
CS:5810
Formal Methods in 

Software Engineering

Reasoning about
Programs with Objects in Dafny

Copyright 2020, Graeme Smith and Cesare Tinelli. 
Produced by Cesare Tinelli  at the University of Iowa from notes originally developed by Graeme Smith at the University of 
Queensland. These notes are copyrighted materials and may not be used in other course settings outside of  the 
University of Iowa in their current form or modified form without the express written permission of one of the copyright 
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or 
commercial firm without the express written permission of one of the copyright holders.



Checksums
An object is an instance of a class, and like arrays, have a 
reference type.

class ChecksumMachine { 
var data: string 
constructor ()

ensures data == "" 
method Append(d: string) 

modifies this 
ensures data == old(data) + d 

function method Checksum(): int
reads this 
ensures Checksum() == Hash(data) 

}

string is shorthand 
for seq<char> 



Checksums
function method Hash(s: string): int { 

SumChars(s) % 137 
} 

function method SumChars(s: string): int { 
if |s| == 0 then 0 else 

var last := |s| - 1;
SumChars(s[..last]) + s[last] as int

}

converts char to int 



Test client
method Main() { 

var m := new ChecksumMachine();
m.Append("green");
m.Append("grass"); 
var c := m.Checksum(); 
print "Checksum is ", c, "\n"; 

}

A method is allowed to allocate new arrays and objects 
and change their state (that is, the elements of the 
arrays and the fields of the objects) without mentioning 
these arrays and objects in the modifies clause 



To write efficient implementation, want to keep track of 
checksum so far:

var cs: int

We want to use data in specifications, but not in 
compiled program:

ghost var data: string

predicate Valid() A predicate is a 
reads this Boolean function

{  cs == Hash(data)  } 

If a function accesses the fields of an object o, its 
specification must include reads o

Invariant



Invariant
class ChecksumMachine { 

ghost var data: string 
predicate Valid() 

reads this 
constructor () 

ensures Valid() && data == "" 
method Append(d: string) 

requires Valid() 
modifies this 
ensures Valid() && data == old(data) + d 

function method Checksum(): int
requires Valid() 
reads this 
ensures Checksum() == Hash(data) }



Implementation

constructor ()
ensures Valid() && data == ""

{  data, cs := "", 0;  }

A constructor is allowed to assign to the fields of the   
object being constructed, this, without mentioning this 
in the modifies clause

function method Checksum(): int
requires Valid()
reads this
ensures CheckSum() == Hash(data)

{  cs }



Implementation
method Append(d: string) 

requires Valid() 
modifies this
ensures Valid() && data == old(data) + d 

{ 
var i := 0; 
while i != |d| 

invariant 0 <= i <= |d| 
invariant Valid() 
invariant data == old(data) + d[..i] 

{ 
cs := (cs + d[i] as int) % 137; 
data := data + [d[i]]; 
i := i + 1;    

}
}



Coffee maker components
class Grinder { 

var HasBeans: bool
predicate Valid() 

reads this
constructor () 

ensures Valid() 
method AddBeans() 

requires Valid() 
modifies this
ensures Valid() && HasBeans

method Grind() 
requires Valid() && HasBeans
modifies this
ensures Valid()  }



Coffee maker components
class WaterTank { 

var Level: nat
predicate Valid() class Cup {

reads this constructor ()
constructor () }

ensures Valid() 
method Fill() 

requires Valid() 
modifies this
ensures Valid() && Level == 10

method Use() 
requires Valid() && Level != 0
modifies this
ensures Valid() && Level == old(Level) - 1 }



Coffee maker components
class WaterTank { 

var Level: nat
predicate Valid() class Cup {

reads this constructor ()
constructor () }

ensures Valid() 
method Fill() 

requires Valid() 
modifies this
ensures Valid() && Level == 10

method Use() 
requires Valid() && Level != 0
modifies this
ensures Valid() && Level == old(Level) - 1 }



Coffee maker version 0
class CoffeeMaker { 

predicate Valid() reads this
constructor () ensures Valid() 
predicate method Ready() 

requires Valid() 
reads this

method Restock() 
requires Valid() 
modifies this
ensures Valid() && Ready() 

method Dispense(double: bool) returns (c: Cup)
requires Valid() && Ready() 
modifies this
ensures Valid()   }



Coffee maker version 0
State:

var g: Grinder 
var w: WaterTank



Coffee maker version 0
State:

var g: Grinder 
var w: WaterTank

predicate Valid() 
reads this

{ g.Valid() && w.Valid() } // error: insufficient reads clause

Require: 
predicate Valid() 

reads this, g, w

Similar change also needed for reads of Ready() and 
modifies clauses of Restock and Dispense.



