
A Decision Procedure for Regular Membership
and Length Constraints over Unbounded

Strings?

Tianyi Liang1, Nestan Tsiskaridze1, Andrew Reynolds2,
Cesare Tinelli1, and Clark Barrett3

1 Department of Computer Science, The University of Iowa
2 École Polytechnique Fédérale de Lausanne

3 Department of Computer Science, New York University

Abstract. We prove that the quantifier-free fragment of the theory of
character strings with regular language membership constraints and lin-
ear integer constraints over string lengths is decidable. We do that by
describing a sound, complete and terminating tableaux calculus for that
fragment which uses as oracles a decision procedure for linear integer
arithmetic and a number of computable functions over regular expres-
sions. A distinguishing feature of this calculus is that it provides a com-
pletely algebraic method for solving membership constraints which can
be easily integrated into multi-theory SMT solvers. Another is that it
can be used to generate symbolic solutions for such constraints, that is,
solved forms that provide simple and compact representations of entire
sets of complete solutions. The calculus is part of a larger one providing
the theoretical foundations of a high performance theory solver for string
constraints implemented in the SMT solver CVC4.

1 Introduction

The study of word algebra and regular expressions has a long history in math-
ematics and computer science. There has been much renewed interest lately for
these topics within the software verification and computer security communities
because of the increasing importance of reasoning about character strings and
regular expressions when proving safety properties or trying to detect security
violations in programs that process string values.

To support these applications, several systems have been developed recently
that check the satisfiability of constraints over a rich set of string operations
including string equalities and inequalities, string length, regular language mem-
bership, and additional functions over strings besides string concatenation [34, 1,
19, 30]. A lot of this work focuses on generally (refutation) incomplete methods
to detect the unsatisfiability of these constraints, a practical approach for making
progress in program analysis applications. A major difficulty in providing com-
plete methods is that any reasonably comprehensive theory of character strings

? This work was partially funded by NSF grants #1228765 and #1228768.

is undecidable [7, 23, 27]. However, several more restricted, but still quite use-
ful, theories of strings do have a decidable satisfiability problem. These include
any theories of fixed-length strings, which are trivially decidable because their
domains are finite, but also some fragments over unbounded strings (e.g., word
equations [22, 25]). Recent research has focused on identifying decidable frag-
ments suitable for program analysis and, more crucially, on developing efficient
solvers for them.

In previous work, we described a comprehensive approach, based on algebraic
techniques and described abstractly as a calculus, to reason efficiently about
quantifier-free formulas in a rich theory of unbounded strings with length and
regular language membership [19]. And based on that approach, we constructed
an efficient string solver, fully integrated into the multi-theory SMT solver CVC4.
The calculus developed in that work is both refutation and solution sound but
refutation incomplete.

Contribution and significance We have developed an improved version of
the calculus presented in [19] that is also complete and terminating over a re-
striction of the general language to membership and length constraints. In this
paper, we present a simplified version of that calculus which can be used to prove
that the fragment in question is decidable. Strictly speaking, this decidability
result is not new, as it is implicitly implied by some recent results from Abdulla
et al. [1], although that work does not mention the result. We provide a full proof
based on the calculus presented here. This contribution is significant not only
because of the importance of the fragment but also for the following reasons.
First, contrary to previous approaches for solving membership constraints which
rely on reductions to finite state automata problems, our approach is completely
algebraic and works directly with regular expressions. This facilitates the cre-
ation of efficient incremental solvers which can be more easily incorporated into
modern SMT solvers since they do not rely on eager conversion to automata
problems. Second, our completeness argument shows how to produce symbolic
solutions for satisfiable problems with regular membership constraints, that is,
intensional representations of (possibly infinite) sets of concrete solutions. This
is useful for security analysis applications like filter generation and automatic
exploit generation (AEG), where any assignment satisfying the constraints gen-
erated from a program is a security exploit. A symbolic solution enables AEG
applications, for example, to generate fewer, more general exploits, thus also
reducing the number of exploits that would need to be examined by a user.

Although our eventual goal is overall efficiency in practice, the calculus pre-
sented here focuses (for simplicity) on proving the decidability result. As a con-
sequence, it uses a few auxiliary functions that apply generally inefficient eager
(but algebraic) conversions from and to regular expressions. We plan to present
in future work a version of the calculus that lifts these conversions to a set of ad-
ditional derivation rules, making them amenable to lazy and selective application
based on search heuristics.

2

1.1 Related work

There have been a number of different approaches for solving string constraints
with regular expressions. The earliest and perhaps most established approach
is based on reductions to automata decision problems. One of these was imple-
mented in the system DPrle, used to check programs against SQL injection
vulnerabilities [13]. The approach followed in that system has the strong limi-
tation of imposing an upper bound on the length of string variables, a hard to
overcome drawback shared by various later works. This approach was later im-
proved by the same author with a method for generating automata lazily from
the input problem which does not requiring any priori length bounds [14]. At
the same time, a comprehensive set of algorithms and data structures for per-
forming fast automata operations was developed to support constraint solving
over strings, for instance in [12].

Current automata-based approaches to reason about regular expressions can
be divided in two classes depending on whether their transitions processing a
single character a time (e.g., [9, 33]) or a set of them (e.g., [31, 32, 14]). Most
of the tools based on these approaches offer very limited support to reason
about constraints mixing strings and other data types. Also, automata refine-
ment may constitute a performance bottleneck, even though it is very useful
in solving membership constraints. Further discussion can be found in [10, 18].
Other approaches for solving regular expression constraints are based on re-
ductions to other theories, such as bit-vectors [15] or linear integer arithmetic
constraints [29], [7], and using constraint solvers for those theories.

