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Credits

Part of these slides are based on Chap. 2 of Logic in Computer Science by M. Huth
and M. Ryan, Cambridge University Press, 2nd edition, 2004, and on some slides by
S. Russel and P. Norvig
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First-order Logic

Propositional logic talks about facts, statements that can be either true or false

However, unlike natural language, it cannot directly talk about

• Objects: people, houses, numbers, theories, colors, baseball games, wars,
centuries, . . .

• Relations: red, round, bogus, prime, brother of, bigger than, inside, part of,
has color, occurred after, owns, comes between, . . .

• Functions: father of, best friend, successor of, one more than, end of, . . .

First-order logic (FOL) extends PL to do all of the above
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Syntax of FOL: Basic Elements

Variables x y z . . .

Constant symbols a b kingJohn potus 0 1 2 . . .

Function symbols sqrt(_) leftLeg(_) _ + _ . . .

Predicate symbols Married(_, _) Likes(_, _) _ > _ Even(_) . . .

Equality _ = _

Connectives ¬ _ _ ∧ _ _ ∨ _ _ → _ _ ↔ _

Quantifiers ∀x _ ∃x _ . . .
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Terms

• Every variable is a term
• Ever constant symbol is a term
• If t1, t2, . . . , tn are terms and f is a function symbol of arity n > 0,

then f (t1, t2, . . . , tn) is a term

Examples

x y a kim potus 0 1 x + 2 (infix syntax for +(x, 2))

x + (2 − y) father(spouse(kim)) avg(2, x, 10)
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Atomic Formulas

• ⊤ and ⊥ are atomic formulas
• Every nullary predicate symbol is an atomic formula
• If t1, t2 are terms then t1 = t2 is an atomic formula
• If t1, t2, . . . , tn are terms and p is a predicate symbol of arity

n > 0,
then p(t1, t2, . . . , tn) is an atomic formula

Examples

x = y Even(x + 2) Likes(father(kim), potus)

x + (2 − y) > 0 father(spouse(kim)) = joe avg(2, x, 10) > x
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Formulas
Formulas are constructed from atomic formulas similarly to QBFs

• Every atomic formula is a formula
• If F and G are formulas,

then ¬F, F → G and F ↔ G are formulas
• If F1, . . . , Fn are formulas, where n ≥ 2,

then F1 ∧ · · · ∧ Fn and F1 ∨ · · · ∨ Fn are formulas
• If x is a variable and F is a formula,

then ∀x F and ∃x F are formulas

Precedence and associativity rules are as with QBFs

Example ∀x ∀y (Married(x, y) → Married(y, x))
x > 2 ∨ 1 < x ∃y (y > 1 ∧ ¬(y > 2))
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Truth in FOL
Formulas are true or false with respect to
• an interpretation I of the constant, function and predicate

symbols
• a universe U of concrete values, or elements

U is a set containing ≥ 1 elements

I maps
variables 7→ U

constant symbols 7→ U
predicate symbols 7→ relations over U

function symbols 7→ functional relations over U
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Truth in FOL
Formulas are true or false with respect to
• an interpretation I of the constant, function and predicate

symbols
• a universe U of concrete values, or elements

An atomic formula p(t1, . . . , tn) is true in an interpretation

iff

the elements denoted to by t1, . . . , tn are in the relation denoted by p
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Truth example

Consider the interpretation in which

potus 7→ Joe Biden
fistLady 7→ Jill Biden
Married 7→ the set consisting of all pairs of married people

In this interpretation,
• Married(potus, firstLady) is true
• Married(potus, potus) is false
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Semantics of First-Order Logic

Formally:

An interpretation I is a triple (U , (_)I , σ) where
• U is a non-empty set of objects, the universe or domain
• σ is a mapping from variables to U , a valuation or environment
• cI is an element in U for every constant symbol c
• fI is a function from Un to U (a subset of Un × U ) for every function symbol f

of arity n
• rI is a relation over Un (a subset of Un) for every predicate symbol r of arity n

