
Lemma Learning in the Model Evolution Calculus

Peter Baumgartner1, Alexander Fuchs2, and Cesare Tinelli2

1 National ICT Australia (NICTA), Peter.Baumgartner@nicta.com.au
2 The University of Iowa, USA {fuchs,tinelli}@cs.uiowa.edu

Abstract. The Model Evolution (ME) Calculus is a proper lifting to first-order
logic of the DPLL procedure, a backtracking search procedure for propositional
satisfiability. Like DPLL, the ME calculus is based on the idea of incrementally
building a model of the input formula by alternating constraint propagation steps
with non-deterministic decision steps. One of the major conceptual improvements
over basic DPLL is lemma learning, a mechanism for generating new formulae
that prevent later in the search combinations of decision steps guaranteed to lead
to failure. We introduce two lemma generation methods for ME proof proce-
dures, with various degrees of power, effectiveness in reducing search, and com-
putational overhead. Even if formally correct, each of these methods presents
complications that do not exist at the propositional level but need to be addressed
for learning to be effective in practice for ME. We discuss some of these issues
and present initial experimental results on the performance of an implementation
of the two learning procedures within our ME prover Darwin.

1 Introduction

The Model Evolution (ME) Calculus [5] is a proper lifting to first-order logic of the
DPLL procedure, a backtracking search procedure for propositional satisfiability. Like
DPLL, the calculus is based on the idea of incrementally building a model of the in-
put formula by alternating constraint propagation steps with non-deterministic decision
steps. Two of the major conceptual improvements over basic DPLL developed over the
years are backjumping, a form of intelligent backtracking of wrong decision steps, and
lemma learning, a mechanism for generating new formulae that prevent later in the
search combinations of decision steps guaranteed to lead to failure.

Adapting backjumping techniques from the DPLL world to ME implementations
is relatively straightforward and does lead to performance improvements, as our past
experience with Darwin, our ME-based theorem prover, has shown [2]. In contrast,
adding learning capabilities is not immediate, first because one needs to lift properly
to the first-order level both the notion of lemma and the lemma generation process
itself, and second because any first-order lemma generation process adds a significant
computation overhead that can offset the potential advantages of learning.

In this paper, we introduce two lemma learning procedures for ME with different
degrees of power, effectiveness in reducing search, and computational overhead. Even
if formally correct, each of these procedures presents issues and complications that do
not arise at the propositional level and need to be addressed for learning to be effective
for ME. We mention some of these issues and then present initial experimental results
on the performance of an implementation of the learning procedures within Darwin.

572

The ME calculus is a sequent-style calculus consisting of three basic derivation
rules: Split, Assert and Close, and three more optional rules. To simplify the exposi-
tion we will consider here a restriction of the calculus to only the non-optional rules.
The learning methods presented in this paper extend with minor modifications to ME

derivations that use the optional rules as well. The derivation rules are presented in [5]
and in more detail in [6]. We do not present them directly here because in this paper
we focus on proof procedures for ME, which are better described in terms of abstract
transition systems (see Section 2). It suffices to say that Split, with two possible con-
clusions instead of one, is the only non-deterministic rule of the calculus, and that the
calculus is proof-confluent, i.e., the rules may be applied in any order, subject to fair-
ness conditions, without endangering completeness. Derivations in ME are defined as
sequences of derivation trees, trees whose nodes are pairs of the form Λ ` Φ where Λ is
a literal set and Φ a clause set. A derivation for a clause set Φ0 starts with a single-node
derivation tree containing the clause set Φ0 and grows the tree by applying one of the
rules to one of the leaves, adding to that leaf the rule’s conclusions as children.

A proof procedure for ME in effect grows the initial derivation tree in a depth-
first manner, backtracking on closed branches, i.e., failed branches whose leaf results
from an application of Close.3 The procedure determines that the initial clause set Φ0
is unsatisfiable after it has determined that all possible branches are closed. Conversely,
it finds a model of Φ0 if it reaches a node that does not contain the empty clause and to
which no derivation rule applies.

Like in all backtracking procedures, performance of a proof procedure for ME can
be improved in principle by analyzing the sequence of non-deterministic choices (i.e,
Split decisions) that have led to a conflict, a closed branch. The analysis determines
which of the choices were really relevant to the conflict and saves this information so
that the same choices, or similar choices that can also lead to a conflict, are avoided later
in the search. In the next section, we present two methods for implementing this sort of
learning process. The methods follow the footprints of popular learning methods from
the DPLL literature: conflict analysis is performed by means of a guided resolution
derivation that synthesizes a new clause, a lemma, containing the reasons for the con-
flict; then learning is achieved simply by adding the lemma to the clause set and using
it like any other clause in constraint propagation steps during the rest of the deriva-
tion. These methods can be given a logical justification by seeing them just as another
derivation rule that adds to the clause set selected logical consequences of the set. In our
experiments we also tried, as a sanity check, a third and much simpler learning method
based on purely propositional techniques. While this method has low overhead it is also
a lot less general than the other two and did not fare well experimentally. Because of
this we do not discuss it here and instead refer the reader to [3] for more details.

Related work. To our knowledge there is little work in the literature on conflict-driven
lemma learning in first-order theorem proving. One of them is described in [1] and con-
sists of the “caching” and “lemmaizing” techniques for the model elimination calculus.
Caching means to store solutions to subgoals (which are single literals) in the proof
search. The idea is to look up a solution (a substitution) that solves the current subgoal,

3 More precisely, the proof procedure performs a sort of iterative-deepening search, to avoid
getting stuck in infinite branches.