Three notable systems that solve regular membership constraints are Rex [32,
31], Mona [11] and the Java String Analyzer (JSA) [8]. Rex too is based on
automata. In contrast to the work described in [14] where each transitions covers
an integer interval, Rex encodes strings as symbolic finite automata (SFA) first.
Each SFA transition uses a logical predicate over linear arithmetic to represent a
set of character-level candidates. This allows Rex to encode transitions as SMT
constraints which it then sends to an SMT solver for a model. This approach
provides an efficient encoding for solving membership constraints, however, it
currently does not support mixed constraints over additional theories.

Mona is a solver for monadic second-order logic with built-in support for
string constraints. Although Mona is an automata-based, it uses Multi Terminal
BDDs to represent automata. This kind of implementation requires sophisticated
engineering techniques (see [16]) which make it difficult to build in additional
theories to support solving of combined constraints. Pisa [28] is another string
solver based monadic second-order logic. However, the language of Pisa is rather
restrictive, e.g., no binary operations between two variables are allowed.

JSA is geared specifically to Java string constraints. It first translates them
to a flow graph, and then analyzes the graph by converting it to a context-free
language. This language is approximated with the Mohri-Nederhof algorithm to
a regular one and encoded as a multi-level automaton. Compared to our work,
JSA focuses exclusively on Java string analysis, approximation, and automaton

3

conversion, while our approach does not depend on any particular language, and
solves string constraints natively with no approximations.

It is well-known that regular languages are closed under common operations
(e.g., concatenation, union, intersection, complementation); however, the com-
plexity of performing most of these operations is high as a consequence of the
high complexity of the corresponding membership problem. For example, mem-
bership in the intersection of two regular languages is PSPACE-complete [17].
Thus, in practice many procedure implementing regular language operations are
approximate (e.g., [6, 26]). In contrast, the calculus we present here does not
approximate.

Our calculus decides a fragment that combines regular membership con-
straints with string length constraints. To the best of our knowledge, there are
no explicit claims about the decidability of this fragment. The work in [1] implies
that the fragment is indeed decidable, although the paper contains no proof, or
mention, of this. The method described in that paper replaces all characters in
regular expressions with a single arbitrary character, and reduces the expression
to their Parikh images [24], generating a set of semi-linear integer constraints
which can then be checked for satisfiability using any linear arithmetic solver.
Since our approach does not use rely on approximations it can build a model
directly when the constraints are satisfiable. This part of work our has some
similarities with the Parikh image described in [4], although we developed it
independently.

1.2 Formal preliminaries

We work in the context of many-sorted first-order logic with equality (≈). We
assume the reader is familiar with the notions of many-sorted signature, term,
literal, formula, free variable, interpretation, and satisfiability of a formula in
an interpretation (see, e.g., [5] for more details). A theory is a pair T = (Σ, I)
where Σ is a signature and I is a class of Σ-interpretations, the models of T ,
that is closed under variable reassignment. If I is an interpretation and t is a
term, we denote by tI the value of t in I. A Σ-formula ϕ is T -satisfiable (resp.,
T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in I. A set Γ
of formulas entails in T a Σ-formula ϕ, written Γ |=T ϕ, if every interpretation
in I that satisfies all formulas in Γ satisfies ϕ as well. The set Γ is satisfiable in
T if Γ 6|=T ⊥ where ⊥ is the universally false atom. If e is a term or a formula,
we denote by V(e) the set of e’s free variables, extending the notation to sets of
terms or formulas as expected. Two Σ-formulas ϕ and ψ are T -equisatisfiable if
for every model I of T that satisfies one, there is a model of T that satisfies the
other and differs from I at most over the free variables not shared by ϕ and ψ.

2 A theory of strings and regular language membership

We consider a theory TLR of strings with length and regular language membership
constraints over a signature ΣLR with three sorts, Str, Int, and Lan, and an infinite

4

ε : Str · : Str × Str→ Str c : Str for all c ∈ A | | : Str→ Int

Ch : Lan · : Lan× Lan→ Lan t : Lan× Lan→ Lan ∗ : Lan→ Lan

∅ : Lan in : Str × Lan u : Lan× Lan→ Lan p q : Str→ Lan

Fig. 1. Basic set of string and regular expression function and predicate symbols.

()() : Lan× Int→ Lan sh : Lan× Lan× Lan→ Lan

Fig. 2. Additional regular expression function symbols.

set of variables for each of these sorts. This theory is essentially the theory of a
single many-sorted structure and its models differ only on how the variables are
interpreted. All models of TLR interpret Int as the set of integer numbers, Str as
the languageW of all words over some fixed finite alphabet A of characters, and
Lan as the power set of W. The signature includes: the usual symbols of linear
integer arithmetic, interpreted as expected; all the elements of W as constant
symbols, or string constants, interpreted as themselves; and all the function
symbols given in Figure 1 with their rank. In that figure, the two · symbols
denote word concatenation and language concatenation, respectively; | | denotes
word length; and p q denotes the singleton set constructor, mapping each word
w ∈ W to the language {w}; the symbols ε, Ch, ∅, and in respectively denote the
empty word, the language of one-character words, the empty language, and the
language membership predicate; the symbols t, u, and ()∗ respectively denote
language union, intersection and Kleene closure.

