
Proof Certificates for SMT-based Model Checkers
for Infinite-state Systems

Alain Mebsout Cesare Tinelli
The University of Iowa, Iowa City, IA, USA

Abstract—We present a dual technique for generating and
verifying proof certificates in SMT-based model checkers, fo-
cusing on proofs of invariant properties. Certificates for two
major model checking algorithms are extracted as k-inductive
invariants, minimized and then reduced to a formal proof term
with the help of an independent proof-producing SMT solver.
SMT-based model checkers typically translate input problems
into an internal first-order logic representation. In our approach,
the correctness of translation from the model checker’s input to
the internal representation is verified in a lightweight manner
by proving the observational equivalence between the results of
two independent translations. This second proof is done by the
model checker itself and generates in turn its own proof certificate.
Our experimental evaluation show that, at the price of minimal
instrumentation in the model checker, the approach allows one
to efficiently generate and verify proof certificates for non-trivial
transition systems and invariance queries.

I. Introduction

Model checkers are perhaps among the most successful
formal methods tools in term of industrial use, particularly
for the development of safety-critical systems. In addition to
traditional applications in hardware design, they are increasingly
used in model-based software development to analyze, for
instance, models of embedded systems in the aerospace or
automotive industry. One clear strength of model checkers, as
opposed to proof assistants, say, is their ability to return precise
error traces witnessing the violation of a given safety property.
In addition to being invaluable to help identify and correct
bugs, error traces also represent a checkable unsafety certificate.
In contrast, most model checkers are currently unable to return
any form of corroborating evidence when they declare a safety
property to be satisfied by a system under analysis. This is
unsatisfactory in general since model checker are complex
tools, based on a variety of sophisticated algorithms and search
heuristics, and so are not immune to errors.
To mitigate this problem, a possible approach is to use

a model checker whose correctness has been formally veri-
fied [10]. An alternative is to instrument the model checker
so that it is certifying, i.e. it accompanies its safety claims
with a proof certificate, an artifact embodying a proof of the
claim [16]. The certificate can then be validated by a trusted
certificate checker. While the former approach may seem better
at first, based on the fact that the model checker is verified once
and for all, it has a number of disadvantages. To start, the effort
is normally enormous since there are no general frameworks for

This work is partially supported by the National Aeronautics and Space
Administration under NASA contract number NNL14AA06C.

verifying modern model checkers. Moreover, any modifications
to the originally verified tool requires proofs to be redone.
In more extreme cases (e.g., an in-depth modification) one
may have to invest the same amount of effort as for the
original correctness proof. The main advantage of the second
approach is that it requires a much smaller human effort. A
disadvantage of course is that every safety claim made by the
model checker incurs the cost of generating and then checking
the corresponding certificate. This is feasible in general only if
such certificates are small and/or simple enough to be checkable
by a target certificate checker in a reasonable amount of time
(say, with at most an order of magnitude slowdown).

By reducing the trusted core to the certificate checker,
certifying model checking facilitates the integration of formal
method tools into safety critical processes such as those
endorsed by the DO-178C guidelines for avionics software.
In the spirit of the de Bruijn criterion [4], traditionally applied
to theorem provers, it redirects tool qualification requirements
from a complex tool, the model checker, to a much simpler
one, the proof checker.
We present an approach for generating and verifying proof

certificates for SMT-based model checkers. These tools use
a variety of model checking techniques and some of them
even employ a portfolio approach by running several engines
in parallel. Input models are typically represented internally
as transition systems encoded in some fragment of first-order
logic. Safety properties are expressed as invariant properties
and reasoning about invariance is reduced to checking the
satisfiability of formulas in certain logical theories such as
integer or real linear arithmetic. The latter problem is then
delegated to off-the-shelf SMT solvers.
We describe how to generate intermediate certificates that

show that a given safety property is satisfied the internal tran-
sition system. These certificates are designed to be checkable
by an SMT solver. Since SMT solvers themselves are complex
artifacts, we also show how to reduce the validity of these
certificates to proof objects obtained by a proof-producing SMT
solver. This reduction capitalizes specifically on the recent proof
production capabilities of the SMT solver CVC4 [5] and the
availability of an efficient proof checker for its proofs, which
are generated in LFSC format [24]. Most model checkers do
allow users to specify system models directly in this relatively
low-level logical representation. Instead, they support some pre-
existing modeling language (such as Simulink, Lustre, Promela,
SMV, or even just C). To account for possible problems
in the translation from the input modeling language to the



Lustre
%PROPERTY P

Kind 2

JKind 
frontend Obs Eq

Safety 
Certificate

Kind 2
core

Front end 
Certificate

CVC4

Proof Proof Proof…

Safety
LFSC proof

LFSC 
checker

LFSC proofs of subgoals
(unsatisfiability)

Figure 1: Process for proof certificates generation and verification in
Kind 2.

internal logical representation, we include a second phase
which produces an additional proof certificate providing some
level of confidence in the correctness of the translation.