573

based on the solution of a previously computed solution of a compatible subgoal. This
idea of replacing search by lookup is thus conceptually related to lemma learning as we
consider it here. However, as far as we can tell from [1] (and other publications), the
use of lemmas there seems having been restricted to unit lemmas, perhaps for pragmatic
reasons, although the mechanism has been defined more generally (already in [12]). A
more general caching mechanism for unit clauses has been described in [11].

A recent paper [8] describes the Geometric Resolution calculus, which includes a
lemma learning mechanism that is closely related to our lifted method (cf. Section 2.2).
A major difference is that lemmas learned there are used only to close branches, but
not to derive new information such as implied unit clauses. Unfortunately, [8] does not
contain an experimental analysis describing the impact of their learning technique.

Further related work comes from Explanation-Based Learning (EBL), which allows
the learning of logical descriptions of a concept from the description of a single concept
instance and a preexisting knowledge base. A comprehensive and powerful EBL frame-
work based on the language of definite logic programs and SLD-resolution is presented
in [15]. As depicted there, EBL is essentially the process of deriving from a given SLD
proof a (definite) clause representing parts of the proof or even generalizations thereof.
The goal is to derive clauses that are of high utility, that is, that help find shorter proofs
of similar theorems without broadening the search space too much. The learning proce-
dures we present here follows a similar process. Structurally, they are SLD-derivations
producing lemma clauses, and have a role comparable to the derivations of [15].

2 An Abstract Proof Procedure ME

Being a calculus, ME abstracts away many control aspects of a proof search. As a con-
sequence, one cannot formalize in it stateful operational improvements such as learning.
Following an approach first introduced in [14] for the DPLL procedure, one can how-
ever formalize general classes of proof procedures for ME in a way that makes it easy
to model and analyze operational features like backtracking and learning.

An ME proof procedure can be described abstractly as a transition system over
states of the form ⊥, a distinguished fail state, or the form Λ ` Φ where Φ is a clause
set and Λ is an (ordered) context, that is, a sequence of annotated literals, literals with
an annotation that marks each of them as a decision or a propagated literal. We model
generic ME proof procedures by means of a set of states of the kind above together with
a binary transition relation over these states defined by means of conditional transition
rules. For a given state S, a transition rule precisely defines whether there is a transition
from S by this rule and, if so, to which state S′. A proof procedure is then a transition
system, a set of transition rules defined over some given set of states. In the following,
we first introduce a basic transition system for ME and then extend it with learning
capabilities.

Formal Preliminaries. If =⇒ is a transition relation between states we write, as usual,
S =⇒ S′ instead of (S,S′) ∈ =⇒. We denote by =⇒∗ the reflexive-transitivclosure of
=⇒. Given a transition system R, we denote by =⇒R the transition relation defined
by R. We call any sequence of transitions of the form S0 =⇒R S1, S1 =⇒R S2, . . . a
derivation in R, and denote it by S0 =⇒R S1 =⇒R S2 =⇒ . . .

574

The concatenation of two ordered contexts will be denoted by simple juxtaposition.
When we want to stress that a context literal L is annotated as a decision literal we will
write it as Ld. With an ordered context of the form Λ0 L1 Λ1 · · ·Ln Λn where L1, . . .Ln are
all the decision literals of the context, we say that the literals in Λ0 are at decision level
0, and those in Li Λi are at decision level i, for all i = 1, . . . ,n.

The ME calculus uses two disjoint, infinite sets of variables: a set X of universal
variables, which we will refer to just as variables, and another set V , which we will
always refer to as parameters. We will use u and v to denote elements of V and x,y and
z to denote elements of X . If t is a term we denote by V ar(t) the set of t’s variables
and by P ar(t) the set of t’s parameters. A term t is ground iff V ar(t) = P ar(t) = /0.
A substitution ρ is a renaming on W ⊆ (V ∪ X) iff its restriction to W is a bijection of
W onto itself. A substitution σ is p-preserving (short for parameter preserving) if it is
a renaming on V . If s and t are two terms, we say that s is a p-variant of t iff there is
a p-preserving renaming ρ such that sρ = t. We write s ≥ t iff there is a p-preserving
substitution σ such that sσ = t. We write tsko to denote the term obtained from t by
replacing each variable in t by a fresh Skolem constant. All of the above is extended
from terms to literals in the obvious way.

Every (ordered) context the proof procedure works with starts with a pseudo-literal
of the form ¬v (which, intuitively, stands for all negative ground literals). Where L is
a literal and Λ a context, we will write L ∈' Λ if L is a p-variant of a literal in Λ. A
literal L is contradictory with a context Λ iff Lσ = Kσ for some K ∈' Λ and some
p-preserving substitution σ. (We write K to denote the complement of the literal K.) A
context Λ is contradictory if one of its literals is contradictory with Λ.

Each non-contradictory context containing ¬v determines a Herbrand interpretation
IΛ over the input signature extended by a countable set of Skolem constants. We refer
the reader to [5, 6] for the formal definition of IΛ. Here it should suffice to say that
the difference between (universal) variables and parameters in ME lies mainly in the
definition of this Herbrand interpretation. Roughly, a literal with a parameter, like A(u),
in a context assigns true to all of its ground instances that are not also an instance of
a more specific literal, like ¬A(f (u)), with opposite sign. In contrast, a literal with a
variable, like A(x), assigns true to all of its ground instances, with no exceptions.