We call a string term any term of sort Str or of the form |s|; an arithmetic
term any term of sort Int all of whose occurrences of | | are applied to a variable;
and a regular expression any variable-free term of sort Lan. A string term is
atomic if it is a variable or a string constant. An arithmetic constraint is a
(dis)equality (¬)u ≈ v or an inequality u ≥ v where u and v are arithmetic
terms. A membership constraint is a literal of the form (¬)(s ∈ r) where s is a
string term and r is a regular expression. A TLR-constraint is an arithmetic or
a membership constraint. Note that we do not consider here equalities between
terms of sort Str. Also note that if x is a string variable, |x| is both a string and
an arithmetic term. By the definition of TLR, a regular expression r is interpreted
as the same language in every model of TLR. We call that the language generated
by r and denote it by L(r).

Expanding the language The calculus we present later is able to compute
a solved form for a satisfiable input set of TLR-constraints with string variables
x1, . . . , xn. This solved form consists of a set {xi in qi}i=1,...,n of membership
constraints where, for all i, qi is a solved-form term, a term of sort Lan over
integer variables and a signature that includes string constants, the symbols Ch,
· and p q from Figure 1, and the two function symbols from Figure 2. Note that
the latter two symbols are not in the (input) language of TLR-constraints; they
are used only in solved forms. We expand the models of TLR to these two symbols
so that the following holds.

5

(s1 · s2) · s3 → s1 · (s2 · s3) s · ε → s ε · s → s

|s1 · s2| → |s1|+ |s2| |c| → 1 |ε| → 0

r1 · (r2 t r3) → (r1 · r2) t (r1 · r3) pεq · r → r ∅ · r → ∅
(r1 t r2) · r3 → (r1 · r3) t (r2 · r3) r · pεq → r r ·∅ → ∅
ps1q · ps2q → ps1 · s2q r∗∗ → r∗ pεq∗ → pεq

r t r → r (r t pεq)∗ → r∗ ∅∗ → pεq
r1 u r2 → π(r1, r2) ∅ t r → r ∅ u r → ∅

Fig. 3. Term normalization rules, defined modulo commutativity of t and u; π(r1, r2)
is the regular expression computed by the function π defined in Figure 8.

– For all integers n and regular expressions r, L(rn) = {ε} if n ≤ 0 and
L(rn) = L(r · rn−1) otherwise.

– For all regular expressions r, r′, q, L(sh(r, r′, q)) = {w1w
′
1 · · ·wnw′n ∈ L(q) |

n > 0, w1 · · ·wn ∈ L(r), w′1 · · ·w′n ∈ L(r′)}.4

Intuitively, the strings generated by sh(r, r′, q) can be obtained by shuffling to-
gether a word w generated by r and a word w′ generated by r′, as long as the
resulting word is in the language generated by q. Shuffling is achieved by break-
ing w and w′ arbitrarily into n segments and merging the two lists of segments
together.

Notational conventions We use c, d to denote character constants, that is,
string constants of length one; l for arbitrary string constants; x for string vari-
ables; s, t for string terms; z for integer variables; u, v for arithmetic terms; and
q, r for regular expressions. We will omit applications of the p q operator, treating
(variable-free) terms of sort Str as the corresponding regular expression. When
convenient, we will treat a multi-character constant l as the term c · l′ where c is
the first character of l and l′ is the rest of l. We will write |=LR instead of |=TLR

.

3 A calculus for constraint satisfiability in TLR

We are interested in checking the satisfiability in TLR of finite sets of TLR-
constraints as defined in Section 2. In this section, we describe a tableaux-style
calculus that can be used to construct a decision procedure for this problem.

Configurations The calculus applies to a finite set of TLR-constraints with the
goal of determining their TLR-satisfiability. It consists of derivation rules that
operate over configurations. A configuration is either the distinguished config-
uration unsat or a tuple of the form 〈A,R, V 〉, where: A is a set of arithmetic
constraints and implications of the form z1 ≈ 0 ⇒ z2 ≈ 0; R is a set of posi-
tive membership constraints; and V is a set of membership constraints in solved
form.

4 Any of the words w1, . . . , wn, w
′
1, . . . , w

′
n in the definition of sh could be empty. We

use juxtaposition to denote word concatenation at the semantic level.

6

A-Conflict
A |=LIA ⊥

unsat
EmptyS

ε in r ∈ R not ε(r)

unsat
EmptyR

s in ∅ ∈ R

unsat

Assign-1
R = R, x in l

A := A, |x| ≈ |l|↓ R := (R{x 7→ l})↓ V := V, x in l

Assign-2
R = R, x in r x /∈ V(R) top(r) /∈ {t,∅} γ(r) = (q, u,A)

A := A, |x| ≈ u↓ , A↓ R := R V := V, x in q

Consume-1
R = R, c in r

R := R, ε in (∂c r)↓
Consume-2

R = R, c · s in r

R := R, s in (∂c r)↓

Split
R := R, x · s in r

‖(r1,r2)∈β(r) R := R, x in r1↓ , s in r2↓

Inter
R := R, s in r1, s in r2

R := R, s in (r1 u r2)↓
Union

R := R, s in r1 t r2
R := R, s in r1 ‖ R := R, s in r2

Fig. 4. Derivation Rules. R{x 7→ l} is the result of applying the substitution {x 7→ l}
to every term in R; top(r) is the top symbol of term r.