While the techniques we have developed are general enough
to be applicable to arbitrary SMT-based model checkers, we
have implemented them in a specific one: Kind 2 [7], an SMT-
based, multi-engine, symbolic model checker that can prove
or disprove safety properties of synchronous reactive systems
expressed in the Lustre language [11]. As a consequence, we
will describe our work in terms of Lustre and Kind 2, but with
the assumption that a knowledgeable reader will be able to see
how it generalizes to other SMT-based model checkers. In more
detailS, this work contains the following specific contributions:
(1) A technique for generating proof certificates for safety

properties of transition systems. We show how to extract and
simplify k-inductive invariants that are sufficient to summarize
proofs generated by the different kinds of SMT-based model
checking methods (in Section II) and how proofs can be
reconstructed (in Section IV).
(2) An approach to increase trust in the translation from

the external modeling language to an internal representation
language, described in Section III. A translation certificate is
generated in the form of observational equivalence between two
internal representations generated by independently developed
front ends. Their equivalence is recast as an invariant property;
checking that yields itself a second proof certificate from which
a global notion of safety can be derived and incorporated in the
LFSC proof. We improve on similar previous approaches [19],
[20] by adopting a weaker, property-based notion of observa-
tional equivalence, which is enough for our purposes.
(3) An implementation of these techniques in Kind 2. The

first certificate summarizes the work of its different engines:
bounded model checking (BMC), k-induction, IC3, as well
as additional invariant generation strategies. The certification
of the translation is applied to the Lustre language. The
intermediate certificates are SMT-LIB 2 scripts checked by
CVC4. CVC4’s own proof objects are used to construct an
LFSC proof term providing an overall proof of safety.
The full certification process for Kind 2 is depicted in

Figure 1. Kind 2 generates two sorts of safety certificates, in the
form of SMT-LIB 2 scripts: one certifying the faithfulness of the
translation from the Lustre input model to the internal encoding,

node add_two (a, b : real) returns (c : real) ;
var v : real;

let
v = a + b ;

c = 1.0 -> if (pre c) > v then (pre c) else v ;
--%PROPERTY (a > 0.0 and b > 0.0) => c > 0.0 ;

tel

Figure 2: Lustre model of running example.

and one certifying the invariance of the input properties for
the internal encoding of the input system. These certificates
are checked by CVC4, then turned into LFSC proof objects by
collecting CVC4’s own proofs and assembling them to form an
overall proof that can be efficiently verified by the LFSC proof
checker. Our initial experimental evaluation indicates that, at
the price of minimal instrumentation in the model checker, this
approach allows one to efficiently generate and check proofs
for non-trivial transition systems and invariance queries.

To illustrate our different techniques, we will rely on the toy
model in Figure 2. In Lustre, reactive components are modeled
as nodes. The node add_two in the figure encodes a component
that initially outputs 1.0, in variable c, and at each execution
step afterwards outputs the maximum between the previous
value of c and the sum of the current values of input variables
a and b. The model is annotated with an invariance property
stating that the output c is positive whenever both inputs are.

A. Technical Preliminaries

We define a transition system as a tuple S = (x, I,T ) where x
is a tuple of distinct (typed) variables; I is a formula of typed
first-order logic with free variables from x, which characterizes
the initial states of the system; and T is a formula with free
variables from x and a renamed copy x′ of x, which describes
the system’s transition relation. If F is a formula with free
variables from x, we write F[y] to denote the instance of F
obtained by replacing its free variables by the corresponding
ones in y. We write T[y, y′] similarly for T . We adopt the usual
notions and notations of first-order logic. In particular, for an
intepretation M and a formula ϕ, we write M |= ϕ to mean
M satisfies the formula ϕ. We also write |= for the logical
entailment in a theory (such as integer and real arithmetic)
that encodes the data types used in the transition system. A
state of the system S = (x, I,T ) is a model that gives an
interpretation to the variables of x. A state M of a system
S = (x, I,T ) is said to be reachable iff there exists an i ∈ N
such that,M |= ∃x0 . . . xi−1. I[x0]∧T[x0, x1]∧ . . .∧T[xi−1, xi ].
State properties for a system S are described by first-order
formulas whose free variables are from x. Let P be a state
property for S = (x, I,T ). P holds in, or is an invariant of,
S if every reachable state M of S is a model of P. Property
P is k-inductive for some k > 0 if (i) I[x0] ∧ T[x0, x1] ∧
. . . ∧ T[xi−2, xi−1] |= P[xi−1] for all i = 1, . . . , k, and (ii)
T[x0, x1]∧ . . .∧T[xk−1, xk ] ∧ P[x0]∧ . . .∧P[xk−1] |= P[xk ].
A k-inductive strengthening Q of P is a k-inductive formula
Q[x] such that Q[x] |= P[x]. One can show that k-inductive



state properties are invariant. It follows that every state property
having a k-inductive strengthening is invariant.

II. k-inductive Safety Certificates

In this section, we focus on transition systems and present a
certificate generation approach general enough to capture the
information produced by different SMT-based model checking
engines while proving invariance properties of a system S =
(x, I,T ). We show that k-inductive strengthenings of original
properties are an adequate summary of the reasoning resulting
from the combination of these engines. We also show how
to combine and simplify them with the aim of generating the
most easily verifiable objects.

A. Extracting and Verifying Certificates
Kind 2 converts internally input models and properties,
expressed in Lustre, to a transition system that captures
the same input/output behavior. The translation is relatively
straightforward for single-node models, and is based on having
state variables corresponding to the node’s input and output
variables as well as any terms of the form pre t.1 For
multi-node models, the transition systems for the individual
nodes are combined according to Lustre’s synchronous parallel
composition semantics.