In a state of the form Λ ` Φ, the interpretation IΛ is a candidate model for Φ.
The purpose of the proof procedure is to recognize whether the candidate model is in
fact a model of Φ or whether it possibly falsifies a clause of Φ. The latter situation is
detectable syntactically through the computation of context unifiers.

Definition 1 (Context Unifier). Let Λ be a context and C = L1∨·· ·∨Lm∨Lm+1∨·· ·∨
Ln a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier of C
against Λ with remainder Lm+1σ∨·· ·∨Lnσ iff there are fresh p-variants K1, . . . ,Kn ∈'
Λ such that (i) σ is a most general simultaneous unifier of {K1,L1}, . . . ,{Kn,Ln}, (ii)
for all i = 1, . . . ,m, (P ar(Ki))σ ⊆ V , (iii) for all i = m + 1, . . . ,n, (P ar(Ki))σ 6⊆ V . A
context unifier σ of C against Λ with remainder Lm+1σ∨ ·· · ∨ Lnσ is admissible (for
Split) iff for all distinct i, j = m+1, . . . ,n, V ar(Liσ) ∩ V ar(L jσ) = /0.

If σ is a context unifier with remainder D of a clause C against a context Λ, we call
each literal of D a remainder literal of σ. We say that C is conflicting (in Λ because of
σ) if σ has an empty remainder.

575

For space constraints we must refer the reader again to [5, 6] for the rationale behind
context unifiers and how parameters arise in ME derivations. Intuitively, the existence
of a context unifier σ for a clause C indicates that Cσ is possibly falsified by the current
IΛ. If σ has a remainder literal Lσ, adding Lσ to the context makes progress towards
making IΛ eventually satisfy Cσ. If σ has no remainder literals, the problem is not
repairable and backtracking is instead needed.

2.1 A Basic Proof Procedure for ME

A basic proof procedure for ME is the transition system B defined by the rules De-
cide, Propagate, Backjump and Fail below. Since the transition system B is at a lower
level of abstraction, its rules do not correspond one-to-one to the derivation rules of
ME. Roughly speaking, Decide implements Split, Propagate implements Assert, while
Backjump and Fail implement Close. The relevant derivations in this system are those
that start with a state of the form {¬v} ` Φ, where Φ is the clause set whose unsatisfi-
ability one is interested in.

Decide: Λ ` Φ, C∨L =⇒ Λ (Lσ)d ` Φ, C∨L if (∗)

where (∗) =

σ is an admissible context unifier of C∨L against Λ (cf. Def. 1)
with at least two remainder literals,
Lσ is a remainder literal, and

neither Lσ nor (Lσ)sko is contradictory with Λ

We call the literal Lσ above a decision literal of the context unifier σ and the clause C∨
L. Decide makes the non-deterministic decision of adding the literal Lσ to the context.
It is the only rule that adds a literal as a decision literal.

Propagate: Λ ` Φ, C∨L =⇒ Λ, Lσ ` Φ, C∨L if (∗)

where (∗) =

σ is an admissible context unifier of C∨L against Λ

with a single remainder literal Lσ,
Lσ is not contradictory with Λ, and
there is no K ∈ Λ such that K ≥ Lσ

We call the literal Lσ in the rule above the propagated literal of the context unifier σ

and the clause C∨L.

Backjump: Λ LdΛ′ ` Φ, C =⇒ Λ Lsko ` Φ, C if

{
C is conflicting in
Λ Ld but not in Λ

Backjump models both chronological and non-chronological backtracking by allow-
ing, but not requiring, that the undone decision literal L be the most recent one. Note
that L’s complement is added as a propagated literal, after all (and only) the variables
of L have been Skolemized, which is needed for soundness. More general versions of
Backjump are conceivable, for instance along the lines of the backjump rule of Abstract
DPLL [14]. Again, we present this one here mostly for simplicity.

576

Fail: Λ ` Φ, C =⇒ ⊥ if

{
C is conflicting in Λ,
Λ contains no decision literals

Fail ends a derivation once all possible decisions have generated a conflict.

Restart: Λ ` Φ =⇒ {¬v} ` Φ

Restart is used to generate fair derivations that explore the search space in an iterative-
deepening fashion.

Although it is beyond the scope of this paper, one can show that there are (determin-
istic) rule application strategies for this transition system that are refutationally sound
and complete, that is, that reduce a state of the form {¬v} ` Φ to the state ⊥ if and
only if Φ is unsatisfiable.

2.2 Adding Learning to ME Proof Procedures

To illustrate the potential usefulness of learning techniques for a transition system like
the system B defined in the previous subsection, it is useful to look first at an example
of a derivation in B.

Example 1. Let Φ be a clause set containing, among others, the clauses:

(1) ¬B(x)∨C(x,y) (2) ¬A(x)∨¬C(y,x)∨D(y) (3) ¬C(x,y)∨E(x) (4) ¬D(x)∨¬E(x).

The table below provides a trace of a possible derivation of Φ. The first column shows
the literal added to the context by the current derivation step, the second column speci-
fies the rule used in that step, and the third indicates which instance of a clause in Φ was
used by the rule. A row with ellipses stands for zero or more intermediate steps. Note
that Backjump replaces the whole subsequence B(u)dC(u,y)D(u)E(u) of the current
context with ¬B(u).