Note
• An interpretation gives meaning to the non-logical symbols in formulas

(constant, function, predicate symbols, and variables)
• The meaning of =, connectives and quantifiers is fixed for all interpretations
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An Interpretation I in the Blocks World
constant symbols: b1, b2, b3, b4, b5, b6
function symbols: support
predicate symbols: On, Above,Clear

a

b

c

d

e

t

b1
I = a, b2

I = b, b3
I = c, b4

I = d, b5
I = e, b6

I = t
supportI = {(a, b), (b, c), (c, t), (d, e), (e, t), (t, t)}

OnI = {(a, b), (b, c), (c, t), (d, e), (e, t)}
AboveI = {(a, b), (a, c), (a, t), (b, c), (b, t), (c, t), (d, e), (d, t), (e, t)}

ClearI = {(a), (d)}
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Semantics of FOL Terms

I interpretation with universe U and valuation σ

If e is an FOL expression, JeKI denotes the meaning of e in I

For terms t, JtKI is an element of U :

JxKI def
= σ(x) for all variables x

JcKI def
= cI for all constant symbols c

Jf (t1, . . . , tn)KI
def
= fI(Jt1KI , . . . , JtnKI) for all n-ary function symbols f
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Example

Consider the symbols mother, spouse and the interpretation I with valuation σ
where

motherI is a unary function mapping people to their mother
spouseI is a unary function mapping people to their spouse

σ is {x 7→ Bart Simpson, y 7→ Homer Simpson, . . .}

What is the meaning of spouse(mother(x)) in I?

Jspouse(mother(x))KI =

spouseI(Jmother(x)KI)

=

spouseI(motherI(JxKI))

=

spouseI(motherI(σ(x)))

=

spouseI(motherI(Bart))

=

spouseI(Marge)

=

Homer
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Semantics of FOL Formulas
I interpretation with valuation σ

The meaning JFKI of a formula F is either 1 (true) or 0 (false):

Jt1 = t2KI
def
= 1 iff Jt1KI is the same as Jt2KI

Jr(t1, . . . , tn)KI
def
= 1 iff (Jt1KI , . . . , JtnKI) ∈ rI

J¬FKI def
= 1 iff JFKI = 0

JF1 ∧ · · · ∧ FnKI
def
= 1 iff JFiKI = 1 for all i = 1, . . . , n

JF1 ∨ · · · ∨ FnKI
def
= 1 iff JFiKI = 1 for some i = 1, . . . , n

JF1 → F2KI
def
= 1 iff J¬F1 ∨ F2KI = 1

J∃x FKI def
= 1 iff JFKI

′
= 1 for some I ′ that disagrees with I

at most on x

J∀x FKI def
= 1 iff JFKI

′
= 1 for all I ′ that disagree with I

at most on x
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Models, Validity, etc. as usual

An interpretation I satisfies a formula F, or is a model of F, written
I |= F, if JFKI = 1

A formula is satisfiable if it has at least one model
Ex: ∀x x ≥ y ¬∀x x ≥ y P(x) ¬P(x)

A formula is unsatisfiable if it has no models
Ex: P(x) ∧ ¬P(x) ¬(x = x) ∀x ∀y Q(x, y) ∧ ¬Q(a, b)

A formula is valid if it is satisfied by every interpretation
Ex: P(x) → P(x) x = x ∀x P(x) → ∃x P(x)

Note: As in PL, F is valid/unsatisfiable iff ¬F is unsatisfiable/valid
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Models, Validity, etc. for Sets of Formulas
An interpretation satisfies a set S of formulas, or is a model of S,
written I |= S, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: {∀x x ≥ 0, ∀x x + 1 > x}

S is unsatisfiable, or inconsistent, if it has no models
Ex: {P(x), ¬P(x)}

S entails a formula F, written S |= F, if every model for S is also a
model for F

Ex: {∀x (P(x) → Q(x)), P(a)} |= Q(a)

Note: As in PL, S |= F iff S ∪ {¬F} is unsatisfiable
17 / 45



Models, Validity, etc. for Sets of Formulas
An interpretation satisfies a set S of formulas, or is a model of S,
written I |= S, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: {∀x x ≥ 0, ∀x x + 1 > x}

S is unsatisfiable, or inconsistent, if it has no models
Ex: {P(x), ¬P(x)}

S entails a formula F, written S |= F, if every model for S is also a
model for F

Ex: {∀x (P(x) → Q(x)), P(a)} |= Q(a)

Note: As in PL, S |= F iff S ∪ {¬F} is unsatisfiable
17 / 45



Models, Validity, etc. for Sets of Formulas
An interpretation satisfies a set S of formulas, or is a model of S,
written I |= S, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: {∀x x ≥ 0, ∀x x + 1 > x}