Certificate extraction. In Kind 2, an input property P can
be proved invariant by one of two main model checking
methods: k-induction [22] and IC3 [6], each implemented in
an independent engine. The job of either engine is facilitated
by a number of auxiliary invariant generation engines, which
discover and pass along auxiliary invariants that might be
helpful in proving the main property. Often these are local
invariants, for instance specific to a sub-component of the input
system. All of these engines, which run concurrently, generate
safety certificates of the form (k, φ) where k is a positive
number and φ is a k-inductive strengthening of some state
property. The content of the certificate depends on the engine:
• The k-induction engine tries to prove that the input property

P is invariant by proving that it is k-inductive for some k > 0.
When this succeeds, P is its own k-inductive strengthening
and a possible certificate is the pair (k, P).

• The IC3 engine also tries to prove that an input property
P is invariant. It succeeds when it is able to construct a
conjunction φ of formulas such that φ ∧ P is 1-inductive. In
this case, a possible certificate is (1, φ ∧ P).

• The invariant generation engines are based on variations of
the previous techniques. Every auxiliary invariant used in
the proof of an input property P is provided with its own
certificate, also of the form (k, φ).

Certificate combination. Kind 2 accepts as input multiple
properties for a given model, and attempts to verify them
individually. This means that it normally produces individual
certificates for a collection of user-specified and internally

1For each non-initial execution step, pre t denotes the value of t in the
previous step.

generated properties. These safety certificates are combined
together thanks to the following easily provable result.

Proposition 1. If (ki, φi ) is a ki-inductive strengthening of
property Pi[x] for i = 1, 2, then (k, φ1 ∧ φ2) with k =
max(k1, k2) is a k-inductive strengthening of P1[x] ∧ P2[x].

Verifying Certificates. Checking a (combined) certificate (k, φ)
for a (conjunctive) property P reduces to verifying that φ is
indeed a k-inductive strengthening of P. This can be done
using any tool that can prove the following entailments:

I[x0 ] ∧ T[x0, x1 ] ∧ . . . ∧ T[xi−2, xi−1 ] |= φ[xi−1 ] for i ∈ [1, k] (basek )
T[x0, x1 ] ∧ . . . ∧ T[xk−1, xk ] ∧ φ[x0 ] ∧ . . . ∧ φ[xk−1 ] |= φ[xk ] (stepk )
φ[x] |= P[x] (implication)

Using an SMT solver to prove (basek ), (stepk ), and
(implication), effectively moves the burden of trust from the
model checker to the solver. As we describe in Section IV, the
latter can in turn be removed from the trusted core if it can
provide an LFSC proof of the three entailments.

B. Simplifying Certificates
Good certificates need to be simple and easily checkable
by an independent tool or method. In particular, there is an
expectation that checking a certificate should not take more
time than proving the original property. A common approach
in the certificate production literature is to simplify and/or
reduce the certificate a posteriori [2], [8], [25]. This extra
effort at construction time can pay large dividends at checking
time. In our case, a safety certificate (k, φ) can be simplified
by reducing the value of k or the size/complexity of φ, or
both. Currently, Kind 2 tries to reduce k before simplifying
φ. Empirical evaluation, discussed in Section V, suggests that
this sort of post-processing is always worth the overhead.

Reducing k. Referring back to the entailments (basek ) and
(stepk ) from the previous section, because of the k checks
in (basek ), checking a certificate (k, φ) requires a number of
sub-checks proportional to k. Each of sub-checks in turn take
time proportional to k, making the whole process quadratic in
k. Due to the concurrent nature of Kind 2, proofs obtained by
its k-induction engines are not guaranteed to have a minimal k.
Consequently, lowering k can often be the most effective way of
simplifying a certificate. To do that, after it constructs an initial
combined certificate (k, φ), Kind 2 will replay the inductive
step (stepk ) for φ for values k ′ smaller than k, following one
of three different strategies, chosen heuristically:
• forward enumeration: progressively try all values of k ′ from
1 to k and stop at the first where k ′-inductiveness holds;

• backward enumeration: try values of k ′ from k down to 1,
stopping as soon as k ′-inductiveness is lost;

• binary search: partition [1, k] into subintervals [1, k ′] and
[k ′+ 1, k] of similar size and recursively consider the first or
the second interval depending on whether ϕ is k ′-inductive
or not.

Simplifying φ. Because of how combined certificates (k, φ) are
generated, the invariant φ, which is a conjunction ψ1∧ . . .∧ψn



Algorithm 1. Two-phase simplification of invariants
Input: R = {ψ1, . . . , ψn }: invariant set to be reduced,

P: input property set, T : Transition relation

Function trim(R, P)
if R(0..k − 1) ∧ P(0..k − 1) ∧
T (0..k ) |= P(k ) then
// P is k-inductive wrt R
U = get-unsat-core();
R′ = {ψ ∈ R | ψ occurs in U };
if R′(0..k − 1) ∧ P(0..k − 1) ∧
T (0..k ) |= R′(k ) ∧ P(k ) then
// R′ ∧ P is k-inductive
return R′ ∪ P

else // R′ is not strong enough
trim(R \ R′, R′ ∪ P)

else error “Not k-inductive”;