Context Literal Derivation Rule Clause Instance
.

A(t(x)) Propagate instance A(t(x))∨·· · of some clause in Φ

where t(x) is a term with a single variable x.
.

B(u)d Decide instance B(u)∨·· · of some clause in Φ

C(u,y) Propagate instance ¬B(u)∨C(u,y) of (1)
D(u) Propagate instance ¬A(t(x))∨¬C(u, t(x))∨D(u) of (2)
E(u) Propagate instance ¬C(u,y)∨E(u) of (3)
¬B(u) Backjump instance ¬D(u)∨¬E(u) of (4)

It is clear by inspection of the trace that any intermediate decisions made between
the additions of A(t(x)) and B(u) are irrelevant in making clause (4) conflicting at
the point of the Backjump application. The fact that (4) is conflicting depends only
on the decisions that lead to the propagation of A(t(x))—say, some decision literals
S1, . . . ,Sn with n≥ 0—and the decision to add B(u). This means that the decision literals

577

S1, . . . ,Sn,B(u) will eventually produce a conflict (i.e., make some clause conflicting) in
any context that contains them. The basic goal of this work is to define efficient conflict
analysis procedures that can come to this conclusion automatically and store it into the
system in such a way that Backjump is applicable, possibly with few propagation steps,
whenever the current context happens to contain again the literals S1, . . . ,Sn,B(u). Even
better would be the possibility to avoid altogether the addition of B(u) as a decision
literal in any context containing S1, . . . ,Sn, and instead add the literal ¬B(u) as a prop-
agated literal. We discuss how to do these in the rest of the paper. ut

Within the abstract framework of Section 2.1, and in perfect analogy to the Abstract
DPPL framework of Nieuwenhuis et al. [14], learning can be modeled very simply and
generally by the addition of the following two rules to the transition system B:

Learn: Λ ` Φ =⇒ Λ ` Φ, C if Φ |= C

Forget: Λ ` Φ, C =⇒ Λ ` Φ if Φ |= C

Note that adding entailed clauses to the clause set is superfluous for completeness.
The Learn rule then is meant to be used only to add clauses that are more likely to cause
further propagations and correspondingly reduce the number of needed decisions. The
intended use of the Forget rule is to control the growth of the clause set, by removing
entailed clauses that cause little propagation.

Because of the potentially high overhead involved in generating lemmas and prop-
agating them in practice, we focus in this work on only the kind of conflict-driven
learning that has proven to be very effective in DPLL-based solvers. In the following
we discuss two methods for doing that. Both of them are directly based on a lemma gen-
eration technique common in DPLL implementations. This technique can be described
proof-theoretically as a linear resolution derivation whose initial central clause is a con-
flicting clause in the DPLL computation, and whose side clauses are clauses used in
unit propagation steps. In terms of the abstract framework above, the linear resolution
derivation proceeds as follows. The central clause C∨L is resolved with a clause L∨D
in the clause set only if L was added to the current context by a Propagate step with
clause L∨D. Since the net effect of each resolution step is to replace L in C∨L by L’s
“causes” D, we can also see this resolution derivation as a regression process.

Both of the methods we present below lift this regression to the first-order case,
although with different degrees of generality. The first method produces lemmas that
are strictly subsumed by the lemmas produced by the second method. We present it
here because it is practically interesting in its own right, and because it can be used to
greatly simplify the presentation of the second method.

The Grounded Method. Let D = ({¬v} ` Φ0 =⇒L . . . =⇒L Λ ` Φ) be a derivation
in the transition system L where Λ contains at least one decision literal and Φ contains
a clause C0 conflicting in Λ. We describe a process for generating from D a lemma, a
clause logically entailed by Φ, which can be learned in the derivation by an application
of Learn to the state Λ ` Φ.

We describe the lemma generation process itself as a transition system, this time
applied to annotated clauses, pairs of the form C | S where C is a clause and S is finite
mapping {L 7→ M, . . .} from literals in C to context literals of D. A transition invariant

578

for C | S will be that C consists of negated ground instances of context literals, while S
specifies for each literal L of C the context literal M of which L is an instance, provided
that M is a propagated literal. The mapping L 7→M will be used to regress L, that is, to
resolve it with M in the clause used in D to add M to the context.

The initial annotated clause A0 will be built from the conflicting clause of D and
will be regressed by applying to it the GRegress rule, defined below, one or more times.
In the definition of A0 and of GRegress we use the following notational conventions:
if σ is a substitution and C a clause or a literal, Cσ denotes the expression obtained by
replacing each variable or parameter of Cσ by a fresh Skolem constant (one per variable
or parameter); if σ is a context unifier of a clause L1∨·· ·∨Ln against some context, we
denote by Lσ

i the context literal paired with Li by σ.
Assume that C0 is conflicting in Λ because of some context unifier σ0. Then A0 is

defined as the annotated lemma

A0 = C0σ0 | {Lσ0 7→ Lσ0 | L ∈C0 and Lσ0 is a propagated literal}

consisting of a fresh grounding of C0σ0 by Skolem constants (hence the name “ground-
ed method”) and a mapping of each literal of C0σ0 to its pairable literal in Λ if that
literal is a propagated literal. The regression rule is

