇔ ∃yφ
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extended functionality: optimization

Background theory T

SMT
Solver

φ[x],
o = t[x]

α
sat

α is a an optimal assignment for φ:

1. α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn
2. M |= φ[x 7→ v] for some model M of T
3. α minimizes/maximizes objective o
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background theories

Uninterpreted Funs x = y⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4→ x = 1

Floating Point Arithmetic x+ 1 6= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x� 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|

Arrays i = j⇒ store(a, i, x)[j] = x

Algebraic Data Types x 6= Leaf⇒ ∃ l, r : Tree(α). ∃a : α.
x = Node(l,a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 ⇒ ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y 6= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r⇒ (x, z) ∈ r ▷◁ s
29



equality and uninterpreted functions (euf) [NO80, NO07]

Simplest first-order theory with equality, applications of
uninterpreted functions, and variables of uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ. x = x
Symmetry: ∀x : σ. x = y⇒ y = x
Transitivity: ∀x, y : σ. x = y ∧ y = z⇒ x = z
Congruence: ∀x, y : σ. x = y⇒ f(x) = f(y)

Example
f(f(f(a))) = b g(f(a),b) = a f(a) 6= a

30



arrays [McC93, SBDL01, BNO+08, dMB09]

Operates over sorts Array(σi, σe), σi, σe and function symbols

_[_] : Array(σi, σe)× σi → σe

store : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. store(a, i, e)[i] = e
Read-Over-Write-2: ∀a, i, j, e. i 6= j⇒ store(a, i, e)[j] = a[j]

Extensionality: ∀a,b, i. a 6= b⇒ ∃i. a[i] 6= b[i]

Example
store(store(a, i,a[j]), j,a[i]) = store(store(a, j,a[i]), i,a[j])

31



arithmetic

Restricted fragments, over the reals or the integers, support
efficient methods:

∙ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} [BBC+05a]

∙ Difference constraints: x− y ▷◁ k, with
▷◁ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

∙ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} [LM05]

∙ Linear arithmetic, e.g: 2x− 3y+ 4z ≤ 5 [DdM06a]

∙ Non-linear arithmetic, e.g:
2xy+ 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]
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(co-)algebraic data types [BST07, RB16]

Family of user-definable theories

Example
Color := red | green | blue
List(α) := nil | (head : α) :: (tail : List(α))

Distinctiveness: ∀h, t. nil 6= h :: t
Exhaustiveness: ∀l. l = nil ∨ ∃h, t.h :: t

Injectivity: ∀h1,h2, t1, t2.
h1 :: t1 = h2 :: t2 ⇒ h1 = h2 ∧ t1 = t2

Selectors: ∀h, t. head(h :: t) = h ∧ tail(h :: t) = t
(Non-circularity: ∀l, x1, . . . , xn. l 6= x1 :: · · · :: xn :: l)
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other interesting theories

∙ Strings and regular expressions [KGG+09, LRT+14]

∙ Floating point arithmetic [BDG+14, ZWR14]

∙ Finite sets with cardinality [BRBT16]

∙ Finite relations [MRTB17]

∙ Transcendental Functions [GKC13]

∙ Ordinary differential equations [GKC13]

∙ …
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bounded model checking

To check the reachability of a class S of bad states
for a system model M:

1. Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2. Represent system states as values for a tuple x of state vars

3. Encode system M as T-formulas (I[x],R[x, x′])
where
∙ I encodes M’s initial state condition and
∙ R encodes M’s transition relation

4. Encode S as a T-formula B[x]

5. Find a k such that I[x0] ∧ R[x0, x1] ∧ · · · ∧ R[xk−1, xk] ∧ B[xk] is
satisfiable in T
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symbolic model checking

To check the invariance of a state property S
for a system model M:

1. Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2. Represent system states as values for a tuple x of state vars

3. Encode system M as T-formulas (I[x],R[x, x′])
where
∙ I encodes M’s initial state condition and
∙ R encodes M’s transition relation

4. Encode S as a T-formula P[x]

5. Prove that P[x] holds in all reachable states of (I[x],R[x, x′])

38
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symbolic model checking

Example (Parametric Resettable Counter)