S is unsatisfiable, or inconsistent, if it has no models
Ex: {P(x), ¬P(x)}

S entails a formula F, written S |= F, if every model for S is also a
model for F

Ex: {∀x (P(x) → Q(x)), P(a)} |= Q(a)

Note: As in PL, S |= F iff S ∪ {¬F} is unsatisfiable
17 / 45



Free and bound variables

The notions of
• quantifier scope,
• free/bound occurrence of a variable in a formula, and
• closed formula

are defined exactly as with QBFs

Theorem 1
Let F be a closed formula and let I and I ′ be two interpretations
that differ only for their variable valuations. Then,

I |= F iff I ′ |= F .
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Free and bound variables

I an interpretation

The satisfiability of a closed formula in I does not depend on how I
interprets the variables

However, it does depend on how I interprets the non-logical
symbols

Example
∃x (2 < x ∧ x < 3)

is true over the reals and false over the integers
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Lots of Models
An FOL formula F can have either no models at all or infinitely many

Levels of freedom in constructing a model:

Cardinality of universe: finite 1, 2, . . . , n, . . . or infinite
Interpretation of each predicate symbol

Interpretation of each function symbol
Interpretation of each constant symbol

Interpretation of each variable

Symbol Interpretation choices in
a universe U of cardinality n

a n (# of elements of U)
P(_) 2n (# of subsets of U)

Q(_, _) 2n2
(# of subsets of U2)

R(_, _, _) 2n3
(# of subsets of U3)
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Equality
Recall that t1 = t2 is true in an interpretation iff t1 and t2 denote the same
element of the universe

Examples
• a = b

is satisfiable but not valid

• t = t

is valid

• a ̸= a

is unsatisfiable

• 1 = 25

is satisfiable but not valid (1, 25 have no special meaning in FOL)

• x ∗ x = x

is satisfiable but not valid (∗ has no special meaning in FOL)

• a = b → b = a

is valid

• a = b ∧ b = c → a = c

is valid

• a = b → f(a) = f(b)

is valid

• f(a) = f(b) → a = b

is invalid (not all functions are injective)

• a = b → P(a, c) ↔ P(b, c)

is valid
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element of the universe

Examples
• a = b is satisfiable but not valid
• t = t is valid
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• 1 = 25
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Qualifying Arguments and Quantifiers

FOL is an untyped logic:
• We assume a single set, the universe U , containing everything

we want to talk about
• All variables range over the entire U
• Function and predicate symbols apply to any elements of U

As in dynamically-typed programming languages (Javascript,
Python, . . . ),
this makes it possible to write practically non-sensical expressions

This issue can be addressed through the use of qualification
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Qualifying Universal Quantification

How do we interpret this formula?

∀x Smart(x)

This statement is too broad (everything is smart?)

We typically want to qualify the quantification

Which set of elements are we saying are all smart?
People? Dogs? Students at Iowa? Students at Iowa taking this course? . . .
∀x (Person(x) → Smart(x))
∀x (Dog(x) → Smart(x))
∀x (Student(x) ∧ At(x,UIowa) → Smart(x))
∀x (Student(x) ∧ At(x,UIowa) ∧ Enrolled(x,CS4350) → Smart(x))
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Qualifying Existential Quantification

How do we interpret this formula?

∃x Smart(x)

This statement is too vague (something is smart?)

Which element are we saying is smart?
Some person? Some dog? Some student at Iowa?
Some student at Iowa taking this course?
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General Quantification Schemas

Universal quantification

∀x (Qualifier for x → Statement involving x)

Existential quantification

∃x (Qualifier for x ∧ Statement involving x)
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Incorrect Qualifications

∀x (Dog(x) ∧ Smart(x))

This states that everything is a dog and is smart!

