CS:4350 Logic in Computer Science

First-Order Logic

Cesare Tinelli

Spring 2022

The CIIIII
University
of lowa

Credits

Part of these slides are based on Chap. 2 of Logic in Computer Science by M. Huth and M. Ryan, Cambridge University Press, 2nd edition, 2004, and on some slides by S. Russel and P. Norvig

Outline

First-order Logic
Syntax
Interpretations
Semantics
Qualifying Arguments and Quantifiers
Quantifier Equivalences
From English to FOL and vice versa
A Natural Deduction Calculus for FOL

First-order Logic

Propositional logic talks about facts, statements that can be either true or false

First-order Logic

Propositional logic talks about facts, statements that can be either true or false

However, unlike natural language, it cannot directly talk about

- Objects: people, houses, numbers, theories, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, successor of, one more than, end of, ...

First-order Logic

Propositional logic talks about facts, statements that can be either true or false

However, unlike natural language, it cannot directly talk about

- Objects: people, houses, numbers, theories, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, successor of, one more than, end of, ...

> First-order logic (FOL) extends PL to do all of the above

Syntax of FOL: Basic Elements

Variables
Constantsymbols a b kingJohn potus 0
Function symbols sqrt(_) leftLeg(_) _ + _

Equality
Connectives
Quantifiers

Predicate symbols Married(_,_) Likes(_,_) _ > _ Even(_)
$x \quad y \quad z$
$\neg_{-} \wedge_{-} \vee_{-} \rightarrow_{-} \leftrightarrow_{-}$ $\forall x_{-} \quad \exists x_{-}$

Terms

- Every variable is a term
- Ever constant symbol is a term
- If $t_{1}, t_{2}, \ldots, t_{n}$ are terms and f is a function symbol of arity $n>0$, then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a term

Examples

$$
\left.\begin{array}{l}
x \quad y \quad a \quad \text { kim potus } 0 \\
x+(2-y)
\end{array} \quad 1 \quad x+2 \text { (infix syntax for }+(x, 2)\right)
$$

Atomic Formulas

- T and \perp are atomic formulas
- Every nullary predicate symbol is an atomic formula
- If t_{1}, t_{2} are terms then $t_{1}=t_{2}$ is an atomic formula
- If $t_{1}, t_{2}, \ldots, t_{n}$ are terms and p is a predicate symbol of arity $n>0$,
then $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is an atomic formula

Examples

$$
\begin{aligned}
& x=y \quad \text { Even }(x+2) \quad \text { Likes(father(kim), potus) } \\
& x+(2-y)>0 \quad \text { father }(\text { spouse }(\operatorname{kim}))=\text { joe } \quad \operatorname{avg}(2, x, 10)>x
\end{aligned}
$$

Formulas

Formulas are constructed from atomic formulas similarly to QBFs

- Every atomic formula is a formula
- If F and G are formulas, then $\neg F, F \rightarrow G$ and $F \leftrightarrow G$ are formulas
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $F_{1} \wedge \cdots \wedge F_{n}$ and $F_{1} \vee \cdots \vee F_{n}$ are formulas
- If x is a variable and F is a formula, then $\forall x F$ and $\exists x F$ are formulas

Precedence and associativity rules are as with QBFs

Formulas

Formulas are constructed from atomic formulas similarly to QBFs

- Every atomic formula is a formula
- If F and G are formulas, then $\neg F, F \rightarrow G$ and $F \leftrightarrow G$ are formulas
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $F_{1} \wedge \cdots \wedge F_{n}$ and $F_{1} \vee \cdots \vee F_{n}$ are formulas
- If x is a variable and F is a formula, then $\forall x F$ and $\exists x F$ are formulas

Precedence and associativity rules are as with QBFs
Example $\quad \forall x \forall y(\operatorname{Married}(x, y) \rightarrow \operatorname{Married}(y, x))$

$$
x>2 \vee 1<x \quad \exists y(y>1 \wedge \neg(y>2))
$$

Truth in FOL

Formulas are true or false with respect to

- an interpretation I of the constant, function and predicate symbols
- a universe \mathcal{U} of concrete values, or elements
\mathcal{U} is a set containing ≥ 1 elements
I maps

```
            variables }\mapsto\mathcal{U
    constant symbols }\mapsto\mathcal{U
predicate symbols }\mapsto\mathrm{ relations over }\mathcal{U
function symbols }\mapsto\mathrm{ functional relations over }\mathcal{U
```