Representation sets
The expanded modifies and reads clauses violate the 
principles of information hiding.

Therefore, we abstract the state of an object to a 
representation set. 

For this implementation of the coffee maker, the 
representation set is

{o, o.g, o.w} 

but the coffee maker may also be implemented in terms of 
different objects. 



Coffee maker version 1
Add new variable to state:

ghost var Repr: set<object>

Change modifies clauses of Restock and Dispense to
modifies Repr

Change read clauses of Valid and Ready to 
reads Repr

Add the following to the body of Valid
this in Repr && 
g in Repr && g.Valid() && 
w in Repr && w.Valid()

Typically specify 
lower bound on 
objects in Repr.



Coffee maker version 1
In Valid:

reads Repr // error: insufficient reads clause

This is because this is not in Repr unless Valid's predicate 
holds (and Valid may return true or false). 

We require: 
predicate Valid() 

reads this, Repr
{ 

this in Repr && 
g in Repr && g.Valid() && 
w in Repr && w.Valid() 

}



Class implementation
constructor () 

ensures Valid() 
{ 

g := new Grinder(); 
w := new WaterTank(); 
Repr := {this, g, w}; 

}

predicate method Ready() 
requires Valid() 
reads Repr

{ 
g.HasBeans && 2 <= w.Level

}



Class implementation
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && Ready() 

{  g.AddBeans(); w.Fill();  } 

method Dispense(double: bool) returns (c: Cup) 
requires Valid() && Ready() 
modifies Repr
ensures Valid() 

{ 
g.Grind(); 
if double { w.Use(); w.Use(); } else { w.Use(); } 
c := new Cup();  }



Test harness
method CoffeeTestHarness() { 

var cm := new CoffeeMaker(); 
cm.Restock(); // modifies clause violated 
var c := cm.Dispense(true); // modifies clause violated }

The test harness has no modifies clause and so is only 
allowed to modify the fields of fresh objects. 

Our specification of the coffee maker didn't specify that 
created objects were fresh.



Coffee maker version 2
Add to constructor:

ensures fresh(Repr)

This removes error with Restock, but not Dispense. 

Add to Restock and Dispense:
ensures Repr == old(Repr)

Alternatively, make Repr immutable by declaring it as
ghost const Repr: set<object>



Changing Repr
What if implementation needs to change Repr, e.g., a 
method of the coffee maker needs to change the grinder?

Third (and preferred) alternative for ensures clauses of 
methods which mutate Repr:

ensures fresh(Repr - old(Repr))

That is, any new objects added to Repr are fresh.



Less common situations
method ChangeGrinder() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) 

{ 
g := new Grinder(); 
Repr := Repr + {g}; 

}

Old grinder is still in Repr, but is no longer referenced.

The run-time system will eventually reclaim the storage 
for this object.



Less common situations
method InstallCustomGrinder(grinder: Grinder) 

requires Valid() && grinder.Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr) - {grinder}) 

{ 
g := grinder; 
Repr := Repr + {g}; 

}



Less common situations
method InstallCustomGrinder(grinder: Grinder) 

requires Valid() && grinder.Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr) - {grinder}) 

{ 
g := grinder; 
Repr := Repr + {g}; 

}

Since Repr can dynamically change, this approach to 
specification is referred to as dynamic frames. 

Dafny is a permutation of certain letters in Dynamic frames.