∃x (Dog(x) → Smart(x))

This is satisfied by any interpretation where Dog(x) is always false!
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Useful Quantifier Equivalences

Exactly as with QBFs:

∀x ∀y F ≡ ∀y ∀x F ∃x ∃y F ≡ ∃y ∃x F
¬∀x F ≡ ∃x ¬F ¬∃x F ≡ ∀x ¬F

∀x (F ∧ G) ≡ ∀x F ∧ ∀x G ∃x (F ∨ G) ≡ ∃x F ∨ ∃x G
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Conditional Quantifier Equivalences

Exactly as with QBFs:

∀x G ≡ G ∃x G ≡ G
∀x (F ∨ G) ≡ ∀x F ∨ G ∃x (F ∧ G) ≡ ∃x F ∧ G
∀x (F → G) ≡ ∃x F → G ∃x (F → G) ≡ ∀x F → G
∀x (G → F) ≡ G → ∀x F ∃x (G → F) ≡ G → ∃x F

if x is not free in G
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From English to FOL
First step
Choose a set of constant, function and predicate symbols to
represent specific individuals, functions, and relations, respectively

Example
Constant Intended meaning Function Intended meaning
ann some person named Ann mother(x) x’s mother
jane some person named Jane father(x) x’s father

Predicate Intended meaning Predicate Intended meaning
Person(x) x is a person Brothers(x, y) x and y are brothers
Married(x) x is married Sisters(x, y) x and y are sisters
Dog(x) x is a dog Siblings(x, y) x and y are siblings
Male(x) x is a male Cousin(x, y) x and y are first cousins
Female(x) x is a female Spouse(x, y) y is x’s spouse
Mammal(x) x is a mammal Parent(x, y) y is a parent of x
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From English to FOL, Examples
Dogs are mammals

∀x (Dog(x) → Mammal(x))

Brothers are siblings

∀x ∀y (Brothers(x, y) → Siblings(x, y))

"Siblings" is a symmetric relation

∀x ∀y (Siblings(x, y) → Siblings(y, x))

Jane is Ann’s mother

jane = mother(ann)

Ann’s mother and father are married

Spouse(mother(ann), father(ann))

Jane is married to some man

∃x (Person(x) ∧ Male(x) ∧ Spouse(jane, x))

Ann is Jane’s only daughter

jane = mother(ann) ∧
∀x (Female(x) ∧ mother(x) = jane → x = ann)

One’s mother is one’s female parent

∀x ∀y (y = mother(x) ↔ Female(y) ∧ Parent(x, y))

Everybody is somebody’s child

∀x (Person(x) → ∃y (Person(y) ∧ Parent(x, y)))

Some people have no children

∃x (Person(x) ∧ ∀y ¬Parent(y, x))

First cousins are people whose parents are siblings

∀x1 ∀x2 (Cousins(x1, x2) ↔
Person(x) ∧ Person(y) ∧ ∃p1 ∃p2 (Siblings(p1, p2) ∧ Parent(x1, p1) ∧ Parent(x2, p2)))
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Ann’s mother and father are married Spouse(mother(ann), father(ann))

Jane is married to some man ∃x (Person(x) ∧ Male(x) ∧ Spouse(jane, x))

Ann is Jane’s only daughter jane = mother(ann) ∧
∀x (Female(x) ∧ mother(x) = jane → x = ann)

One’s mother is one’s female parent ∀x ∀y (y = mother(x) ↔ Female(y) ∧ Parent(x, y))

Everybody is somebody’s child

∀x (Person(x) → ∃y (Person(y) ∧ Parent(x, y)))

Some people have no children

∃x (Person(x) ∧ ∀y ¬Parent(y, x))

First cousins are people whose parents are siblings

∀x1 ∀x2 (Cousins(x1, x2) ↔
Person(x) ∧ Person(y) ∧ ∃p1 ∃p2 (Siblings(p1, p2) ∧ Parent(x1, p1) ∧ Parent(x2, p2)))
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From FOL to English, Examples
∀x ¬(Persont(x) ∧ Siblings(x, x))

No one is his or her own sibling

∀x ∀y (Brothers(x, y) → Male(x) ∧ Male(y))

Brothers are male

∀x (Person(x) → (Male(x) ∨ Female(x)) ∧ ¬(Male(x) ∧ Female(x)))

Every person is either male or female but not both

∀x (Person(x) ∧ Married(x) → ∃y Spouse(x, y))

Married people have spouses

∀x ∀y (Person(x) ∧ Spouse(x, y) → Married(x))

Only married people have spouses

∀x ∀y (Person(x) ∧ Spouse(x, y) → ¬Siblings(x, y))

People cannot be married to their own siblings

¬∀x (Person(x) ∧ ∃y Parent(y, x) → Married(x))

Not everybody who has children is married

∀x ∀y (Person(x) ∧ Parent(x, y) → Person(y))