Truth in FOL

Formulas are true or false with respect to

- an interpretation \mathcal{I} of the constant, function and predicate symbols
- a universe \mathcal{U} of concrete values, or elements

An atomic formula $p\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation
the elements denoted to by t_{1}, \ldots, t_{n} are in the relation denoted by p

Truth example

Consider the interpretation in which
> potus \mapsto Joe Biden
> fistLady \mapsto Jill Biden
> Married \mapsto the set consisting of all pairs of married people

Truth example

Consider the interpretation in which
> potus \mapsto Joe Biden
> fistLady \mapsto Jill Biden
> Married \mapsto the set consisting of all pairs of married people

In this interpretation,

- Married (potus, firstLady) is true
- Married(potus, potus) is false

Semantics of First-Order Logic

Formally:
An interpretation \mathcal{I} is a triple $\left(\mathcal{U},\left(_\right)^{\mathcal{I}}, \sigma\right)$ where

- \mathcal{U} is a non-empty set of objects, the universe or domain
- σ is a mapping from variables to \mathcal{U}, a valuation or environment
- $c^{\mathcal{I}}$ is an element in \mathcal{U} for every constant symbol c
- $f^{\mathcal{I}}$ is a function from \mathcal{U}^{n} to \mathcal{U} (a subset of $\mathcal{U}^{n} \times \mathcal{U}$) for every function symbol f of arity n
- $r^{\mathcal{I}}$ is a relation over \mathcal{U}^{n} (a subset of \mathcal{U}^{n}) for every predicate symbol r of arity n

Semantics of First-Order Logic

Formally:
An interpretation \mathcal{I} is a triple $\left(\mathcal{U},\left(_\right)^{\mathcal{I}}, \sigma\right)$ where

- \mathcal{U} is a non-empty set of objects, the universe or domain
- σ is a mapping from variables to \mathcal{U}, a valuation or environment
- $c^{\mathcal{I}}$ is an element in \mathcal{U} for every constant symbol c
- $f^{\mathcal{I}}$ is a function from \mathcal{U}^{n} to \mathcal{U} (a subset of $\mathcal{U}^{n} \times \mathcal{U}$) for every function symbol f of arity n
- $r^{\mathcal{I}}$ is a relation over \mathcal{U}^{n} (a subset of \mathcal{U}^{n}) for every predicate symbol r of arity n

Note

- An interpretation gives meaning to the non-logical symbols in formulas (constant, function, predicate symbols, and variables)
- The meaning of $=$, connectives and quantifiers is fixed for all interpretations

An Interpretation I in the Blocks World

constant symbols: $\quad b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$
function symbols: support
predicate symbols: On, Above, Clear

$$
\begin{aligned}
\mathrm{b}_{1}{ }^{\mathcal{I}}=\mathrm{a}, \mathrm{~b}_{2}{ }^{\mathcal{I}} & =\mathrm{b}, \mathrm{~b}_{3}{ }^{\mathcal{I}}=\mathrm{c}, \mathrm{~b}_{4}{ }^{\mathcal{I}}=\mathrm{d}, \mathrm{~b}_{5}{ }^{\mathcal{I}}=\mathrm{e}, \mathrm{~b}_{6}{ }^{\mathcal{I}}=\mathrm{t} \\
\text { support }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{t}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{t}),(\mathrm{t}, \mathrm{t})\} \\
\text { On }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{t}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{t})\} \\
\text { Above }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{t}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{t}),(\mathrm{c}, \mathrm{t}),(\mathrm{d}, \mathrm{e}),(\mathrm{d}, \mathrm{t}),(\mathrm{e}, \mathrm{t})\} \\
\text { Clear }^{\mathcal{I}} & =\{(\mathrm{a}),(\mathrm{d})\}
\end{aligned}
$$

Semantics of FOL Terms

I interpretation with universe \mathcal{U} and valuation σ

If e is an FOL expression, $\llbracket e \rrbracket^{\mathcal{I}}$ denotes the meaning of e in \mathcal{I}

Semantics of FOL Terms

I interpretation with universe \mathcal{U} and valuation σ

If e is an FOL expression, $\llbracket e \rrbracket^{\mathcal{I}}$ denotes the meaning of e in \mathcal{I}