Grinder as an aggregate
class Grinder { 

var HasBeans: bool
ghost var Repr: set<object> 
predicate Valid() reads this, Repr
constructor () ensures Valid() && fresh(Repr) 
method AddBeans() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && HasBeans

method Grind() 
requires Valid() && HasBeans
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

}



WaterTank as an aggregate
class WaterTank { 

var Level: nat
ghost var Repr: set<object> 
predicate Valid() reads this, Repr
constructor () ensures Valid() && fresh(Repr) 
method Fill() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Level == 10

method Use() 
requires Valid() && Level != 0
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) 

&& Level == old(Level) - 1 }



Coffee Maker
Invariant (in Valid):

this in Repr && 
g in Repr && g.Repr <= Repr && g.Valid() && 
w in Repr && w.Repr <= Repr && w.Valid()

Constructor:
constructor () 

ensures Valid() && fresh(Repr) 
{ 

g := new Grinder(); 
w := new WaterTank(); 
Repr := {this, g, w} + g.Repr + w.Repr; 

}  // illegal first-phase use of fields



Constructor
First phase set objects fields and define immutable values

– objects are still being constructed 
– so, this.g.Repr is not allowed for example

Avoid use of uninitialised fields:
var gg := new Grinder(); 
var ww := new WaterTank(); 

g, w := gg, ww; 
Repr := {this, g, w} + gg.Repr + ww.Repr;

Update Repr in second phase:
g := new Grinder(); w := new WaterTank(); 
new; 
Repr := {this, g, w} + g.Repr + w.Repr;



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
g.AddBeans(); 
w.Fill(); // precondition violation; modifies violation 

} // postcondition violation 



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
g.AddBeans();
assert w.Valid(); // assertion violation 
w.Fill(); // modifies violation 

} // postcondition violation 
Precondition of 
w.Fill() not violated 
if  w.Valid() holds.



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
assert w.Valid(); 
g.AddBeans();
assert w.Valid(); // assertion violation 
w.Fill(); // modifies violation 

} // postcondition violation 

Call to AddBeans
affects w.Valid().



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
assert w.Valid(); 
g.AddBeans();
assert w.Valid(); // assertion violation 
w.Fill(); // modifies violation 

} // postcondition violation 

Call to AddBeans
affects w.Valid().

g.AddBeans only modifies g.Repr, and w.Valid only reads 
w.Repr. So this suggests there is an overlap between 
g.Repr and w.Repr.



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
assert w.Valid(); 
assert g.Repr !! w.Repr; // assertion violation
g.AddBeans();
assert w.Valid(); // assertion violation 
w.Fill(); // modifies violation 

} // postcondition violation 

!! says its argument sets are disjoint.



Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
assert this !in g.Repr; // assertion violation 
assert g in g.Repr; // assertion violation 
assert w !in g.Repr; // assertion violation
assert w.Valid(); 
assert g.Repr !! w.Repr; // assertion violation
g.AddBeans();
assert w.Valid(); // assertion violation 
w.Fill(); // modifies violation 

} // postcondition violation 



Coffee Maker invariant
Valid:

this in Repr && 
g in Repr && g.Repr <= Repr && 
this !in g.Repr && g.Valid() && 
w in Repr && w.Repr <= Repr &&
this !in w.Repr && w.Valid() && g.Repr !! w.Repr

If body of Valid() is hidden from clients then they can't see 
this in Repr. Hence, update postcondition of all validity 
predicates as below.

predicate Valid() 
reads this, Repr
ensures Valid() ==> this in Repr



Back to Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
g.AddBeans(); 
w.Fill(); 

} // postcondition violation

Calls to AddBeans and Fill may 
expand g.Repr and w.Repr.



Back to Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
g.AddBeans(); 
w.Fill(); 
Repr := Repr + g.Repr + w.Repr;

}



Back to Restock
method Restock() 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready() 

{ 
g.AddBeans(); 
w.Fill(); 
Repr := Repr + g.Repr + w.Repr;

}

The work we did on the relationships between frames holds 
for Dispense too. Just need to add   
Repr := Repr + g.Repr + w.Repr;    to Dispense for it to verify.



Summary
Representation set:

ghost var Repr: set<object>

Invariant:
predicate Valid() 

reads this, Repr
ensures Valid() ==> this in Repr

{ this in Repr && ... }

a in Repr && a.Valid()

b in Repr && b.Repr <= Repr && this !in b.Repr && b.Valid()

a0 != a1 && 
{a0, a1} !! b0.Repr !! b1.Repr  

a, a0, a1 are objects 
with simple frames

b, b0, b1 are objects 
with dynamic frames



Summary
Constructor:

constructor () 
ensures Valid() && fresh(Repr)

{  ... new; Repr := {this, a, b} + b.Repr;  }

Functions:
function F(x: X): Y 

requires Valid() 
reads Repr

(Mutating) method:
method M(x: X) returns (y: Y) 

requires Valid() 
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) 