Function cherry-pick(R, P)
if P(0..k − 1) ∧ T (0..k ) |= P(k )
then
// P is k-inductive
return P

else
// Find cex to induction
M = get-cex();
// . . . and a blocking invariant
ψ = choose({ψ ∈ R | M 6 |= ψ });
cherry-pick(R\{ψ }, P ∪ {ψ })

cherry-pick( trim({ψ1, . . . , ψn }, P), P );

of formulas, can contain unnecessary information (redundancy,
useless auxiliary invariants, etc.). We tighten φ with a process
based on two fixpoint computations applied in sequence and
described in Algorithm 1. There, we use the notation ϕ(i),
ϕ(0..i) and T (0..i) as an abbreviation, respectively, of ϕ[xi],
ϕ[x0] ∧ · · · ∧ f [xi] and T[x0, x1] ∧ · · · ∧ T[xi−1, xi]. Also,
we treat finite sets of formulas as the conjunction of their
elements. For entailment checks, we assume the availability of
a function get-unsat-core that returns an unsatisfiable core
of the premises and the negated conclusion of the entailment
when the entailment holds, and a function get-cex that returns
a counterexample when the entailment does not hold. Both of
these functionalities are provided by most SMT solvers.
Algorithm 1 uses two functions, trim and cherry-pick,

both of which take a set P of properties and a set R of
auxiliary invariants for P. Function trim aims at identifying
and removing from R invariants that are not needed to prove
P k-inductive. It relies on unsat cores to progressively reduce
the set R as long as R ∪ P remains k-inductive. Function
cherry-pick recursively checks that P is k-inductive and, if
it is not, adds to it any of the auxiliary invariants from R that
eliminate the k-induction counter-example found by the SMT
solver. One can prove that each function, and so the whole
process, is terminating—the main point being that the input
set R is finite and gets strictly smaller with each recursive
call. The process is also sound in the sense that its returned
formula is a k-inductive strengthening of P whenever the input
φ = ψ1 ∧ · · · ∧ψn ∧ P is. However, it is not guaranteed to yield
the smallest k-inductive strengthening of P contained. This is
intentional, for practical efficiency.

Practical considerations. In principle, applying trim is com-
putationally expensive because of the cost of its entailment
checks. In practice, it terminates after a very small number
of iterations—generally less than three on our benchmarks.
Moreover, it is very effective at removing large unnecessary
parts of the certificate. Considering that certificates with
hundreds of conjuncts are common, the cost of running
cherry-pick on the original certificate can become prohibitive.

In our experiments, it was always beneficial to apply the coarse
reduction performed by trim before calling cherry-pick.
We observe that the effect of trim is similar to one of the

reduction steps proposed by Irvii et al. [14] for invariants
produced by SAT-based IC3-like model checkers. While
potentially increasing precision, many of their other steps
require a number of satisfiability checks linear in the size
of φ, which is already prohibitive for the SMT case.
It could be useful to try to reduce k and simplify φ at the

same time in the hope of getting closer to a minimal k than we
do currently with our algorithm. This, however, would be more
expensive, so further empirical evidences would be needed
to assess the practical effectiveness of more sophisticated
approaches in practice.

III. Front End Certification
The certificates discussed in the previous section are

produced for Kind 2’s internal FOL representation of the
input system and properties. Although the translation to this
internal representation from the Lustre input is fairly direct,
Kind 2’s front end also applies a number of optimizations
and simplifications to the input, such as slicing, constant
propagation, and so on. This raises the question of whether the
front end can be trusted to be correct. We rule out the option
of formally proving its correctness for the reason we gave in
Section I. In alternative, we have the translation phase generate
certificates of its own.

Comparing independent translations. Our goal is to keep the
whole certification process lightweight and entirely automatic.
As a consequence, instead of proving a semantic preservation
between the input Lustre model and its internal representation
as a transition system, we prove the observational equivalence
of two internal representations obtained independently from
the same input. This technique for certifying translations has
already been employed in the SAT based toolchain of Prover
Technologies [20] and in the Systerel Smart Solver [19]. In
our case, instead of developing another front end for Kind 2
we can rely on a pre-existing third-party tool: JKind, a Lustre
model checker inspired by Kind but developed independently
at Rockwell Collins [21]. JKind too converts input models to
an FOL representation. It is a good candidate because it is
sufficiently different from Kind 2: it has a completely different
code base (it is written in Java whereas Kind 2 is written in
OCaml) and was developed independently by a different team.
While our approach does not actually guarantee the correctness
of the Kind 2 translation, it provides some formal evidence of
its trustworthiness.

Our certificate encodes the claim that the transition relations
constructed by the two independent front ends are behaviorally
equivalent over a set of relevant state variables. In essence,
the certificate consists of a transition system that observes the
internal states of the two systems generated by each front end.
This observer system feeds its two subsystems the same inputs
and verifies that their externally visible behavior is the same.
For i = 1, 2, let Si = (xi, Ii[xi],T1[xi, x′i]) be the internal

transition system, and Pi the property, respectively generated



by JKind and Kind 2, with x1 and x2 sharing no components.
We construct an observer system Sobs and a safety property
Pobs = (S1, P1) ∼ (S2, P2) expressing a suitable notion of
observational equivalence (∼) between the two systems. Then
we check the correctness of this observer in the same way as we
would check the correctness of S2 with respect to the original
safety property. This process is illustrated as part of Figure 1,
where Obs Eq is the observer described below and the module
Kind 2 Core is the core part of Kind 2, which works directly
with the internal FOL representation of a transition system.