System

Vars
input pos int, n0
input bool r
int c, n
Initialization
c := 1
n := n0
Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c <= n
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Transitions
n’ := n
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else c + 1

Property

c <= n

The transition relation contains
infinitely many instances of the schema
above, one for each n0 > 0
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Initialization
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n := n0
Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c <= n

Encoding in T = LIA
x := (c, n, r, n0)

I[x] := c = 1
∧ n = n0

R[x, x′] := n′ = n
∧ (¬r′ ∧ c ̸= n ∨ c′ = 1)
∧ (r′ ∨ c = n ∨ c′ = c+ 1)

P[x] := c ≤ n
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inductive reasoning

M = (I[x],R[x, x′])

To prove P[x] invariant for M it suffices
to show that it is inductive for M,
i.e.,

(1) I[x] |=T P[x] (base case)
and

(2) P[x] ∧ R[x, x′] |=T P[x′] (inductive step)
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Problem: Not all invariants are inductive
For the parametric resettable counter,
P := c ≤ n+ 1 is invariant but (2) is falsifiable
e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)



strengthening inductive reasoning

(1) I[x] |=T P[x] (2) P[x] ∧ R[x, x′] |=T P[x′]

Various approaches:

Strengthen P: find a property Q such that Q[x] |=T P[x] and
prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x] and use
Q[x] ∧ R[x, x′] ∧ Q[x′] instead of R[x, x′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths
R[x0, x1] ∧ · · · ∧ R[xk−1, xk] ∧ R[xk, xk+1]
(ex:, k-induction)
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software verification

Example
void swap ( i n t * a , i n t * b ) {
*a = *a + *b ;
*b = *a − *b ;
*a = *a − *b ;

}

Check if the swap is correct:

∙ Heap: Array(BV32) 7→ BV32

∙ Update heap line by line

∙ Check that
a* = old(b*) and b* = old(a*)

∙ Incorrect: aliasing

h1 = store(h0,a,h0[a] +32 h0[b])
h2 = store(h1,b,h1[a]−32 h1[b])
h3 = store(h2,a,h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])
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SMT solver solution
a 7→ 0, b 7→ 0
h0[0] 7→ 1, h1[0] 7→ 2
h2[0] 7→ 0, h3[0] 7→ 0



contract-based software verification

Example (Binary Search)
//@assume 0 <= n <= |a| &&
// foreach i in [ 0 . . n−2] . a [ i ] <= a [ i + 1 ]
//@ensure (0 <= res ==> a [ res ] = k ) &&
// ( res < 0 ==> foreach i in [ 0 . . n− 1 ] . a [ i ] ! = k )
i n t BinarySearch ( i n t [ ] a , i n t n , i n t k ) {
i n t l = 0 ; i n t h = n ;
while ( l < h ) { // Find middle value
//@invariant 0 <= low < high <= len <= |a| &&
// foreach i in [ 0 . . low− 1 ] . a [ i ] <k &&
// foreach i in [ high . . len − 1 ] . a [ i ] > k
i n t m = l + (h − l ) / 2 ; i n t v = a [m] ;
i f ( k < v ) { l = m + 1 ; } else i f ( v < k ) { h = m; }
else { return m; }

}
return −1;

}

Example adapted from [dMB10]
44
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Main approach
1. Compile source and annotations to program in Dijkstra’s
core language:
S, T ::= x = t | havoc x | assert φ | assume φ |

S; T | S [] T

2. Convert core program to SMT using the weakest liberal
precondition transformer wp:
wp(x = t, φ) = φ{x 7→ t} wp(assert ψ, φ) = ψ ∧ φ
wp(assume ψ, φ) = ψ ⇒ φ wp(havoc x, φ) = ∀x φ
wp(S; T, φ) = wp(S,wp(T, φ))
wp(S [] T, φ) = wp(S, φ) ∧ wp(T, φ)



contract-based software verification

Example (Binary Search)
pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res⇒ a[res] = k) ∧
(res < 0⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1⇒ a[i] 6= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l− 1⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀ : Int l,h. inv⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h⇒ let m = l+ (h− l)/2, v = a[m] in