People’s parents are people too

∀x ∃y (Person(x) → y = mother(x))

Everyone has a mother

∃y ∀x (Person(x) → y = mother(x))

Everyone has the same mother
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Natural Deduction for FOL

The natural deduction inference system for PL extends to FOL

We need additional of rules for
• equality
• quantifiers
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Freeness

Let x be a variable, t a term, and F a formula of FOL

Recall Ft
x denotes the result of replacing every free occurrence of x in F by t

t is free for x in F if no free occurrence of x in F occurs in the scope of ∀∃ y
for any variable y of t

iff every variable of t remains free in Ft
x

Example F: S(x) ∧ ∀y (P(z) → Q(y))

Ff(y)
x : S(f(y)) ∧ ∀y (P(z) → Q(y)) Ff(y)

z : S(x) ∧ ∀y (P(f(y)) → Q(y))

Term f(y) is free for x in F but not for z
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= introduction and elimination

t = t
=i

s = t As
x s, t free for x in A

At
x

=e

There rules are sufficient to derive all main properties of equality:

⊢ a = a
a = b ⊢ b = a
a = b, b = c ⊢ a = c
a = b ⊢ f(a) = f(b)
a = b ⊢ P(a) ↔ P(b)
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Example derivation

a = b ⊢ b = a

Proof

1 a = b premise
2 a = a =i
3 b = a =e 1 applied to left-hand side of 2

How could be apply equality 1 to equality 2? By seeing 2 as (x = a)a
x :

a = b (x = a)a
x

(x = a)b
x

=e
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Example derivation

a = b, b = c ⊢ a = c

Proof

1 a = b premise
2 b = c premise
3 a = c =e 2 applied to right-hand side of 1

36 / 45

t = t
=i

s = t As
x

At
x

=e



Example derivation

a = b, b = c ⊢ a = c

Proof 1 a = b premise

2 b = c premise
3 a = c =e 2 applied to right-hand side of 1

36 / 45

t = t
=i

s = t As
x

At
x

=e



Example derivation

a = b, b = c ⊢ a = c

Proof 1 a = b premise
2 b = c premise

3 a = c =e 2 applied to right-hand side of 1

36 / 45

t = t
=i

s = t As
x

At
x

=e



Example derivation

a = b, b = c ⊢ a = c

Proof 1 a = b premise
2 b = c premise
3 a = c =e 2 applied to right-hand side of 1

36 / 45

t = t
=i

s = t As
x

At
x

=e



Example derivation

a = b ⊢ P(a) ↔ P(b)

Proof

1 a = b premise
2 P(a) assumption
3 P(a) → P(b) →i 2–3
4 a = a =i
5 b = a =e 1 applied to 5
6 P(b) → P(b) =e 1 applied to 4
7 P(b) → P(a) =e 6 applied to 7
8 P(a) ↔ P(b) ↔i 1, 2
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1 ∀z (P(z) → Q(z)) premise

2 ∃y P(y) premise

x0 3 P(x0) assumption

4 P(x0) → Q(x0) ∀e 1

5 Q(x0) →e 3, 4

6 ∃x Q(x) ∃i 5

7 ∃x Q(x) ∃e 2, 3–6
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Soundness of Natural Deduction

Let F, F1, . . . , Fn be FOL formulas

Theorem 2 (Soundness)
If F1, . . . , Fn ⊢ F then F1, . . . , Fn |= F .

As in Propositional Logic, the proof of reduces to proving that
• formulas derivable from no premises are valid
• new derivation rules preserve models
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Completeness of Natural Deduction

Let F, F1, . . . , Fn be FOL formulas

Theorem 3 (Completeness)
If F1, . . . , Fn |= F then F1, . . . , Fn ⊢ F .

As in Propositional Logic, the proof of reduces to proving that
• valid formulas are derivable from no premises

However, the full proof is considerably more complex than in the PL case
The first proof, by Kurt Gödel, was a milestone result in mathematical logic
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Undecidability of FOL

The problem of determining the validity of FOL formulas is only
semi-decidable:

There is no general procedure that for every formula F
is guaranteed to determine in finite time if F is invalid

In fact, FOL is powerful enough to encode faithfully several problems
known to be undecidable
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Decidable Fragments of FOL

Several useful restricted sublogics of FOL are decidable

Some of these sublogics are considered to great practical effect in

Satisfiability Modulo Theories
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