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Overview

Introduction to contract-based compositional reasoning and its
advantages

Introduction of new specification language aimed at facilitating

• modular development and

• compositional reasoning

Discussion of

• implementation in Kind 2 model checker

• examples of contract-based specifications



Compositional Reasoning: Assume-Guarantee Paradigm

Setting:

• (Reactive) system is composed of several components

• Every component is provided with its own high-level behavioral
specification

• The high-level specification of a component C [x, y] with inputs
x and outputs y is provided by a contract:

a set A[x, y] of assumptions on C ’s current input and past I/O
behavior
a set G[x, y] of guarantees on expected behavior,
provided assumptions A[x, y] hold



Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions (i.e.,
traces) satisfy

always A ⇒ always G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy always A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1
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CocoSpec: a Contract Language for Kind 2

An extension of Lustre with contracts

Objectives:

• follow assume-guarantee paradigm

• ease process of writing and reading formal specifications

• enable modular and compositional analysis

• facilitate automatic verification of specs

• improve feedback to user after analysis

• partition information for specification-driven test generation



Contract-based specification

A contract for a component C

• describes declaratively C ’s behavior under some assumptions

• captures requirements from specification documents



Contract Example

stopwatch(toggle, reset: bool) → count: int

Assumptions:
reasonable input ¬(reset ∧ toggle)

Guarantees:
output range count ≥ 0, initially 0
resetting reset implies count is 0
running ¬reset ∧ on implies count increases by 1
stopped ¬reset ∧ ¬on implies count does not change



Contract Example in Kind 2

node stopwatch(toggle, reset: bool) returns (c: int);
(*@contract

var on: bool = toggle ->
(pre on and not toggle) or (not pre on and toggle) ;

assume not (reset and toggle) ;
guarantee (0 <= c and c <= 1) -> 0 <= c ;

guarantee reset => c = 0 ;
guarantee (not reset and on) => c = (1 -> pre c + 1) ;
guarantee (not reset and not on) => c = (0 -> pre c) ;

*)
let ... tel



Contracts as an Abstraction Mechanism

A component’s contract is usually simpler than the component’s
definition

A contract is a declarative over-approximation of the component

Contracts enable modular and compositional analyses in alternative
to a monolithic one

In compositional analyses we abstract away the complexity of a
subsystem by its contract



Monolithic Analysis

Monolithic:

• analyze the top level

• considering the whole system

However:

• complete system might be too complex

• changing subcomponents voids old results

• correctness of subcomponents is not
addressed
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Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up
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Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed
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Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples
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Compositional and Modular: Benefits

If all components are valid, without refinement:

• the system as a whole is correct

• changing a component by a different, correct
one does not impact the correctness of the
whole system 1 2
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Compositional and Modular: Benefits

If all components are valid, with refinement:

• the system as a whole is correct

• but the contracts are not good enough for a compositional
analysis to succeed

Refinement gives hints as to why



Compositional and Modular: Benefits

If we had to refine component 1 to prove 3 correct,
that’s probably because 1’s contract is too weak
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Compositional and Modular: Benefits

If after refining all sub-components we still cannot
prove 3 correct, that’s because

• the assumptions of 3 are too weak, and/or

• the guarantees of 3 do not hold
1 2
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Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that



Modes: Example

stopwatch(toggle, reset: bool) → count: int

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count is 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Assume-Guarantee contracts do not adequately capture this sort of
specifications . . .

. . . because modes are simply encoded as conditional guarantees



Solution

Represent modes explicitly in the contract

A mode consists of a require (req) and an ensure (ens) clause

• expresses a transient behavior

• corresponds to a guarantee req⇒ ens

Effect: Separation between

• global behavior (guarantees) and

• transient behavior (modes)



Modes in a Contract

A set of modes M can be added to a contract

Its semantics is an assume-guarantee pair 〈A, G〉 with

A ≡
∨

m∈M
reqm

G ≡
∧

m∈M
(reqm ⇒ ensm)

Note: reqm’s need not be mutually exclusive



Modes: Example

stopwatch(toggle, reset) → count

var on: bool = toggle -> (pre on and not toggle) or
(not pre on and toggle) ;

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count = 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors
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Contracts for Lustre

Kind 2’s input language extends Lustre with contracts

A Kind 2 contract is

• a set of assumptions,

• a set of guarantees, and

• a set of modes

Can contain internal variables

It can use specification nodes

Can be inlined in a node or stand-alone

Stand-alone contracts can be imported and instantiated



Stand-alone Contract with Modes

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;

assume not (rst and tgl) ;
guarantee c = 0 -> c >= 0 ;

mode resetting (
require rst ; ensure c = 0 ; ) ;

mode running (
require not rst and on ; ensure c = (1 -> pre c + 1) ; ) ;

mode stopped (
require not rst and not on ; ensure c = (0 -> pre c) ; ) ;

tel

node stopwatch(toggle, reset: bool) returns (count: int) ;
(*@contract import stopwatch_spec(toggle, reset) returns (count) ; *)
let ... tel



Additional Features

In contracts, one can

• refer to modes in formulas (with ::<mode_name>)

• call contract-free nodes

node count(b: bool) returns (count: int) ;
let

count = (if b then 1 else 0) + (0 -> pre count) ;
tel

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

...
mode running (...) ;
mode stopped (...) ;
...
guarantee not (::running and ::stopped) ;
guarantee count(::resetting) > 0 => c < count(true) ;

tel



Modes in Kind 2: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily
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Modes in Kind 2: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information
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Modes in Kind 2: Advantages

Test generation:

• can generate witnesses for abstract executions

• thus obtaining specification-based, implementation-agnostic
test cases from the model



Conclusion

Mode-based Assume-Guarantee Contracts:

• more scalable verification thanks to compositional reasoning

• bring contract language closer to specification documents

• improve user feedback (blame assignment, abstract cex traces)

• raise trust in specification, improve maintainability, . . .

• enable specification-based test generation


	Conclusion