Informally, the sets A and R initially store a TLR-equisatisfiable variant of the
input set and progressively receive additional constraints derived by the calculus;
V , which is initially empty, represents the solution computed so far (each string
variable in V is associated with a set of possible values using solved-form terms).

By standard transformations, one can convert any finite set of TLR-constraints
into a TLR-equisatisfiable set A ∪ R where R is a set of positive membership
constraints5 and A is a set of arithmetic constraints that includes a constraint
of the form |x| ≥ 0 for every string variable x ∈ V(A) and contains no string
variables that do not occur in R. We assume that all terms in such configurations
are irreducible by the rewrite system in Figure 3 which can be shown to be
equivalence-preserving and terminating over ΣLR-terms.6 The rewrite system
uses the auxiliary function π, closely based on one by Lu [21], which maps two
regular expressions r1 and r2 to a regular expression that generates the same
language as r1 u r2 (i.e., L(π(r1, r2)) = L(r1 u r2)) but contains no occurrences
of u. If t is a ΣLR-term, we denote by t↓ any normal form of t with respect to
the rewrite system in Figure 3, and extend this notation to sets of ΣLR-terms as
expected. We call a term t normalized if t = t↓ .

Without loss of generality, we will consider for our calculus only starting
configurations 〈A,R, ∅〉 where A, R are as above.

The calculus assumes the availability of a procedure for checking entailment
in the (decidable) theory of linear integer arithmetic (|=LIA). The only significant

5 Each negative membership constraint s /∈ r can be replaced by s ∈ rc where rc is a
regular expression generating the complement of L(r). This replacement is effective
although current procedures for computing rc are generally inefficient in practice.

6 The system is not confluent but we do not need it to be.

7

deviation we require is that the procedure be able to accept terms of the form |x|,
where x is a string variable, by treating the whole term as an arithmetic variable.
In essence, the calculus models a solver for TLR-constraints that is based on the
cooperation of a standard subsolver for linear arithmetic constraints and a novel
subsolver that processes membership constraints natively, without reduction to
automata problems. This is done by processing regular expressions by means
of algebraic manipulations and non-deterministic choices. The two subsolvers
communicate by exchanging linear arithmetic constraints over string lengths.

Derivation rules The rules of the calculus are provided in Figure 4 in guarded
assignment form where fields A, R, and V store, in order, the components of a
current configuration 〈A,R, V 〉. A derivation rule applies to a current configu-
ration C if all of the rule’s premises hold for C and the resulting configuration
is different from C. A rule’s conclusion describes how each component of C is
changed, if at all. In the rules, we write S, t as an abbreviation for S∪{t}. Rules
with two or more conclusions separated by the symbol ‖ are non-deterministic
branching rules.

The derivation rules rely on several computable functions and predicates,
described below and defined formally in Figures 5, 6, 7, 8, and 9, which apply
to u-free regular expressions.

– The family of functions (∂c)c∈A computes the partial derivative of the input
with respect to character c. Concretely, ∂c(r) is a regular expression whose
language is the set of all words w (including the empty one) such that cw ∈
L(r).

– The predicate ε holds exactly for those regular expressions whose language
contains the empty string ε.

– The function γ produces three outputs from a normalized regular expression
r with top symbol other than ∅ or t: a solved-form term q, an arithmetic
term u, and a set A of arithmetic constraints over the (integer) variables in
q and u. Intuitively, u and A together express constraints on the possible
lengths of the words in L(r).

– The function β returns a finite set of regular expression pairs. Each pair
(r1, r2) ∈ β(r) is such that L(r) = L(r1 · r2). Moreover, β(r) is exhaustive in
the sense that for every pair of words w1, w2 such that w1w2 ∈ L(r), there
is a pair (r1, r2) ∈ β(r) such that w1 ∈ L(r1) and w2 ∈ L(r2).

The definition of the partial derivative functions is due to Antimirov [2]; the
functions γ and β are novel. Given these auxiliary predicates and functions, the
calculus rules should be self-explanatory, with the possible exception of Assign-2.
This rule considers a membership constraint (x in r) where r is not a union and
(by construction) contains no occurrences of ∅ and u. If x occurs in no other
membership constraints in the R component of the configuration, the rule uses
γ to compute a solution form of (x in r) and stores it in the V component.

Derivation trees and derivations The rules in this calculus are used to
construct derivation trees. A derivation tree is a tree where each node is a con-
figuration and each non-root node is obtained from its parent node by applying

8

ε(r) iff (r = r1 · r2 and ε(r1) and ε(r2)) or r = ε or r = r∗1 or
(r = r1 t r2 and ε(r1)) or (r = r1 t r2 and ε(r2))

Fig. 5. Definition of predicate ε.

∂c∅ = ∅ ∂c(r1 t r2) = ∂c r1 t ∂c r2 ∂c(c · s) = s

∂c ε = ∅ ∂c(r1 · r2) = (∂c r1 · r2) t ∂c r2 if ε(r1)

∂c Ch = ε ∂c(r1 · r2) = ∂c r1 · r2 if not ε(r1)

∂c(r
∗) = (∂c r) · r∗ ∂c(d · s) = ∅ if c 6= d

Fig. 6. Definition of partial derivative function ∂c.

one of the derivation rules. We call the root of a derivation tree an initial con-
figuration. A branch of a derivation tree is saturated if no rules apply to its leaf,
it is closed if it ends with unsat. A derivation tree is closed if all of its branches
are closed.