Observational equivalence. A standard definition of observa-
tional equivalence would require the two systems S1 and S2
to produce the same outputs when given the same inputs at
each step. This is, however, is unnecessarily stringent for our
purposes and, depending on how different the two translations
are, it might not even be the case. A better notion of equivalence
is property-based: we consider S1 and S2 equivalent if, for
the same input, they agree at each step on the truth value they
assign to their respective version of the original input property
in the Lustre model. For j = 1, 2, let i j be the subtuple of x j
that corresponds to the input variables of the Lustre model.
Then Pobs and Sobs = (xobs, Iobs,Tobs) are defined as follows:
Pobs = (P1[x1]⇔ P2[x2]) Iobs = i1 ≈ i2 ∧ I1[x1] ∧ I2[x2]
xobs = x1, x2 Tobs = i′1 ≈ i′2 ∧ T1[x1, x′1] ∧ T2[x2, x′2]

where, for two tuples a = (a1, . . . , an ) and b = (b1, . . . , bn ),
the expression a ≈ b denotes the formula

∧
i=1, ...,n ai = bi .

The set of state variables of the observer system Sobs is the
(disjoint) union of the variables of S1 and S2. The system itself
is effectively the parallel composition of S1 and S2 after their
corresponding input variables have been pairwise identified.

Front end certificates. To recap, the equivalence observer Sobs
and the associated property Pobs constitute an intermediate
certificate of Kind 2’s translation from the input Lustre model
and properties to Kind 2’s internal representation. Checking it
consists in proving that the property Pobs is invariant for Sobs.
Since Sobs and Pobs are generated in a format that corresponds
directly to Kind 2’s internal representation of transition systems
and properties, this invariance proof can be done by Kind 2
itself without relying on its front end. Moreover, the proof is
provided with its own safety certificate, which we call a front
end certificate, of the sort discussed in Section II.
One possible problem with this approach is the small

likelihood that the property Pobs is k-inductive for Sobs, and for
a small k, so as to be easily provable by Kind 2. We mitigate
this by identifying pairs of corresponding state variables from
x1 and x2 and suggesting their equality as a candidate auxiliary
invariant for Kind 2 to try. Some of these equalities may indeed
be proven invariant and so they can potentially help in the
proof of Pobs. Note that while this harks back to the stronger
notion of observational equivalence we mentioned earlier, it is
not the same since the equivalence between certain non-input
variables is only suggested, not required.

Example 1. Consider again the Lustre model and property
of Figure 2. The systems S1 and S2 respectively generated by

JKind 2.12 and Kind 2 from that model are the following, in
abstract syntax and modulo variable renaming:

S1 S2
x1 = {a1, b1, c1, v1 }

I1 = R[>, x1, x′1]
T1 = R[⊥, x1, x′1]
R[g, x1, x′1] = (v′1 = a′1 + b′1 ∧

c′1 = ite(g, 10
10 , ite(c1 > v′1, c1, v

′
1)))

P1 = a1 >
0
10 ∧ b1 >

0
10 ⇒ c1 >

0
10

x2 = {i, a2, b2, c2, v2 }

I2 = (i ∧ v2 = a2 + b2 ∧ c2 = 1)
T2 = (¬i′ ∧ v′2 = a′2 + b′2∧

c′2 = ite(c2 > v′2, c2, v
′
2))

P2 = a2 > 0 ∧ b2 > 0⇒ c2 > 0

The equivalence observer Sobs is defined by

xobs = x1, x2 Iobs = (a1 = a2 ∧ b1 = b2 ∧ I1 ∧ I2)
Pobs = (P1 ⇔ P2) Tobs = (a′1 = a′2 ∧ b′1 = b′2 ∧ T1 ∧ T2)

Suggested auxiliary invariants in this case will be the equalities
a1 = a2, b1 = b2, c1 = c2, and v1 = v2 between corresponding
state variables in the two systems. �

IV. From Certificates to LFSC Proofs
The last step of our approach, once the various safety

certificates have been produced and checked, is to gather the
proofs of the various entailment checks performed by the SMT
solver and assemble them into a self-contained overall proof
of safety for the original system.

LFSC proofs. The entailment proofs are obtained specifically
from CVC4 as proof terms in LFSC, an extension of the Edin-
burgh Logical Framework (LF) [12] with side conditions [25].
In LFSC, which is in essence a dependently typed λ-calculus,
proof systems are encoded as type systems. Proof checking
then reduces to type checking, performed by a highly optimized
checker developed by Stump et al. [24]. This particular LFSC
checker takes as input a type system S and a term t in that
system, and checks whether t is well typed in S. The efficiency
of this framework for proof checking lies in the use of side-
conditions, defined as small functional programs, which can
be pre-compiled by the checker. Using proof rules with side
conditions generally leads to both smaller proof sizes and faster
proof checking times.
A proof system is formally defined in LFSC through

signatures, which contain a definition of the system’s language
together with axioms and proof rules. The proof system used
by CVC4 is defined over a number of signatures, which are
included in its source code distribution. Those relevant to this
work include signatures for propositional logic and resolution
(sat.plf); first-order terms and formulas, with rules for CNF
conversion and abstraction to propositional logic (smt.plf);
equality over uninterpreted functions (th_base.plf); and real
and integer linear arithmetic (th_int.plf and th_real.plf).