(k < v⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))
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SMT solver answer: Unsatisfiable
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program synthesis

Synthesis

∙ Synthesize a function that satisfies a given high-level
specification

∙ Already used extensively for hardware systems
∙ Particularly challenging for software

Recent interest
∙ Major new efforts by several research groups
∙ New syntax-guided synthesis (SyGuS) format
∙ SyGuS competition started in 2014
∙ New technique: Refutation-Based Synthesis in SMT [RDK+15]
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refutation-based synthesis

Formalization in second-order logic
∙ Let P[f, x] be a property (specification) for a function f over
some variables x = (x1, x2)

∙ The synthesis problem is to determine the satisfiability of
∃ f. ∀ x. P[f, x]

Example
Maximum of 2 values

P[f, x] = f(x) ≥ x1 ∧ f(x) ≥ x2 ∧ (f(x) = x1 ∨ f(x) = x2)

Problem: SMT only understands first-order logic
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refutation-based synthesis

Single-invocation properties
∙ Every occurrence of f is of the form f(x)
∙ Previous example is single-invocation
∙ Not single-invocation: ∀ x. f(x1, x2) = f(x2, x1)

∙ When the synthesis property is single-invocation, it can
written as ∃ f. ∀ x. P[f(x), x]

Note that:
∃ f. ∀ x. P[f(x), x] (1)

is equivalent to
∀ x. ∃ y P[y, x] (2)

because (1) is the Skolemization of (2) which is first-order!
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refutation-based synthesis

Proving the validity of

∀ x. ∃ y P[y, x]

is equivalent to proving the unsatisfiability of

∃ x. ∀ y ¬P[y, x]

or the unsatisfiability of

∀ y ¬P[y, c]

for some fresh constants c
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refutation-based synthesis

How does an SMT solver show that

∀ y ¬P[y, c] is unsatisfiable?
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refutation-based synthesis

How does an SMT solver determine that

∀ y ¬P[y, c] is unsatisfiable?

SMT solvers use heuristic instantiation [GBT07, GdM09, RTGK13] to
produce a set of unsatisfiable quantifier-free formulas:

{¬P[t1[c], c],¬P[t2[c], c], . . . ,¬P[tn[c], c]}

This also gives a constructive solution to the original synthesis
problem:

f = λ x. ite(P[t1[x], x], t1[x], (· · · ite(P[tn−1[x], x], tn−1[x], tn[x]) · · · ))
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scheduling

Example
Schedule n jobs, each composed of m consecutive tasks,
on m machines.

Schedule in 8 time slots

di,j Mach. 1 Mach. 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0) ∧ (t2,2 ≥ t2,1 + 3) ∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0) ∧ (t3,2 ≥ t3,1 + 2) ∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Example from [DMB11]
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SMT solver solution
t1,1 7→ 5, t1,2 7→ 7
t2,1 7→ 2, t2,2 7→ 6
t3,1 7→ 0, t3,2 7→ 3



aircraft trajectory conflict detection
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H = 5 nm V = 1000 ft 0 ≤ t ≤
1
20
h

|Tz1(t) − Tz2(t)| ≤ V

(Tx1(t) − Tx2(t))
2 + (Ty1 (t) − Ty2(t))

2 ≤ H2

Tx1(t) = 3.2484 + 270.7t + 433.12t2 − 324.83999t3

Ty1 (t) = 15.1592 + 108.28t + 121.2736t2 − 649.67999t3

Tz1(t) = 38980.8 + 5414t− 21656t2 + 32484t3

Tx2(t) = 1.0828− 135.35t + 234.9676t22 + 3248.4t3

Ty2(t) = 18.40759− 230.6364t− 121.2736t2 − 649.67999t3

Tz2(t) = 40280.15999− 10828t + 24061.9816t2 − 32484t3

Example from [NM12]
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SMT solver solution
t 7→ 319

16384 ≈ 0.019470215
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