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Readings

• Chap. 8 of [Russell and Norvig, 2012]
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Pros and cons of Propositional Logic

+ PL is declarative: pieces of syntax correspond to facts

+ PL allows partial/disjunctive/negated information
(unlike most data structures and databases)

+ Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

+ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

- Propositional logic has very limited expressive power (unlike
natural language)
E.g., cannot say“pits cause breezes in adjacent squares”except
by writing one sentence for each square
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald,
colors, baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after,
owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than,
end of . . .
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Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .

Predicates Brother, >, . . .

Functions Sqrt, LeftLegOf, . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔

Equality =

Quantifiers ∀ ∃
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Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn
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Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard)⇒ Sibling(Richard,KingJohn)

>(1, 2) ∨ ≤(1, 2)

>(1, 2) ∧ ¬>(1, 2)
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Language of FOL: Grammar

Sentence ::= AtomicS | ComplexS

AtomicS ::= True | False | RelationSymb(Term, . . .) | Term = Term

ComplexS ::= (Sentence) | Sentence Connective Sentence | ¬Sentence

| Quantifier Sentence

Term ::= FunctionSymb(Term, . . .) | ConstantSymb | Variable

Connective ::= ∧ | ∨ | ⇒ | ↔

Quantifier ::= ∀ Variable | ∃ Variable

Variable ::= a | b | · · · | x | y | · · ·

ConstantSymb ::= A | B | · · · | John | 0 | 1 | · · · | π | . . .

FunctionSymb ::= F | G | · · · | Cosine | Height | FatherOf | + | . . .

RelationSymb ::= P | Q | · · · | Red | Brother | Apple | > | · · ·
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Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations among
them
Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations
An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate
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Models for FOL: Example

R J
$

left leg left leg

on head
brother

brother

person
person
king

crown
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Truth example

Consider the interpretation in which

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model
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Semantics of First-Order Logic

(A little) more formally:

An interpretation is a pair (D, σ) where

• D is a set of objects, the universe (or domain);

• σ is mapping from variables to objects in D;

• CD is an object in D for every constant symbol C;

• FD is a function from Dn to D for every function symbol F of
arity n;

• RD is a relation over Dn for every relation symbol R of arity n;
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An Interpretation I in the Blocks World

Constant Symbols: A,B,C,D,E, T

Function Symbols: Support

Relation Symbols: On,Above,Clear

a

b

c

d

e

t

AH = A, BH = B , CH = C , DH = D , EH = E , TH = T

SupportH = {〈A,T 〉, 〈B ,A〉, 〈C ,B〉, 〈D ,C 〉, 〈E ,D〉}

OnH = {〈A,T 〉, 〈B ,A〉, 〈C ,B〉, 〈D ,C 〉, 〈E ,D〉}

AboveH = {〈E ,D〉, 〈D ,C 〉, . . .}
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Semantics of First-Order Logic

Let (D, σ) be an interpretation and E an expression of FOL. We write

[[E]]Dσ to denote the meaning of E in the domain D under the variable

assignment σ.

The meaning [[t]]Dσ of a term t is an object of D. It is inductively

defined as follows.
[[x]]D

σ
:= σ(x) for all variables x

[[C]]D
σ

:= CD for all constant symbols C

[[F (t1, . . . , tn)]]
D

σ
:= FD([[t1]]

D

σ
, . . . , [[tn]]

D

σ
) for all function symbols F

of arity n
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Example

Consider the symbols MotherOf , SchoolOf ,Bill and the interpretation

(D, σ) where

MotherOf D is a unary fn mapping people to their mother

FchildOf D is a binary fn mapping a couple to their first child

σ := {x 7→ George W Bush, y 7→ Barbara Bush}

What is the meaning of MotherOf (x) according to (D, σ)?

[[MotherOf (x)]]D
σ
= [[MotherOf ]]D

σ
([[x]]D

σ
) = MotherOf D(σ(x)) = Barbara Bush
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Semantics of First-Order Logic

The meaning [[ϕ]]Dσ of a formula ϕ is either True or False.

It is inductively defined as follows.

[[t1 = t2]]
D

σ
:= True iff [[t1]]

D

σ
is the same as [[t2]]

D

σ

[[R(t1, . . . , tn)]]
D

σ
:= True iff 〈[[t1]]

D

σ
, . . . , [[tn]]

D

σ
〉 ∈ RD

[[¬ϕ]]D
σ

:= True/False iff [[ϕ]]D
σ
= False/True

[[ϕ1 ∨ ϕ2]]
D

σ
:= True iff [[ϕ1]]

D

σ
= True or [[ϕ2]]

D

σ
= True

[[∃x ϕ]]D
σ

:= True iff [[ϕ]]D
σ′ = True for some σ′ the

same as σ except for x

CS:4420 Spring 2017 – p.16/36



Semantics of First-Order Logic

The meaning of formulas built with the other logical symbols can be
defined by reduction to the previous symbols.