Extending CVC4’s proof system. We have extended CVC4’s
proof system with an additional signature (kind.plf) for k-
inductive reasoning, invariance and safety.3 This signature also
specifies the encoding for state variables, initial states, transition

2We produce S1 by having JKind 2.1 write a dump file from which we can
extract its internal representation.

3The LFSC checker with all the necessary signatures are distributed with
Kind 2 and publicly available.



Inv+Obs
InvImpl

K-Ind
k ∈ N

Smt

...

Bk |= ⊥
Smt

...

Sk |= ⊥

invariant(I,T, φ)
Smt

...

φ |= P

invariant(I,T, P)
ObsEq

InvImpl
K-Ind

...

invariant(Io,To, φo )
Smt

...

φo |= Po

invariant(Io,To, Po )

woe(I,T, P, I ′,T ′, P′)
safe(I,T, P)

Figure 3: Sketch of derivation tree for LFSC proofs of safety produced by Kind 2

InvImpl
∀k ∈ N. P1(k) |= P2(k) invariant(I,T, P1)

invariant(I,T, P2)

K-Ind
k ∈ N Bk |= ⊥ Sk |= ⊥

invariant(I,T, P)

[
Bk = base(I,T, P, k)
Sk = step(T, P, k)

]

unroll(T, P, k) = match k with
| 0 7→ P(0)
| 1 7→ P(0) ∧ T (0, 1)
| _ 7→ unroll(T, P, k − 1) ∧ P(k − 1) ∧ T (k − 1, k)

step(T, P, k) = unroll(T, P, k) ∧ ¬P(k)

Figure 4: A sample of LFSC rules for k-induction proofs

relations, and property predicates. State variables are encoded
as functions from natural numbers to values. This way, the
unrolling of the transition relation done in (basek ) and (stepk )
does not need the creation of several copies of the state variable
tuple x. For example, for the state vector x = (y, z) with y of
type real and z of type integer, the LFSC encoding will make
y and z functions from naturals to reals and integers, respec-
tively. So we will use the tuples (y(0), z(0)), (y(1), z(1)), . . .
instead of (y0, z0), (y1, z1), . . . where y0, y1, . . . , z0, z1, . . . are
(distinct) variables. Correspondingly, our LFSC encoding of
a transition relation formula T[x, x′] is parametrized by two
natural variables, the index of the pre-state and that of the
post-state, instead of two tuples of state variables. Similarly, I,
P and φ are parametrized by a single natural variable.
The signature defines several derivability judgments, includ-

ing one for proofs of invariance, which has the following type:

invariant : Π I : N→ formula. Π T : N→ N→ formula.
Π P : N→ formula. Type

It also contains rules to build proofs of invariance by k-
induction, as illustrated in Figure 4 in abstract syntax. There,
proof rule InvImpl states that weakenings of invariants are
invariants. Rule K-Ind encodes the k-induction principle as
presented in Section II. It has two side-conditions that compute
formulas for the subgoals of k-induction. As an example, we
provide the definition of step, which uses an auxiliary function
to compute unrollings of the transition relation.
This signature also specifies how to encapsulate proofs

for the front-end certificates by providing a additional judg-
ment, safe(I,T, P, I ′,T ′, P′), which can be derived only when
invariant(I,T, P) is derivable and the observational equivalence

between (I,T, P) and (I ′,T ′, P′) is provable (judgment woe).
Self contained proofs of safety follow the sketch depicted
in Figure 3, where Smt stands for an unsatisfiability rule
whose proof tree is obtained, with minor changes, from a
proof produced by CVC4.

In practice, running Kind 2 in proof production mode on a
Lustre model generates an LFSC proof (in a text file) that
can be then fed together with the various signature files
({sat,smt,th_int,th_real,kind}.plf) to the LFSC proof checker.

V. Experimental Evaluation

We evaluated our certificate generation and checking tech-
niques on a set of academic benchmarks and a smaller set
of industrial-grade benchmarks.4 They come from different
sources (academic and industrial users, published case studies,
etc.) and are of various nature (memory coherence protocols,
reactive controllers from railway and aerospace industry,
counter systems, simulation of systems, . . . ). We selected
only benchmark problems consisting of a Lustre model with
properties that Kind 2 could prove with a 5 minutes timeout.

We first focus on the effect of minimization on intermediate
certificate checking by the SMT solver CVC4 and then
evaluate our complete certification chain, including front end
certification and LFSC proof checking.
We ran our tests on a Linux machine with two 12-core

64-bits AMD Opteron processors and 32GB of memory. We
used a certifying version of Kind 2 based on Kind 2 v0.8. The
CVC4 binary was from version 1.5-prerelease (git proofs
7ba546df). Tools were given a timeout of 5 minutes.

Certificate simplification. The plot in Figure 5 focuses on the
effects of the certificate simplification techniques presented
in Section II. It shows how many problems a particular
configuration can cumulatively process within a certain amount
of time. We compare various measures: S measures the time
needed by Kind 2 to solve the model checking problem and
generate an initial safety certificate, i.e., before simplification;5
mE measure the time to reduce the safety certificate using the
easy simplification technique (i.e., only trim in Algorithm 1);
m is the time to do the full simplification (i.e. both trim and
cherry-pick); finally, cvc4 measures the time necessary for
CVC4 to check the safety certificate—we exclude front end
certificates in this analysis. We can see from the plot that

4Kind 2 is available at https://kind.cs.uiowa.edu and benchmarks are available
at https://github.com/kind2-mc/kind2-benchmarks/tree/fmcad16.