For terms $t, \llbracket t \rrbracket^{\mathcal{I}}$ is an element of \mathcal{U} :

$$
\begin{array}{cl}
\llbracket x \rrbracket^{\mathcal{I}} \stackrel{\text { def }}{=} \sigma(x) & \text { for all variables } x \\
\llbracket c \rrbracket^{\mathcal{I}} \stackrel{\text { def }}{=} c^{\mathcal{I}} & \text { for all constant symbols } c \\
\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} \stackrel{\text { def }}{=} f^{\mathcal{I}}\left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) & \text { for all } n \text {-ary function symbols } f
\end{array}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where
mother ${ }^{I}$ is a unary function mapping people to their mother spouse $^{\mathcal{I}}$ is a unary function mapping people to their spouse $\sigma \quad$ is $\{x \mapsto$ Bart Simpson, $y \mapsto$ Homer Simpson,..$\}$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse $($ mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & = \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse $($ mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse $(\operatorname{mother}(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse $(\operatorname{mother}(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}{ }^{\mathcal{I}}(\sigma(x))\right) \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } . .\}
\end{aligned}
$$

What is the meaning of spouse $(\operatorname{mother}(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }^{\mathcal{I}}(\text { Bart })\right) \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } . .\}
\end{aligned}
$$

What is the meaning of spouse $(\operatorname{mother}(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}{ }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }^{\mathcal{I}}(\text { Bart })\right) \\
& =\operatorname{spouse}^{\mathcal{I}}(\text { Marge }) \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse $(\operatorname{mother}(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}{ }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }^{\mathcal{I}}(\text { Bart })\right) \\
& =\operatorname{spouse}^{\mathcal{I}}(\text { Marge }) \\
& =\text { Homer }
\end{aligned}
$$

Semantics of FOL Formulas

I interpretation with valuation σ
The meaning $\llbracket F \rrbracket^{I}$ of a formula F is either 1 (true) or 0 (false):

$$
\begin{array}{rllll}
\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket t_{1} \rrbracket^{\mathcal{I}} \text { is the same as } \llbracket t_{2} \rrbracket^{\mathcal{I}} \\
\llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) \in r^{\mathcal{I}} \\
\llbracket \neg F \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}}=0 \\
\llbracket F_{1} \wedge \cdots \wedge F_{n} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} 1 & \text { iff } & \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for all } i=1, \ldots, n \\
\llbracket F_{1} \vee \cdots \vee F_{n} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for some } i=1, \ldots, n \\
\llbracket F_{1} \rightarrow F_{2} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket \neg F_{1} \vee F_{2} \rrbracket^{\mathcal{I}}=1 \\
\llbracket \exists x F \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}^{\prime}}=1 \text { for some } \mathcal{I}^{\prime} \text { that disagrees with } \mathcal{I} \\
& & & \text { at most on } x
\end{array}
$$

Semantics of FOL Formulas

I interpretation with valuation σ
The meaning $\llbracket F \rrbracket^{I}$ of a formula F is either 1 (true) or 0 (false):

$$
\begin{array}{rllll}
\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket t_{1} \rrbracket^{\mathcal{I}} \text { is the same as } \llbracket t_{2} \rrbracket^{\mathcal{I}} \\
\llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) \in r^{\mathcal{I}} \\
\llbracket \neg F \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} & 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}}=0 \\
\llbracket F_{1} \wedge \cdots \wedge F_{n} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} 1 & \text { iff } \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for all } i=1, \ldots, n \\
\llbracket F_{1} \vee \cdots \vee F_{n} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} 1 & \text { iff } & \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for some } i=1, \ldots, n \\
\llbracket F_{1} \rightarrow F_{2} \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} 1 & \text { iff } \llbracket \neg F_{1} \vee F_{2} \rrbracket^{\mathcal{I}}=1 \\
\llbracket \exists x F \rrbracket^{\mathcal{I}} & \stackrel{\text { def }}{=} 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}^{\prime}}=1 \text { for some } \mathcal{I}^{\prime} \text { that disagrees with } \mathcal{I} \\
& & & \text { at most on } x
\end{array}
$$

Models, Validity, etc. as usual

An interpretation I satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

Models, Validity, etc. as usual

An interpretation I satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

A formula is satisfiable if it has at least one model

$$
\text { Ex: } \forall x x \geq y \quad \neg \forall x x \geq y \quad P(x) \quad \neg P(x)
$$

Models, Validity, etc. as usual

An interpretation I satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

A formula is satisfiable if it has at least one model

$$
\text { Ex: } \forall x x \geq y \quad \neg \forall x x \geq y \quad P(x) \quad \neg P(x)
$$