[[ϕ1 ∧ ϕ2]]
D
σ := [[¬(¬ϕ1 ∨ ¬ϕ2)]]

D
σ

[[ϕ1 ⇒ ϕ2]]
D
σ := [[¬ϕ1 ∨ ϕ2]]

D
σ

[[ϕ1 ↔ ϕ2]]
D
σ := [[(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)]]

D
σ

[[∀xϕ]]Dσ := [[¬∃x ¬ϕ]]Dσ

If a sentence is closed (no free variables), its meaning does not depend

on the the variable assignment (although it may depend on the
domain):

[[∀x ∃y R(x, y)]]Dσ = [[∀x ∃y R(x, y)]]Dσ′ for any σ, σ′
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Models, Validity, etc. for Sentences

An interpretation (D, σ) satisfies a sentence ϕ, or is a model for ϕ,

if [[ϕ]]Dσ = True.

A sentence is satisfiable if it has at least one model.

Examples: ∀x x ≥ y, P (x)

A sentence is unsatisfiable if it has no models.

Examples: P (x) ∧ ¬P (x), ¬(x = x)

A sentence ϕ is valid if every interpretation is a model for ϕ.

Examples: P (x)⇒ P (x), x = x

ϕ is valid/unsatisfiable iff ¬ϕ is unsatisfiable/valid.
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Models, Validity, etc. for Sets of Sentences

An interpretation (D, σ) satisfies a set Γ of sentences, or is a model

for Γ, if it is a model for every sentence in Γ.

A set Γ of sentences is satisfiable if it has at least one model.

Ex: {∀x x ≥ 0, ∀x x+ 1 > x}

Γ is unsatisfiable, or inconsistent, if it has no models.

Ex: {P (x), ¬P (x)}

As in Propositional Logic, Γ entails a sentence ϕ (Γ |= ϕ), if

every model of Γ is also a model of ϕ.

Ex: {∀x P (x)⇒ Q(x), P (A10)} |= Q(A10)

Note: Again, Γ |= ϕ iff Γ ∧ ¬ϕ is unsatisfiable.
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Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible
interpretations.

A sentence denotes all the possible interpretations that satisfy it (the
models of ϕ):
If ϕ1 denotes a set of interpretations S1 and ϕ2 denotes a set S2, then

• ϕ1 ∨ ϕ2 denotes S1 ∪ S2,

• ϕ1 ∧ ϕ2 denotes S1 ∩ S2,

• ¬ϕ1 denotes S \S1,

• ϕ1 |= ϕ2 iff S1 ⊆ S2.

A sentence denotes either no interpretations or an infinite number of
them!

Valid sentences do not tell us anything about the world. They are
satisfied by every possible interpretation!
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Models for FOL: Lots!

We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate Pk in the sentence

For each possible k-ary relation on n objects
For each constant symbol C in the sentence

For each one of n objects mapped to C
. . .

Enumerating models is not going to be easy!
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Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley)⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley)⇒ Smart(KingJohn))

∧ (At(Richard,Berkeley)⇒ Smart(Richard))

∧ (At(Berkeley,Berkeley)⇒ Smart(Berkeley))

∧ . . .
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A common mistake to avoid

Typically, ⇒ is the main connective with ∀
Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means“Everyone is at Berkeley and everyone is smart”
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Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))

∨ (At(Richard, Stanford) ∧ Smart(Richard))

∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

∨ . . .
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Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford)⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀x (why?)

∃x ∃ y is the same as ∃ y ∃x (why?)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)
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Fun with sentences

Brothers are siblings
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Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric
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Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent
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Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling
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Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

∀x, y F irstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)
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Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable

2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:

∀x, y Sibling(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧
Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]
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The Wumpus World in FOL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB,Percept([Smell, Breeze,None], 5))
Ask(KB,∃ a Action(a, 5))

I.e., does the KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary,Bill)
AskV ar(KB,S) returns some/all σ such that KB |= Sσ
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Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t)⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t)⇒ AtGold(t)

Reflex: ∀ t AtGold(t)⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t)⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential
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Deducing Hidden Properties

• Properties of locations:
• ∀x, t At(Agent, x, t) ∧ Smelt(t)⇒ Smelly(x)
• ∀x, t At(Agent, x, t) ∧Breeze(t)⇒ Breezy(x)

• Squares are breezy near a pit:

• Diagnostic rule—infer cause from effect
∀ y Breezy(y)⇒ ∃x Pit(x) ∧Adjacent(x, y)

• Causal rule—infer effect from cause
∀x, y P it(x) ∧Adjacent(x, y)⇒ Breezy(y)

• Neither of these is complete—e.g., the causal rule doesn’t
say whether squares far away from pits can be breezy

• Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃x Pit(x) ∧Adjacent(x, y)]
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