A derivation tree derives from a derivation tree T if it is obtained from T
by the application of exactly one of the derivation rules to one of T ’s leaves. A
derivation is a sequence (Ti)i≥0 of derivation trees such that T0 is a one-node
tree whose root is an initial configuration and Ti+1 derives from Ti for all i ≥ 0.

Let S be a set of ΣLR-constraints. A refutation of set S is a derivation that
starts with a one-node tree with a configuration 〈A,R, ∅〉 where A ∪ R is TLR-
equisatisfiable with S, and ends with a closed tree.

Example 1. Consider the satisfiable initial configuration with A = ∅, V = ∅, and
R = {bc · x in ((aa t b)∗ · c)∗ t a · c∗} where x is a variable of sort String and
a, b, c are characters. A derivation in the calculus can start with an application
of the Union rule. In the branch bc · x in a · c∗, Consume-2 will apply and replace
the constraint with c · x in∅ which then will be closed by EmptyR. In the branch
bc · x in ((aa t b)∗ · c)∗, Consume-2 will be applied twice: once for b, resulting in
R = {c · x in (aa t b)∗ · c · ((aa t b)∗ · c)∗}; and once for c, resulting in R =
{x in ((aa t b)∗ · c)∗}. Now, by applying Assign-2 to the resulting configuration,
we will have the following saturated configuration:

A = {z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0, z1 ≈ 0⇒ z2 ≈ 0} R = ∅ V = {x in q2}
∪ {z2 ≈ z3 + z4, |x| ≈ 2 ∗ z3 + z4 + z1}

where q2 = sh(q1, c
z1 , r1), q1 = sh((aa)z3 , bz4 , r2), r1 = ((aatb)∗ ·c)z1 , r2 = (aat

b)z2 , and z1, . . . , z4 are fresh variables of sort Int. The set in A is satisfiable, for
instance with the variable assignment {z1 7→ 1, z2 7→ 2, z3 7→ 1, z4 7→ 1, |x| 7→ 4}.
Given this assignment one can evaluate—deterministically—the term q2 inside
out and obtain q2 = {aabc, baac} after evaluating q1 to {aab, baa}. At this point,
any element of q2 is a solution for x in the original problem. As we show later,
any other satisfying assignment for A will lead to a ground expression for q2 that
is guaranteed to generate a non-empty language of solutions for x. ut

9

β(∅) = ∅ β(c) = {(c, ε), (ε, c)} β(r1 t r2) = β(r1) ∪ β(r2)

β(ε) = {(ε, ε)} β(Ch) = {(Ch, ε), (ε,Ch)}
β(r∗) = β(ε) ∪ {(r∗ · r1, r2 · r∗) | (r1, r2) ∈ β(r)}

β(r1 · r2) = {(r11, r12 · r2) | (r11, r12) ∈ β(r1)} ∪ {(r1 · r21, r22) | (r21, r22) ∈ β(r2)}

Fig. 7. Definition of splitting function β.

π(r, r′) = π′(r, r′, ∅) π′(r, r′, C) = yr,r′ if yr,r′ ∈ C π′(r,∅, C) = ∅
π′(ε, r, C) = ε if ε(r) π′(ε, r, C) = ∅ if not ε(r) π′(∅, r, C) = ∅
π′(r, ε, C) = ε if ε(r) π′(r, ε, C) = ∅ if not ε(r) π′(r, r, C) = r

π′(r, r′, C) = r∗1 · r′1 if vr,r′ /∈ C and ε(r) and ε(r′) where

(r1, r
′
1) = ρvr,r′ (ε t

⊔
c∈A c · π

′(∂c r, ∂c r
′, C′)), C′ = C ∪ {vr,r′}

π(r, r′, C) = r∗1 · r′1 if vr,r′ /∈ C and not (ε(r) and ε(r′)) where

(r1, r
′
1) = ρvr,r′ (

⊔
c∈A c · π

′(∂c r, ∂c r
′, C′)), C′ = C ∪ {vr,r′}

ρy(∅) = (∅,∅) ρy(y) = (ε,∅) ρy(r) = (ε, r) if y /∈ V(r)

ρy(r) = (r1 · r21, r22) if y ∈ V(r), r = r1 · r2, and (r21, r22) = ρy(r2)

ρy(r) = (r11 t r21, r12 t r22) if y ∈ V(r), r = r1 t r2, and (ri1, ri2) = ρy(ri)

Fig. 8. Definition of intersection function π.

Example 2. Suppose we start with the unsatisfiable configuration with A =
{|x| ≈ 2 ∗ k + 1}, R = {x · x in r}, and V = ∅ where r = (aaaa)∗ and a is
a character. One possibility is to apply the Split rule. Since β(r) = {(ε, ε), (r ·
a, aaa · r), (r · a, aaa · r), (r · aa, aa · r), (r · aaa, a · r)}, four branches will be
created. In the first branch, R = {x inε}. The rule Assign-1 can be applied, adding
x in ε to V and |x| ≈ 0 to A. After that, the branch can be closed by A-Conflict.
In the second branch, R = {x in r · a, x in aaa · r} to which Inter can be applied,
replacing the constraints in R with x in∅. Then the branch can be closed by Emp-

tyS. Something, similar can be done on the fourth branch. In the third branch,
R can become {x in aa · r} by Inter. Then |x| ≈ 2 + 4 ∗ z and z ≥ 0 can be added
to A by Assign-2, with z a fresh integer variable. That branch can be closed by
A-Conflict, yielding a refutation of the input problem. ut

