
CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language1

Part 3

Adrien Champion Cesare Tinelli

1Copyright 2015-20, Adrien Champion and Cesare Tinelli, the University of Iowa. These notes are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in
their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes
by any person or commercial firm without the express written permission of one of the copyright holder.



Overview

Introduction to contract-based compositional reasoning and its
advantages

Introduction of new specification language aimed at facilitating

• modular development and

• compositional reasoning

Discussion of

• implementation in Kind 2 model checker

• examples of contract-based specifications



Compositional Reasoning: Assume-Guarantee Paradigm

Setting:

• (Reactive) system is composed of several components

• Every component is provided with its own high-level behavioral
specification

• The high-level specification of a component C [x, y] with inputs
x and outputs y is provided by a contract:

a set A[x, y] of assumptions on C ’s current input and past I/O
behavior
a set G[x, y] of guarantees on expected behavior,
provided assumptions A[x, y] hold



Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions (i.e.,
traces) satisfy

always A ⇒ always G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy always A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1



Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions (i.e.,
traces) satisfy

always A ⇒ always G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy always A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1



Assume-Guarantee Reasoning (simplified form)

Def. C respects its contract 〈A, G〉 if all of its executions (i.e.,
traces) satisfy

always A ⇒ always G

Def. C1[x1, y1] uses C2[x2, y2] if it feeds C2 some input i and reads
the corresponding output in o

C1 uses C2 safely if C1’s executions satisfy always A2[i, o]

Obs. If

1 C1 uses C2 safely and

2 C2 respects its own contract 〈A2, G2〉

then C2 can be abstracted by A2[i, o] ∧ G2[i, o] in C1



CocoSpec: a Contract Language for Kind 2

An extension of Lustre with contracts

Objectives:

• follow assume-guarantee paradigm

• ease process of writing and reading formal specifications

• enable modular and compositional analysis

• facilitate automatic verification of specs

• improve feedback to user after analysis

• partition information for specification-driven test generation



Contract-based specification

A contract for a component C

• describes declaratively C ’s behavior under some assumptions

• captures requirements from specification documents



Contract Example

stopwatch(toggle, reset: bool) → count: int

Assumptions:
reasonable input ¬(reset ∧ toggle)

Guarantees:
output range count ≥ 0, initially 0
resetting reset implies count is 0
running ¬reset ∧ on implies count increases by 1
stopped ¬reset ∧ ¬on implies count does not change



Contract Example in Kind 2

node stopwatch(toggle, reset: bool) returns (c: int);
(*@contract

var on: bool = toggle ->
(pre on and not toggle) or (not pre on and toggle) ;

assume not (reset and toggle) ;
guarantee (0 <= c and c <= 1) -> 0 <= c ;

guarantee reset => c = 0 ;
guarantee (not reset and on) => c = (1 -> pre c + 1) ;
guarantee (not reset and not on) => c = (0 -> pre c) ;

*)
let ... tel



Contracts as an Abstraction Mechanism

A component’s contract is usually simpler than the component’s
definition

A contract is a declarative over-approximation of the component

Contracts enable modular and compositional analyses in alternative
to a monolithic one

In compositional analyses we abstract away the complexity of a
subsystem by its contract



Monolithic Analysis

Monolithic:

• analyze the top level

• considering the whole system

However:

• complete system might be too complex

• changing subcomponents voids old results

• correctness of subcomponents is not
addressed

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

However:

• changing subcomponents voids old results

• complexity can explode as we go up
1 2

3

4



Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2

3

4



Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
as long as new version respects contract

However:

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents
In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples

1 2

3

4



Compositional and Modular: Benefits

If all components are valid, without refinement:

• the system as a whole is correct

• changing a component by a different, correct
one does not impact the correctness of the
whole system 1 2

3

4



Compositional and Modular: Benefits

If all components are valid, with refinement:

• the system as a whole is correct

• but the contracts are not good enough for a compositional
analysis to succeed

Refinement gives hints as to why



Compositional and Modular: Benefits

If we had to refine component 1 to prove 3 correct,
that’s probably because 1’s contract is too weak

1 2

3

4



Compositional and Modular: Benefits

If after refining all sub-components we still cannot
prove 3 correct, that’s because

• the assumptions of 3 are too weak, and/or

• the guarantees of 3 do not hold
1 2

3

4



Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that



Modes: Example

stopwatch(toggle, reset: bool) → count: int

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count is 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Assume-Guarantee contracts do not adequately capture this sort of
specifications . . .