5We do not show the time to just solve the problem because its difference
with S is negligible.

https://kind.cs.uiowa.edu
https://github.com/kind2-mc/kind2-benchmarks/tree/fmcad16


��

�����

�����

�����

�� ��� ���� ���� ���� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
����
���
������
���������
�������������

��

�����

���� ����

Figure 5: Overhead and improvements of minimization.

��

����

����

����

����

�� ��� ���� ���� ���� ���� ����

�
��
�

�
��

�
�

�������������������������

�
��������
����������
�������������
���������������

Figure 6: Evaluation of proof certification chain.

without any simplification (S+cvc4) we can check a lot less
certificates and take much more time than with simplification.
We can also see that, even if the full simplification process
is more expensive (S+m vs. S+mE), it yields a larger number
of checked certificates within the time limit (S+m+cvc4 vs.
S+mE+cvc4). The superiority of full simplification is confirmed
by an analysis of the full results. It reduces the size of
the invariants on average by 74% (removing on average 19
invariants per certificate) for 42% of the benchmarks. For
one benchmark, it removes 236 invariants out of 243. The
value of k is reduced in 11% of the benchmarks, by 10 on
average, the maximum being a reduction from 36 down to
2. The bump at 428 is due to the simplification overhead for
a single benchmark, which is larger than the solving time.
However, even with this outlier, the cumulative benefit of full
simplification on certificates is clear.

Checking full certificates. The plot in Figure 6 refers to the
complete proof certification chain. The measurements show the
time necessary up to produce the proofs (S+m+cvc4) (which
involve an intermediate checking phase, cvc4, with CVC4) and
to check them with the LFSC proof checker (p). The second
and third curves are for the invariance property while the last
two also include the overhead for the front end proof (I+F).
The latter includes the time to: prove the input property; fully
minimize its safety certificate and generate the corresponding
proof; construct the equivalence observer, including the time
to call JKind and extract its transition system; model check the
observer with Kind 2; minimize and produce the proof for the
front end certificate; and finally check the combined resulting
proof with LFSC.

We are able to generate and check the proof of invariance for
around 80% of benchmarks that Kind 2 succeeds in verifying;
we produce and check a complete proof including the front end
for 60% of them. Most of the cases where we fail to generate
the proof are due to CVC4’s current limitations in its proof
producing capabilities. The biggest bottlenecks are the model
checking of the equivalence observer and the simplification of
certificates. Despite that, the time cost of the full certification
chain is overall within one order of magnitude of the cost of
just proving the input property. We find the overall level of
performance, which we think we could improve further, already
rather good, especially considering that a lot of the benchmarks
we used are non-trivial.

VI. Related Work
Formally verified model checkers. A natural approach to the
certification of verification tools consists in proving the program
(here the model checker) correct once and for all. This is
possible to a large extent for programs written in programming
languages with (largely automated) verification toolsets such
as ESC Java 2, Frama-C, VCC, F? etc. Proving full functional
correctness of a model checker, however, is currently a very
challenging job because these tools are often rather complex and
tend to evolve quickly with the ongoing advances in the field.
When feasible, one great advantage of this approach of course
is that the performances of the model checker is minimally
impacted by the verification process. One example of this kind
of certification effort is the modern SAT solver versat which
was developed and verified using the programming language
Guru [17]. We are, however, not aware of similar results for
model checkers.
Another possibility is to prove the underlying algorithms

of a model checker correct in a descriptive language of
interactive proof assistants such as Coq or Isabelle, and obtain
an executable program from these tools through a refinement
process or code extraction mechanism. Although the first
formal verification of a model checker in Coq for the modal
µ-calculus [23] goes back to 1998, only recently have certified
verification tools started to emerge. Amjad [1] shows how to
embed BDD-based symbolic model checking algorithms in the
HOL theorem prover so that results are returned as theorems.
This approach relies on the correctness of the backend BDD
implementation. Esparza et al. [10] have fully verified an
automata-based model checker for finite state systems with
the Isabelle theorem prover. Using successive refinements, they
built a correct by construction model checker from high level
specifications down to functional (SML) code.
A recent approach for the certification of SAT and SMT

solvers [2] consists in having the solver produce a detailed
certificate in which each rule is read and verified by a
combination of several small certified checkers, written and
proved correct in Coq. This approach also allows one to import
inside Coq proof terms from these solvers [3].

Certifying model checkers. A number of techniques have
been proposed to produce certifying model checkers. Earlier
solutions (e.g., [15], [16], [18]) were limited to finite-state
systems. The first certifying model checker for infinite-state



systems was perhaps the C model checker BLAST [13], which
produced certificates for a control flow automaton internally
generated from an input C program. BLAST provided proof
certificates in the Edinburgh Logical Framework (LF) [12],
which limits the scalability of certificate checking when proofs
involve reasoning modulo the theory of C’s data types.

A more recent certifying model checker is SLAB [9], which
produces certificates in the form of inductive verification
diagrams to be checked by SMT solvers. We go one step further
by relying on SMT solvers that are in turn proof producing.
Also, we address the issue of certifying the translation from
the input model to the internal representation.
For model checking of parameterized systems, the model

checker Cubicle generates certificates as Why3 files that
can be independently checked by several SMT solvers and
automated theorem provers [8], where trust is claimed through
the redundant use of multiple solvers.