GRegress: D∨M | S, M 7→ Lσ =⇒gr D∨Cσµ | S,T if (∗)

where (∗) =

Lσ is the propagated literal of some context unifier σ and clause L∨C,

µ is a most general unifier of M and Lσ,

T = {Nσµ 7→ Nσ | N ∈C and Nσ is a propagated literal}

Note that the mapping is used by GRegress to guide the regression so that no search
is needed. The regression process simply repeatedly applies the rule GRegress an ar-
bitrary number of times starting from A0 and returns the last clause. While this clause
is ground by construction, it can be generalized to a non-ground clause C by replacing
each of its Skolem constants by a distinct variable. As stated in the next result, this
generalized clause is a logical consequence of the current clause set Φ in the derivation,
and so can be learned with an application of the Learn rule.4

Proposition 1. If A0 =⇒∗
gr C′ | S, the clause C obtained from C′ by replacing each

constant of C′ not in Φ by a fresh variable is a consequence of Φ0.

An important invariant in practice is that one can continue regressing the initial clause
until it contains only decision literals. This result, expressed in the next proposition,
gives one great latitude in terms of how far to push the regression. In our implemen-
tation, to reduce the regression overhead, and following a common practice in DPLL
solvers, we regress only propagated literals belonging to the last decision level of Λ.

Proposition 2. If A0 =⇒∗
gr A and A has the form D∨M | S,M 7→ N, then the GRegress

rule applies to A.

Example 2. Figure 1 shows a possible regression of the conflicting clause ¬D(x)∨
¬E(x) in the derivation of Example 1. This clause is conflicting because of the con-

4 We refer the reader to a longer version of this paper [3] for all the proofs of the results below.

579

¬D(a)∨¬E(a) ¬C(u,y)∨E(u)

¬D(a)∨¬C(a,b) ¬A(t(x))∨¬C(u, t(x))∨D(u)

¬C(a,b)∨¬A(t(c))∨¬C(a, t(c)) ¬B(u)∨C(u,y)

¬A(t(c))∨¬C(a, t(c))∨¬B(a) ¬B(u)∨C(u,y)

¬A(t(c))∨¬B(a)

Fig. 1. Grounded regression of ¬D(u)∨¬E(u).

text unifier σ0 = {x 7→ u}, pairing the clause literals ¬D(x) and ¬E(x) respectively
with the context literals D(u) and E(u). So we start with the initial annotated clause:
A0 = (¬D(x) ∨ ¬E(x))σ0 | {(¬D(x))σ0 7→ (¬D(x))σ0 , (¬E(x))σ0 7→ (¬E(x))σ0} =
¬D(a)∨¬E(a) | {¬D(a) 7→ D(u), ¬E(a) 7→ E(u)}. To ease the notation burden, we
represent the regression in the more readable form of a linear resolution tree, where
at each step the central clause is the regressed clause, the literal in bold font is the re-
gressed literal, and the side clause is the clause (L∨C)σ identified in the precondition
of GRegress. The introduced Skolem constants are a,b and c. Stopping the regression
with the resolvent¬A(t(c))∨¬B(a) gives, after replacing the Skolem constants by fresh
variables, the lemma ¬A(t(zc))∨¬B(za). (Similarly for the previous resolvents.) ut

To judge the effectiveness of lemmas learned with this process in reducing the ex-
plored search space we also need to argue that they let the system later recognize more
quickly, or possibly avoid altogether, the set of decisions responsible for the conflict in
D. This is not obvious within the ME calculus because of the role played by parameters
in the definition of a conflicting clause. (Recall that a clause is conflicting because of
some context unifier σ iff it moves parameters only to parameters in the context literals
associated with the clause.) To show that lemmas can have the intended consequences,
we start by observing that, by construction, every literal Li in a lemma C = L1∨·· ·∨Lm
generated with the process above is a negated instance of some context literal Ki in Λ.
Let us write CΛ to denote the set {K1, . . . ,Km}.

Proposition 3. Any lemma C produced from D by the regression method in this section
is conflicting in any context that contains CΛ.

Proposition 3 implies, as we wanted, that having had the lemma C in the clause set
from the beginning could have led to the discovery of a conflict sooner, that is, with
less propagation work and possibly also less decisions than in D. Moreover, the more
regressed the lemma, the sooner the conflict would have been discovered. For instance,
looking back at the lemmas generated in Example 2, it is easy to see that the lemma
¬C(za,zb)∨¬A(t(zc))∨¬C(za, t(zc)) becomes conflicting in the derivation of Exam-
ple 1 as soon as C(u,y) is added to the context. In contrast, the more regressed lemma
¬A(t(zc))∨¬B(za) becomes conflicting as soon as the decision B(u) is made. Since
a lemma generated from D is typically conflicting once a subset of the decisions in Λ

are taken, learning it in the state Λ ` Φ, C0 will help recognize more quickly these
wrong decisions later in extensions of D that undo parts of Λ by backjumping. In fact,
if the lemma is regressed enough, one can do even better and completely avoid the con-
flict later on if one uses a derivation strategy that prefers applications of Propagate to
applications of Decide.

580

¬D(x)∨¬E(x) ¬C(x1,y1)∨E(x1)

¬D(x)∨¬C(x,y1) ¬A(x2)∨¬C(y2,x2)∨D(y2)

¬C(x,y1)∨¬A(x2)∨¬C(x,x2) ¬B(x3)∨C(x3,y3)

¬A(x2)∨¬C(x,x2)∨¬B(x) ¬B(x4)∨C(x4,y4)

¬A(x2)∨¬B(x)

Fig. 2. Lifted regression of ¬D(x)∨¬E(x).