4 Calculus Correctness

We prove the correctness of the calculus in by showing that (i) it has no infi-
nite derivations; (ii) its rules preserve satisfiability in TLR; (iii) every saturated
branch in a derivation tree determines a model of TLR that satisfies the initial
configuration. Together with the termination of the auxiliary functions and pro-

10

γ(r) = γ′(r, ∅)
γ′(l, A) = (l, |l|↓ , A) γ′(Ch, A) = (Ch, 1, A)

γ′(r1 · r2, A) = (q1 · q2, u1 + u2, A1 ∪A2) where (qi, ui, Ai) = γ′(ri, A) for i = 1, 2

γ′(r∗, A) = (q, u,B ∪ {z1 ≥ 0}) where (q, u,B) = γ′(rz1 , A)

γ′(lz, A) = (lz, z × |l|↓ , A) γ′(Chz, A) = (Chz, z, A)

γ′((r1 t r2)z, A) = (sh(q1, q2, (r1 t r2)z), u1 + u2, B)

where B = A1 ∪A2 ∪ {z ≈ z1 + z2, z1 ≥ 0, z2 ≥ 0}
(qi, ui, Ai) = γ′(rzii , A) for i = 1, 2

γ′((r1 · r2)z, A) = (sh(q1, q2, (r1 · r2)z), u1 + u2, A1 ∪A2)

where (qi, ui, Ai) = γ′(rzi , A) for i = 1, 2

γ′((r∗)z, A) = γ′(q, u, B ∪ {z ≈ 0⇒ z1 ≈ 0, z1 ≥ 0}) where (q, u,B) = γ′(rz1 , A)

Fig. 9. Definition of function γ. The letters z1 and z2 denote fresh integer variables
variables variables variables variables.

cedures used by the calculus, this implies the decidability of the quantifier-free
satisfiability problem for TLR.7

4.1 Termination

Proving the termination of the auxiliary functions and predicates is a simple
exercise.

Proposition 1. The function π is well defined and computable over the set of
all regular expressions. The predicate ε and the functions ∂c, β and γ are well
defined and computable over the set of all u-free regular expressions.

By Proposition 1, every rule is effective. To prove the termination of the
calculus it suffices to define a well-founded ordering of configurations and show
that every rule application produces a smaller configuration along that ordering.

Proposition 2. Every derivation in the calculus is finite.

Proof (Sketch). One can show that every application of a derivation rule to a
leaf of a derivation tree produces smaller configurations with respect to a well-
founded relation � over configurations which implies that no derivation tree can
be grown indefinitely.

The relation � is defined as follows. To each configuration 〈A,R, V 〉 we asso-
ciate a tuple (V(R),ms(R), occ(R)) where ms(R) is the multiset {s | s in r ∈ R}
and occ(R) is the number of occurrences of t in R. Let �Str be the ordering over

7 For space constraints, the most of the proofs of these results are omitted. The inter-
ested reader is referred to the longer version of this paper [20] for the missing proofs.

11

string terms such that s �Str t iff s has a greater term size than t, with the conven-
tion that ε has size 0. Let �lex be the lexicographic extension of the following or-
derings to tuples like (V(R),ms(R), occ(R)) above: the set inclusion ordering; the
multiset ordering extending �Str; the > ordering over natural numbers. Finally,
define � where (i) 〈A1, R1, V1〉 � 〈A2, R2, V2〉 iff (V(R1),ms(R1), occ(R1)) �lex

(V(R2),ms(R2), occ(R2)) and (ii) 〈A,R, V 〉 � unsat. The well foundedness of �
follows by standard results (see e.g., [3]). ut

4.2 Correctness

To prove the correctness of the calculus we use the following properties of the
various auxiliary functions.

Lemma 1 (Correctness of Normalization). Every rule in Figure 3 preserves
term equivalence in TLR.

Lemma 2 (Correctness of π). For any regular expressions r1 and r2, π(r1, r2)
contains no occurrences of u. Moreover, L(π(r1, r2)) = L(r1 u r2).

Lemma 3. For all normalized regular expressions r and for all characters c ∈
A, the following hold:

1. ε(r) iff ε ∈ L(r);

2. L(∂c r) = {w | cw ∈ L(r)};
3. for all (r1, r2) ∈ β(r), L(r1 · r2) = L(r);

4. for all w1w2 ∈ L(r), there is a (r1, r2) ∈ β(r) s.t. w1 ∈ L(r1) and w2 ∈ L(r2).

Lemma 4. Let x be a string variable, let r be a normalized regular expres-
sion with top(r) /∈ {∅,t}, let A be a set of arithmetic constraints, and let
(rγ , uγ , Aγ) = γ(r).

1. The constraint set S := {x in r} ∪ A is satisfied by a model I of TLR iff the
set Sγ := {x in rγ , |x| ≈ uγ} ∪A∪Aγ is satisfied by a model Iγ of TLR where
I and Iγ agree on the variables of S.

2. All models I of TLR satisfying Aγ are such that for all w ∈ rIγ , the length of

w equals uIγ .

We say that a configuration 〈A,R, V 〉 is satisfied by an interpretation I if
the set A ∪ R ∪ V is satisfied by I. We consider unsat to be satisfied by no
interpretation.