. . . because modes are simply encoded as conditional guarantees



Solution

Represent modes explicitly in the contract

A mode consists of a require (req) and an ensure (ens) clause

• expresses a transient behavior

• corresponds to a guarantee req⇒ ens

Effect: Separation between

• global behavior (guarantees) and

• transient behavior (modes)



Modes in a Contract

A set of modes M can be added to a contract

Its semantics is an assume-guarantee pair 〈A, G〉 with

A ≡
∨

m∈M
reqm

G ≡
∧

m∈M
(reqm ⇒ ensm)

Note: reqm’s need not be mutually exclusive



Modes: Example

stopwatch(toggle, reset) → count

var on: bool = toggle -> (pre on and not toggle) or
(not pre on and toggle) ;

Assumption:
• reasonable input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0, initially 0

Modes: require ensure
• resetting reset count = 0
• running ¬reset ∧ on count increases by 1
• stopped ¬reset ∧ ¬on count does not change



Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors



Modes: Advantages

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of user-specified behaviors



Contracts for Lustre

Kind 2’s input language extends Lustre with contracts

A Kind 2 contract is

• a set of assumptions,

• a set of guarantees, and

• a set of modes

Can contain internal variables

It can use specification nodes

Can be inlined in a node or stand-alone

Stand-alone contracts can be imported and instantiated



Stand-alone Contract with Modes

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;

assume not (rst and tgl) ;
guarantee c = 0 -> c >= 0 ;

mode resetting (
require rst ; ensure c = 0 ; ) ;

mode running (
require not rst and on ; ensure c = (1 -> pre c + 1) ; ) ;

mode stopped (
require not rst and not on ; ensure c = (0 -> pre c) ; ) ;

tel

node stopwatch(toggle, reset: bool) returns (count: int) ;
(*@contract import stopwatch_spec(toggle, reset) returns (count) ; *)
let ... tel



Additional Features

In contracts, one can

• refer to modes in formulas (with ::<mode_name>)

• call contract-free nodes

node count(b: bool) returns (count: int) ;
let

count = (if b then 1 else 0) + (0 -> pre count) ;
tel

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

...
mode running (...) ;
mode stopped (...) ;
...
guarantee not (::running and ::stopped) ;
guarantee count(::resetting) > 0 => c < count(true) ;

tel



Modes in Kind 2: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily



Modes in Kind 2: Advantages

Defensive check:

• modes must cover all reachable states

• may be declared as mutually exclusive

Check performed on the spec, independently of the implementation

Mode references:

• can refer to a mode directly as a propositional var

• can write more robust / trustworthy spec

• can express guarantees about the spec easily



Modes in Kind 2: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information



Modes in Kind 2: Advantages

Mode reachability:

• modes provide a finite abstraction of component
(abstract state at time i = set of modes active at time i)

• can explore graph of connected modes

• from the initial state (BMC style)

• to compare with user’s understanding

Abstraction for counterexample (cex) traces:

• cex traces feature concrete values and can be hard to read

• we can annotate states with active modes

• therefore abstracting the states using user-provided information



Modes in Kind 2: Advantages

Test generation:

• can generate witnesses for abstract executions

• thus obtaining specification-based, implementation-agnostic
test cases from the model



Conclusion

Mode-based Assume-Guarantee Contracts:

• more scalable verification thanks to compositional reasoning

• bring contract language closer to specification documents

• improve user feedback (blame assignment, abstract cex traces)

• raise trust in specification, improve maintainability, . . .

• enable specification-based test generation


	Conclusion