Example 3. Consider an extension of the derivation in Example 1 where the context has
been undone enough that now its last literal is A(t(x)). By applying Propagate to the
lemma ¬A(t(zc))∨¬B(za) it is possible to add ¬B(za) to the context, thus preventing
the addition of B(u) as a decision literal (because B(u) is contradictory with ¬B(za))
and avoiding the conflict with clause (4). With the less regressed lemma ¬C(za,zb)∨
¬A(t(zc))∨¬C(za, t(zc)) it is still possible to add ¬B(za), but with two applications of
Propagate—to the lemma and then to clause (1). ut

So far, what we have described mirrors what happens with propositional clause sets
in DPLL SAT solvers. What is remarkable about learning at the ME level, besides pro-
ducing the same nice effects obtained in DPLL, is that its lemmas are not just caching
compactly the reasons for a specific conflict. For being a first-order formula, a lemma in
ME represents an infinite class of conflicts of the same form. For instance, the lemma
¬A(t(zc))∨¬B(za) in our running example will become conflicting once the context
contains any instance of A(t(zc)) and B(za), not just the original A(t(x)) and B(u).

Our lemma generation process then does learning in a more proper sense of the
word, as it can generalize over a single instance of a conflict, and later recognize unseen
instances in the same class, and so lead to additional pruning of the search space.

A slightly more careful look at the derivation in Example 1 shows that the lemma
¬A(t(zc))∨¬B(za) is actually not as general as it could be. The reason is that a con-
flict arises also in contexts that contain, in addition to any instance of B(za), also any
generalization of A(t(zc)). So a better possible lemma is ¬A(z)∨¬B(za). We can pro-
duce generalized lemmas like the above by lifting the regression process similarly as in
Explanation-Based Learning (cf. Section 1). We describe this lifted process next.

The Lifted Method. Consider again the derivation D from the previous subsection,
whose last state Λ ` Φ contains a clause C0 that is conflicting in Λ because of some
context unifier σ0. Using basic results about resolution and unification, this derivation
can be lifted to the first-order level. The lifted derivation can be built simply by follow-
ing the steps of the grounded derivation, but this time using the original clauses in Φ for
the initial central clause and the side clauses. In practice of course, the lifted derivation
can be built directly, without building the grounded derivation first. As in the grounded
case, we can use any regressed clause C as a lemma but with the difference that we
do not need to abstract away Skolem constants because the regression process resolves
only input clauses of C. Again, the resulting clause is a logical consequence of Φ.

More details, including a soundness proof can be found in the long version [3]. Here
we will only present the main idea by means of an example.

581

Example 4. Figure 2 shows the lifting of the grounded regression in Figure 1 for the
conflicting clause ¬D(x)∨¬E(x) in the derivation of Example 1. This time, we start
with the initial annotated clause: (¬D(x)∨¬E(x)) | {¬D(x) 7→D(u), ¬E(x) 7→ E(u)} .
As before, we represent the regression as a linear resolution tree, where this time at each
step the central clause is the regressed clause, the literal in bold font is the regressed
literal, and the side clause corresponds to the clause L∨C in the precondition of the
lifted version of GRegress. The lemma learned in this case is ¬A(x2)∨¬B(x). ut

3 Experimental Evaluation

A detailed discussion on implementing the various methods can be found in [3], where
we describe the regression processes more concretely. We also discuss some memo-
ization techniques used to reduce the regression cost, condensing techniques to limit
the size of lemmas, and a simple lemma forgetting policy. Here we focus on our initial
experimental results.

First problem set. We first evaluated the effectiveness of lemma learning with version
1.2 of Darwin over version 3.1.1 of the TPTP problem library. Since Darwin can handle
only clause logic, and has no dedicated inference rules for equality, we considered only
clausal problems without equality, both satisfiable and unsatisfiable ones. Furthermore,
as Darwin never applies the Decide rule in Horn problems [10], and thus also never
backtracks, we further restricted the selection to non-Horn problems only. All tests were
run on Xeon 2.4Ghz machines with 1GB of RAM. The imposed limit on the prover were
300s of CPU time and 512MB of RAM.

The first 4 rows of Table 1 summarize the results for various configurations of Dar-
win, namely, not using lemmas and using lemmas with the grounded and lifted regres-
sion methods. The first significant observation is that all configurations solve almost
exactly the same number of problems, which is somewhat disappointing. The situation
is similar even with an increased timeout of one hour per problem. A sampling of the
derivation traces of the unsolved problems, however, reveals that they contain only a
handful of Backjump steps, suggesting that the system spends most of the time in prop-
agation steps and supporting operations such as the computation of context unifiers.

The second observation is that for the solved problems the search space, measured in
the number of Decide applications, is significantly pruned by all learning methods (with
18% to 58% less decisions), although this improvement is only marginally reflected in
the run times. This too seems to be due to the fact that most derivations involve only a
few applications of Backjump in the configuration without lemmas. Indeed, 652 of the
898 problems solved with the lifted technique require at most 2 backjumps. This implies
that only a few lemmas can be learned, and thus their effect is limited and the run time
of most problems remains unchanged. Based on these tests alone, it is not clear if the
small number of backjumps is an artifact of the specific proof procedure implemented
by Darwin or a characteristic of the problems in the TPTP library.