Lemma 5. For every rule of the calculus, the premise configuration is satisfied
by a model Ip of TLR iff one of its conclusion configurations is satisfied by a model
Ic of TLR where Ip and Ic agree on the variables shared by the two configurations.

Using the previous lemma in the left-to-right direction together with a struc-
tural induction argument on derivation trees, one can readily show that the
root of every closed derivation tree is unsatisfiable. From this, the refutation
soundness of the calculus easily follows.

12

Proposition 3 (Refutation Soundness). Every set of TLR-constraints that
has a refutation is TLR-unsatisfiable.

Thanks to earlier lemmas and the one below one can also prove that the
calculus is solution sound.

Lemma 6. If 〈A,R, V 〉 is a saturated leaf of a derivation tree with root 〈A0, R0, ∅〉
then for every (string) variable x in R0 there is a constraint of the form (x in q)
in V .

Proposition 4 (Solution Soundness). For every saturated leaf 〈A,R, V 〉 of
a derivation tree with root 〈A0, R0, ∅〉 there is a model I of TLR that satisfies
A0 ∪R0 and is such that xI ∈ qI for all (x in q) ∈ V .

Proof. Let K := 〈A,R, V 〉 be as above. It is not difficult to show based the
derivation rules that V(A0 ∪R0) ⊆ V(A ∪R ∪ V) and A0 ⊆ A. Moreover, every
integer variable of V is in A, by definition of γ, and each string variable of R
occurs in V exactly once.

The set R contains at most constraints of the form (ε in r) with ε ∈ L(r);
otherwise, one of the derivation rules would apply to K, against the assumption
that it is saturated. This makes R trivially satisfiable. The set A is satisfiable
as well, otherwise A-Conflict would apply. Let J be a model of TLR satisfying A
and let (x in q) be any element of V . We claim that the set qJ is nonempty and
contains only words of length |x|J . In fact, if (x inq) was added to V by Assign-1,
then q is a literal l and |x| ≈ |l|↓∈ A. If (x in q) was added to V by Assign-2, then
γ(r) = (q, uγ , Aγ) for some r, where Aγ ⊆ A and |x| ≈ uγ ∈ A. Since J satisfies
Aγ , by Lemma 4(2), all words in qJ , if any, are of length uJγ which is the same

as |x|J . To argue that qJ is non-empty, by Lemma 4(2), it is enough to argue
that L(r) is nonempty. This can be seen by observing that, by definition of the
the rewrite rules in Figure 3, and by Lemma 1 and Lemma 2, r is guaranteed
to contain no occurrences of ∅ or u, and containing such symbols is a necessary
condition for a regular expression to have an empty language. The statement of
the lemma follows by the generality of (x in q). ut

Proposition 5 (Refutation Completeness). Every set of TLR-constraints
unsatisfiable in TLR has a refutation.

Proof. Contrapositively, suppose that the set of TLR-constraints does not have a
refutation. Then, by Proposition 2, it must have a derivation that generates a
tree with a saturated branch. By Proposition 4 the set is satisfiable in TLR. ut

4.3 Decidability

Proposition 6 (Decidability). The TLR-satisfiability of quantifier-free ΣLR-
formulas with no regular expression variables is decidable.

13

Proof. By standard methods, the TLR-satisfiability of quantifier-freeΣLR-formulas
with no variables of sort Lan can be effectively reduced to the TLR-satisfiability
of TLR-constraints. The existence of a terminating procedure to check such con-
straints is a consequence of Proposition 1 and Proposition 2. The correctness of
the procedure is a consequence of Propositions 3 and 5. ut

5 Conclusion and Further Work

We have presented an algebraic approach for solving regular membership con-
straints and linear length constraints in the theory of strings. This approach
works directly on regular expressions without the need to translate them to au-
tomata. Moreover, it does not require imposing any a priori length bounds on
string variables. We have proved that our approach is sound, complete and ter-
minating, thus it is a decision procedure for this fragment. In addition, when the
constraints are satisfiable, our approach provides a model—in fact a generator
of a set of models. Therefore, it has all the properties required for integration
into an SMT solver.

In ongoing work, we are investigating a possible extension of our procedure
to word equations over unbounded strings. Although the satisfiability of sets of
word equations is also decidable, the decidability of the combined language is still
an open problem. We hope to find a fragment that is sufficiently expressive for
real-world problems, while also being decidable, or at least effective for solving
problems in practice.

Additionally, we have identified two bottlenecks in the calculus presented
here: the computation of the intersection and the complement operations over
regular expressions. Therefore, we plan to focus on developing approaches for
computing these operations that are efficient in practice. We are also working
on an extension to symbolic regular expressions, specifically, regular expressions
that contain string variables.

References

[1] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Holik, A. Rezine, P. Rummer, and
J. Stenman. String constraints for verification. In A. Biere and R. Bloem, editors,
Proceedings of the 26th International Conference on Computer Aided Verification,
volume 8559 of Lecture Notes in Computer Science. Springer, 2014.

[2] V. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, Mar. 1996.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[4] B. Badban and M. T. Dashti. Semi-linear parikh images of regular expressions via
reduction. In Proceedings of the 35th International Conference on Mathematical
Foundations of Computer Science, MFCS’10, pages 653–664, Berlin, Heidelberg,
2010. Springer-Verlag.

[5] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories.
In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, volume 185, chapter 26, pages 825–885. IOS Press, February 2009.