VII. Conclusion and Future Work
We have presented a dual technique for generating and

checking proof certificates for SMT-based model checkers,
and applied it to the model checker Kind 2. Given a Lustre
model and one or more invariance properties for it, Kind 2
generates LFSC proofs for the properties it can verify. These
proofs have two parts. The first attests that the model and
the properties are encoded correctly in Kind 2’s internal
representation format. It does that by proving the observational
equivalence, with respect to the properties, between the internal
system and another one produced from the same Lustre input
by an independent, third-party tool. The second part attests that
the encoded properties are invariants of the internal transition
system encoding the Lustre model. Initial certificates, which
we call safety certificates, are generated as (possibly combined)
k-inductive invariants, and simplified before being verified by
the CVC4 SMT solver. The eventual proof certificates, in LFSC
format, are assembled from the proofs generated by CVC4 after
verifying these safety certificates.

The trusted core of our approach consists in:
1) The LFSC checker (5300 lines of C++ code).
2) The LFSC signatures comprising the overall proof system

in LFSC (CVC4’s sat.plf, smt.plf, th_base.plf, th_int.plf,
th_real.plf and our own kind.plf, for k-induction and safety),
for a total of 444 lines of LFSC code.

3) The assumption that Kind 2 and JKind do not have identical
defects that could escape the observational equivalence
check.
A current but temporary limitation of our certificate gen-

eration process is that LFSC proofs may contain an unsound
proof rule, trust_f, which derives any formula. This rule is
used by the current version of CVC4 to fill in present gaps
in its proof generation code. However, it will be progressively
phased out as the instrumentation of CVC4 to produce full
proofs is completed.
Kind 2 has the ability to do compositional and modular

analyses of Lustre models extended with assume-guarantee-
style contracts. A possible line of future research is to extend the

work described here to apply to such analyses by incorporating
their underlying abstraction mechanisms.

Kind 2’s proof certificate generation is being leveraged in an
ongoing project funded by NASA and the FAA as an innovative
way to reduce the cost of tool qualification with respect to
DO-178C requirements.

Acknowledgments. We would like to thank Lucas Wagner and
Konrad Slind for their feedback on this work and Andrew
Gacek for his assistance with JKind.

References
[1] H. Amjad. Programming a symbolic model checker in a fully expansive

theorem prover. In TPHOL, pages 171–187. Springer, 2003.
[2] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Wener.

Verifying SAT and SMT in Coq for a fully automated decision procedure.
In PSATTT, 2011.

[3] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A
modular integration of SAT/SMT solvers to Coq through proof witnesses.
In CPP, pages 135–150. Springer, 2011.

[4] H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Philos Trans A Math Phys Eng Sci, 363(1835):2351–2375, 2005.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV, pages 171–177. Springer,
2011.

[6] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI,
volume 6538 of LNCS, pages 70–87. Springer, 2011.

[7] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The Kind 2 model
checker. In CAV, pages 510–517. Springer, 2016.

[8] S. Conchon, A. Mebsout, and F. Zaïdi. Certificates for parameterized
model checking. In FM, pages 126–142. Springer, June 2015.

[9] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A
certifying model checker for infinite-state concurrent systems. In TACAS,
volume 6015, pages 271–274. Springer, 2010.

[10] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G.
Smaus. A fully verified executable LTL model checker. In CAV, volume
8044, pages 463–478. Springer, 2013.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[12] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM (JACM), 40(1):143–184, 1993.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV, pages
526–538. Springer, 2002.

[14] A. Ivrii, A. Gurfinkel, and A. Belov. Small inductive safe invariants. In
FMCAD, pages 115–122. IEEE, 2014.

[15] O. Kupferman and M. Y. Vardi. From complementation to certification.
Theor. Comput. Sci., 345:83–100, November 2005.

[16] K. S. Namjoshi. Certifying model checkers. In CAV, pages 2–13. Springer,
2001.

[17] D. Oe, A. Stump, C. Oliver, and K. Clancy. versat: A verified modern
SAT solver. In VMCAI, volume 7148, pages 363–378. Springer, 2012.

[18] D. Peled and L. Zuck. From model checking to a temporal proof. In
SPIN, pages 1–14. Springer, 2001.

[19] M. Petit-Doche, N. Breton, R. Courbis, Y. Fonteneau, and M. Güdemann.
Formal verification of industrial critical software. In FMICS, pages 1–11.
Springer, 2015.

[20] Prover Technology. Prover tools. http://www.prover.com/products.
[21] Rockwell Collins. JKind - a Java implementation of the KIND model

checker. http://loonwerks.com/tools/jkind.html.
[22] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, pages 108–125, London,
UK, 2000. Springer.

[23] C. Sprenger. A verified model checker for the modal µ-calculus in coq.
In TACAS, pages 167–183, London, UK, 1998. Springer.

[24] A. Stump. Proof checking technology for satisfiability modulo theories.
ENTCS, 228:121–133, 2009.

[25] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof
checking using a logical framework. FMSD, 42(1):91–118, 2013.

http://www.prover.com/products
http://loonwerks.com/tools/jkind.html

	Introduction
	Technical Preliminaries

	k-inductive Safety Certificates
	Extracting and Verifying Certificates
	Simplifying Certificates

	Front End Certification
	From Certificates to LFSC Proofs
	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