The rest of Table 1 shows the same statistics, but restricted to the problems solved
by the no lemmas configuration using, respectively, at least 3, 20, and 100 applications
of Backjump within the 300s time limit. There, the effect of the search space pruning
is more pronounced and does translate into reduced run times. In particular, the speed

582

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
grounded 895 2.4 2135.6 1.12 9476 391189 18935
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
grounded 243 1.8 445.1 1.60 8966 273849 14627
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
grounded 108 2.2 228.5 2.43 8231 228437 12279
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
grounded 67 1.7 111.4 2.91 6973 183292 9879
lifted 70 2.3 151.4 2.14 7275 193097 10294

Table 1. Problems that respectively take at least 0, 3, 20, and 100 applications of Backjump
without lemmas within 300s, where Solved Problems gives the number of problems solved by
a configuration, while the remaining values are for the subsets of 894, 241, 106, 65 problems
solved by all configurations. Avg Time (Total Time) gives the average (total) time needed for
the problems solved by all configurations, Speed up shows the run time speed up factor of each
configuration versus the one with no lemmas. Failure, Propagate, and Decide give the number
of rule applications, with Failure including both Backjump and Fail applications.

up of each lemma configuration with respect to the no lemmas one steadily increases
with the difficulty of the problems, reaching a factor of almost 3 for the most difficult
problems in the grounded case. Moreover, the lifted lemmas configuration always solves
a few more problems than the no lemmas one.

Because of the way Darwin’s proof procedure is designed [3], in addition to pruning
search space, lemmas may also cause changes to the order in which the search space is
explored. Since experimental results for unsatisfiable problems are usually more stable
with respect to different space exploration orders, it is instructive to separate the data in
Table 1 between satisfiable and unsatisfiable problems. For lack of space, we must refer
the reader to [3] for detailed tables with this breakdown. Here it suffices to say that
the results for unsatisfiable problems show the same pattern as the aggregate results
in Table 1. Those solved by all configurations and solved by the no lemmas one with
at least 0, 3, 20, and 100 backjumps are respectively 561, 191, 89, and 61. For these
unsatisfiable problems, the speed up factors for grounded lemmas in particular are re-
spectively 1.07, 1.55, 3.74, and 4.19, which actually compares more favorably overall
to the corresponding speed up factors in Table 1: resp., 1.12, 1.60, 2.43, and 2.91.

In Figure 3 we plot the individual run times of the no lemmas configuration against
the lemma configurations for all problems solved by at least one configuration and
generating at least 3 backjumps in the no lemma one. The scatter plots clearly show
the positive effect of learning. For nearly all of the problems, the performance of the

583

 0.1

 1

 10

 100

 0.1 1 10 100

gr
ou

nd
ed

no lemmas

 0.1

 1

 10

 100

 0.1 1 10 100

lif
te

d

no lemmas

Fig. 3. Comparative performance, on a log-log scale, for different configurations for problems
with at least 3 applications of Backjump. For readability, the cutoff is set at 100s instead of 300s,
because in all cases less than a handful of problems are solved in the 100-300s range.

grounded lemmas configuration is better, often by a large margin, than the one with
no lemmas. A similar situation occurs with lifted lemmas, although there are more
problems for which the no lemmas configuration is faster.

Overall, our results indicate that lifted lemmas generate more Decide applications
and have higher overhead than grounded lemmas. The larger number of decision steps
of the lifted method versus the grounded one seems paradoxical at first sight, but can be
explained by observing that lifted lemmas—in addition to avoiding or detecting early a
larger number of conflicts—also cause the addition of more general propagated literals
to a context, leading to a higher number of (possibly useless) context unifiers. Further-
more, due to the increased generality of lifted lemmas and the way they are condensed
when they are too long, sometimes Propagate applies to a grounded lemma but not the
corresponding lifted lemma, making the latter less effective at avoiding conflicts (see
[3] for more details).

The higher overhead of the lifted method can be attributed to two main reasons.
The first is of course the increased number of context unifiers to be considered for rule
applications. The second is the intrinsically higher cost of the lifted method versus the
grounded one, because of its use of unification—as opposed to matching—operations
during regression, and its considerable post-processing work in removing multiple vari-
ants of the same literals from a lemma—something that occurs quite often.

Second problem set. Given that only a minority of the TPTP problems we could use
in the first experiment cause a considerable amount of search and backtracking, and
that, on the other hand, many decidable fragments of first-order logic are NP-hard, we
considered a second problem set, stemming from an application of Darwin for finite
model finding [4]. This application follows an approach similar to that of systems like
Paradox [7]. To find a finite model of a given cardinality n, a clause set, with or without
equality, is converted into an equisatisfiable Bernays-Schönfinkel problem (instead of a
propositional problem as in Paradox) that includes the cardinality restriction. If Darwin
proves the latter clause set unsatisfiable, it increases the value of n by 1 and restarts,
repeating the process until it finds a model—and diverging if the original problem has
no finite models. Since Darwin is a decision procedure for the Bernays-Schönfinkel
class, starting with n above at 1, it is guaranteed to find a finite model of minimum

584

Method Solved Average Total Speed Failure Propagate Decide
Probls Time Time up Steps Steps Steps