14

[6] G. Berry and R. Sethi. From regular expressions to deterministic automata.
Theor. Comput. Sci., 48(1):117–126, Dec. 1986.

[7] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems: Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009,, pages 307–321. Springer-Verlag, 2009.

[8] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string
expressions. In Proceedings of the 10th International Conference on Static Anal-
ysis, SAS’03, pages 1–18, Berlin, Heidelberg, 2003. Springer-Verlag.

[9] X. Fu and C. chih Li. A string constraint solver for detecting web application
vulnerability. In Proceedings of the 22nd International Conference on Software
Engineering and Knowledge Engineering, SEKE’2010. Knowledge Systems Insti-
tute Graduate School, 2010.

[10] I. Ghosh, N. Shafiei, G. Li, and W.-F. Chiang. JST: An automatic test generation
tool for industrial Java applications with strings. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 992–1001,
Piscataway, NJ, USA, 2013. IEEE Press.

[11] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Proceedings
of the First International Workshop on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’95, pages 89–110, London, UK, UK, 1995.
Springer-Verlag.

[12] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for string
analysis. In Proceedings of the 12th international conference on Verification, model
checking, and abstract interpretation, pages 248–262. Springer-Verlag, 2011.

[13] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints over
regular languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages 188–198. ACM, 2009.

[14] P. Hooimeijer and W. Weimer. Solving string constraints lazily. In Proceedings
of the IEEE/ACM international conference on Automated software engineering,
pages 377–386. ACM, 2010.

[15] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: a solver
for string constraints. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 105–116. ACM, 2009.

[16] N. Klarlund, A. Møller, and M. I. Schwartzbach. Mona implementation secrets.
In Revised Papers from the 5th International Conference on Implementation and
Application of Automata, CIAA ’00, pages 182–194, London, UK, UK, 2001.
Springer-Verlag.

[17] D. Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266.
IEEE Computer Society, 1977.

[18] G. Li and I. Ghosh. Pass: String solving with parameterized array and interval
automaton. In V. Bertacco and A. Legay, editors, Hardware and Software: Ver-
ification and Testing, volume 8244 of Lecture Notes in Computer Science, pages
15–31. Springer International Publishing, 2013.

[19] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory
solver for a theory of strings and regular expressions. In A. Biere and R. Bloem,
editors, Proceedings of the 26th International Conference on Computer Aided Ver-
ification, volume 8559 of Lecture Notes in Computer Science. Springer, 2014.

15

[20] T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, and C. Barrett. A decision
procedure for regular membership and length constraints over unbounded strings.
Technical report, Department of Computer Science, The University of Iowa, 2015.
(Available at http://www.cs.uiowa.edu/~tinelli/papers.html).

[21] K. Z. M. Lu. XHaskell - Adding Regular Expression Type to Haskell. PhD thesis,
National University of Singapore, 2009.

[22] G. S. Makanin. The problem of solvability of equations in a free semigroup.
English transl. in Math USSR Sbornik, 32:147–236, 1977.

[23] Y. Matiyasevich. Hilbert’s tenth problem and paradigms of computation. In
Proceedings of the First International Conference on Computability in Europe:
New Computational Paradigms, CiE’05, pages 310–321. Springer-Verlag, Berlin,
Heidelberg, 2005.

[24] R. J. Parikh. On context-free languages. J. ACM, 13(4):570–581, Oct. 1966.
[25] W. Plandowski. Satisfiability of word equations with constants is in pspace. J.

ACM, 51(3):483–496, May 2004.
[26] G. Rosu and M. Viswanathan. Testing extended regular language membership

incrementally by rewriting. In R. Nieuwenhuis, editor, Rewriting Techniques and
Applications, volume 2706 of Lecture Notes in Computer Science, pages 499–514.
Springer Berlin Heidelberg, 2003.

[27] K. Schulz, editor. Word Equations and Related Topics. Springer-Verlag New York,
Inc., New York, NY, USA, 1990.

[28] T. Tateishi, M. Pistoia, and O. Tripp. Path- and index-sensitive string analy-
sis based on monadic second-order logic. ACM Trans. Softw. Eng. Methodol.,
22(4):33:1–33:33, Oct. 2013.

[29] N. Tillmann and J. Halleux. Pex - white box test generation for .net. In B. Beck-
ert and R. Hähnle, editors, Tests and Proofs, volume 4966 of Lecture Notes in
Computer Science, pages 134–153. Springer Berlin Heidelberg, 2008.

[30] M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic string solver for vulnera-
bility detection in web applications. In M. Yung and N. Li, editors, Proceedings
of the 21st ACM Conference on Computer and Communications Security, 2014.

[31] M. Veanes. Applications of symbolic finite automata. In Proceedings of the
18th International Conference on Implementation and Application of Automata,
CIAA’13, pages 16–23, Berlin, Heidelberg, 2013. Springer-Verlag.

[32] M. Veanes, N. Bjørner, and L. De Moura. Symbolic automata constraint solving.
In Proceedings of the 17th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, pages 640–654, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[33] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis
tool for php. In J. Esparza and R. Majumdar, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 6015 of Lecture Notes in
Computer Science, pages 154–157. Springer Berlin Heidelberg, 2010.

[34] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver for web
application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 114–124, New York, NY, USA,
2013. ACM.

16

http://www.cs.uiowa.edu/~tinelli/papers.html

	 A Decision Procedure for Regular Membership and Length Constraints over Unbounded Strings