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
grounded 669 3.3 2106.3 1.71 74559 4014058 99865
lifted 657 4.7 3043.9 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
grounded 174 7.9 1203.1 2.25 70525 3833986 87834
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
grounded 64 10.5 495.3 3.44 53486 3100339 64845
lifted 57 11.5 538.7 3.16 26154 678319 39873

Table 2. Satisfiable problems that transformed to a finite model representation respectively take
at least 0, 100, and 1000 applications of Backjump without lemmas within 300s, where Solved
Problems gives the number of problems solved by a configuration, while the remaining values
are for the subsets of 647, 152, 47 problems solved by all configurations.

size if one exists. In the configurations with learning, Darwin uses lemmas during each
iteration of the process and carries over to the next iteration those lemmas not depending
on the cardinality restriction. Since a run over a problem with a model of minimum size
n includes n− 1 iterations over unsatisfiable clause sets, it is reasonable to consider
together all the n iterations in the run when measuring the effect of learning.

Table 2 shows our results for (the BS translation of) all the 815 satisfiable problems
of the TPTP library.5 In general, solving a problem in Darwin with the process above
requires significantly more applications of Backjump than for the set of experiments
presented earlier. As a consequence, the grounded lemmas configuration performs sig-
nificantly better than the no lemmas configuration, solving the same problems in about
half the time, and also solving 12 new problems. The lifted configuration on the other
hand performs only moderately better. Although the search space is drastically reduced
(the number of decisions is reduced by an order of magnitude in all cases), the overhead
of lemma simplification almost outweighs the positive effects of pruning. Restricting
the analysis to harder problems shows that the speed up factor of grounded lemmas
increases gradually to about 3.5.

This second set of results then confirms that learning has a significant positive effect
in solving problems that require a lot of search and produce comparatively few unit
propagations.

5 For an idea how we compare with other systems, Mace 4 [13] and Paradox 1.3, currently the
fastest finite model finders available, respectively solve 553 and 714 of those problems, making
Darwin second only to Paradox.

585

4 Conclusion and Further Work

We have presented two methods for implementing conflict-based learning in proof pro-
cedures for the Model Evolution calculus. The methods have different degrees of gen-
erality, implementation difficulty, and effectiveness in practice. Our initial experimental
results indicate that for problems that are not trivially solvable by the Darwin implemen-
tation and do not cause too much constraint propagation all methods have a dramatic
pruning effect on the search space. The grounded method, however, is the most effective
at reducing the run time as well.

We plan to investigate the grounded and the lifted methods further, possibly adapt-
ing to our setting some of the heuristics developed in [15], in order to make learning
more effective and reduce its computational overhead. We also plan to evaluate experi-
mentally our learning methods with sets of problems not (yet) in the TPTP library.

References

1. O. L. Astrachan and M. E. Stickel. Caching and Lemmaizing in Model Elimination Theorem
Provers. In D. Kapur, ed., Proc. CADE-11, LNAI 607. Springer, 1992.

2. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus. In-
ternational Journal of Artificial Intelligence Tools, 15(1):21–52, 2006.

3. P. Baumgartner, A. Fuchs, and C. Tinelli. Lemma Learning in the Model Evolution Calculus.
Technical Report no. 06-04, Department of Computer Science, The University of Iowa, 2006.
(Available at http://www.cs.uiowa.edu/ tinelli/papers.html.)

4. P. Baumgartner, A. Fuchs, C. Tinelli and H. de Nivelle, and Cesare Tinelli. Computing Finite
Models by Reduction to Function-Free Clause Logic. In W. Ahrendt, P. Baumgartner and H.
de Nivelle, eds., IJCAR’06 Workshop on Disproving, 2006.

5. P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In Franz Baader, ed., Proc.
CADE-19, LNAI 2741. Springer, 2003.

6. P. Baumgartner and C. Tinelli. The Model Evolution Calculus. Fachberichte Informatik 1–
2003, Universität Koblenz-Landau, Germany, 2003.

7. K. Claessen and N. Sörensson. New Techniques that Improve MACE-Style Finite Model
Building. In P. Baumgartner and C. G. Fermüller, eds., CADE-19 Workshop on Model Com-
putation, 2003.

8. H. de Nivelle and J. Meng. Geometric resolution: A Proof Procedure Based on Finite Model
Search. In U. Furbach and N. Shankar, eds., Proc. IJCAR, LNAI 4130. Springer, 2006.

9. G. DeJong and R. J. Mooney. Explanation-Based Learning: An Alternative View. Machine
Learning, 1(2):145–176, 1986.

10. A. Fuchs. Darwin: A Theorem Prover for the Model Evolution Calculus. Master’s thesis,
University of Koblenz-Landau, 2004.

11. R. Letz and G. Stenz. Model Elimination and Connection Tableau Procedures. In A. Robin-
son and A. Voronkov, eds., Handbook of Automated Reasoning, Elsevier, 2001.

12. D. Loveland. Automated Theorem Proving - A Logical Basis. North Holland, 1978.
13. William McCune. Mace4 Reference Manual and Guide. Technical Report ANL/MCS-TM-

264, Argonne National Laboratory, 2003.
14. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract DPLL Modulo

Theories. In F. Baader and A. Voronkov, eds., Proc. LPAR’04, LNCS 3452, Springer, 2005.
15. A. Segre and C. Elkan. A High-Performance Explanation-Based Learning Algorithm. Arti-

ficial Intelligence, 69:1–50, 1994.