A formula is unsatisfiable if it has no models

$$
\text { Ex: } P(x) \wedge \neg P(x) \quad \neg(x=x) \quad \forall x \forall y Q(x, y) \wedge \neg Q(a, b)
$$

Models, Validity, etc. as usual

An interpretation I satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

A formula is satisfiable if it has at least one model

$$
\text { Ex: } \forall x x \geq y \quad \neg \forall x x \geq y \quad P(x) \quad \neg P(x)
$$

A formula is unsatisfiable if it has no models

$$
\text { Ex: } P(x) \wedge \neg P(x) \quad \neg(x=x) \quad \forall x \forall y Q(x, y) \wedge \neg Q(a, b)
$$

A formula is valid if it is satisfied by every interpretation

$$
\text { Ex: } P(x) \rightarrow P(x) \quad x=x \quad \forall x P(x) \rightarrow \exists x P(x)
$$

Models, Validity, etc. as usual

An interpretation \mathcal{I} satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

A formula is satisfiable

$$
\text { Ex: } \forall x x \geq y \quad \neg \forall x x \geq y \quad P(x) \quad \neg P(x)
$$

A formula is unsatisfiable if it has no models

$$
\text { Ex: } P(x) \wedge \neg P(x) \quad \neg(x=x) \quad \forall x \forall y Q(x, y) \wedge \neg Q(a, b)
$$

A formula is valid

$$
\text { Ex: } P(x) \rightarrow P(x) \quad x=x \quad \forall x P(x) \rightarrow \exists x P(x)
$$

Note: As in PL, F is valid/unsatisfiable iff $\neg F$ is unsatisfiable/valid

Models, Validity, etc. for Sets of Formulas

An interpretation satisfies a set S of formulas, or is a model of S, written $\mathcal{I} \models S$, if it is a model for every formula in S

Models, Validity, etc. for Sets of Formulas

An interpretation satisfies a set S of formulas, or is a model of S, written $\mathcal{I} \models S$, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: $\{\forall x x \geq 0, \forall x x+1>x\}$
S is unsatisfiable, or inconsistent, if it has no models
Ex: $\{P(x), \neg P(x)\}$
S entails a formula F, written $S \models F$, if every model for S is also a model for F

$$
\text { Ex: }\{\forall x(P(x) \rightarrow Q(x)), P(a)\} \mid=Q(a)
$$

Models, Validity, etc. for Sets of Formulas

An interpretation satisfies a set S of formulas, or is a model of S, written $\mathcal{I} \models S$, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: $\{\forall x x \geq 0, \forall x x+1>x\}$
S is unsatisfiable, or inconsistent, if it has no models
Ex: $\{P(x), \neg P(x)\}$
S entails a formula F, written $S \models F$, if every model for S is also a model for F

$$
\text { Ex: }\{\forall x(P(x) \rightarrow Q(x)), P(a)\} \models Q(a)
$$

Note: As in PL, $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable

Free and bound variables

The notions of

- quantifier scope,
- free/bound occurrence of a variable in a formula, and
- closed formula
are defined exactly as with QBFs

Free and bound variables

The notions of

- quantifier scope,
- free/bound occurrence of a variable in a formula, and
- closed formula
are defined exactly as with QBFs

Theorem 1
Let F be a closed formula and let I and I' be two interpretations that differ only for their variable valuations. Then,

$$
\mathcal{I} \models F \text { iff } \mathcal{I}^{\prime} \models F .
$$

Free and bound variables

I an interpretation

The satisfiability of a closed formula in \mathcal{I} does not depend on how \mathcal{I} interprets the variables

Free and bound variables

I an interpretation

The satisfiability of a closed formula in \mathcal{I} does not depend on how \mathcal{I} interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols

Example

$$
\exists x(2<x \wedge x<3)
$$

Free and bound variables

I an interpretation

The satisfiability of a closed formula in \mathcal{I} does not depend on how \mathcal{I} interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols

Example

$$
\exists x(2<x \wedge x<3)
$$

Free and bound variables

I an interpretation

The satisfiability of a closed formula in \mathcal{I} does not depend on how \mathcal{I} interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols

Example

$$
\exists x(2<x \wedge x<3)
$$

Free and bound variables

I an interpretation
The satisfiability of a closed formula in \mathcal{I} does not depend on how \mathcal{I} interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols

Example

$$
\exists x(2<x \wedge x<3)
$$

is true over the reals and false over the integers

Lots of Models

An FOL formula F can have either no models at all or infinitely many

Lots of Models

An FOL formula F can have either no models at all or infinitely many
Levels of freedom in constructing a model:
Cardinality of universe: finite $1,2, \ldots, n, \ldots$ or infinite Interpretation of each predicate symbol Interpretation of each function symbol Interpretation of each constant symbol Interpretation of each variable

Lots of Models

An FOL formula F can have either no models at all or infinitely many
Levels of freedom in constructing a model:
Cardinality of universe: finite $1,2, \ldots, n, \ldots$ or infinite Interpretation of each predicate symbol Interpretation of each function symbol Interpretation of each constant symbol Interpretation of each variable

Symbol	Interpretation choices in a universe U of cardinality n	
a	n	(\# of elements of U)
$P(-)$	2^{n}	(\# of subsets of U)
$Q(-,-)$	$2^{n^{2}}$	(\# of subsets of $\left.U^{2}\right)$
$R(-,-)$,	$2^{n^{3}}$	$\left(\#\right.$ of subsets of $\left.U^{3}\right)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b$
- $t=t$
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t$
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b) \quad$ is valid
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b) \quad$ is valid
- $f(a)=f(b) \rightarrow a=b \quad$ is invalid (not all functions are injective)
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in an interpretation iff t_{1} and t_{2} denote the same element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x \quad$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b) \quad$ is valid
- $f(a)=f(b) \rightarrow a=b \quad$ is invalid (not all functions are injective)
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c) \quad$ is valid

Qualifying Arguments and Quantifiers

FOL is an untyped logic:

- We assume a single set, the universe \mathcal{U}, containing everything we want to talk about
- All variables range over the entire \mathcal{U}
- Function and predicate symbols apply to any elements of \mathcal{U}

Qualifying Arguments and Quantifiers

FOL is an untyped logic:

- We assume a single set, the universe \mathcal{U}, containing everything we want to talk about
- All variables range over the entire \mathcal{U}
- Function and predicate symbols apply to any elements of \mathcal{U}

As in dynamically-typed programming languages (Javascript, Python, ...),
this makes it possible to write practically non-sensical expressions

Qualifying Arguments and Quantifiers

FOL is an untyped logic:

- We assume a single set, the universe \mathcal{U}, containing everything we want to talk about
- All variables range over the entire \mathcal{U}
- Function and predicate symbols apply to any elements of \mathcal{U}

As in dynamically-typed programming languages (Javascript, Python, ...),
this makes it possible to write practically non-sensical expressions
This issue can be addressed through the use of qualification

Qualifying Universal Quantification

How do we interpret this formula?
$\forall x$ Smart(x)

Qualifying Universal Quantification

How do we interpret this formula?

$\forall x$ Smart(x)

This statement is too broad (everything is smart?)

Qualifying Universal Quantification

How do we interpret this formula?

$$
\forall x \text { Smart(x) }
$$

We typically want to qualify the quantification

Qualifying Universal Quantification

How do we interpret this formula?

$\forall x$ Smart(x)

We typically want to qualify the quantification
Which set of elements are we saying are all smart?
People? Dogs? Students at lowa? Students at lowa taking this course? ...

Qualifying Universal Quantification

How do we interpret this formula?

$\forall x$ Smart(x)

We typically want to qualify the quantification
Which set of elements are we saying are all smart?
People? Dogs? Students at lowa? Students at lowa taking this course? ...
$\forall x($ Person $(\mathrm{x}) \rightarrow$ Smart $(\mathrm{x}))$
$\forall x(\operatorname{Dog}(\mathrm{x}) \rightarrow \operatorname{Smart}(\mathrm{x}))$
$\forall x($ Student $(x) \wedge$ At $(x$, Ulowa $) \rightarrow$ Smart $(x))$
$\forall x($ Student $(x) \wedge$ At $(x$, Ulowa $) \wedge$ Enrolled $(x$, CS4350 $) \rightarrow$ Smart $(x))$

Qualifying Existential Quantification

How do we interpret this formula?
$\exists x$ Smart(x)

Qualifying Existential Quantification

How do we interpret this formula?

```
\existsx Smart(x)
```

This statement is too vague (something is smart?)

Qualifying Existential Quantification

How do we interpret this formula?

$\exists x$ Smart(x)

Which element are we saying is smart?
Some person? Some dog? Some student at lowa?
Some student at lowa taking this course?

Qualifying Existential Quantification

How do we interpret this formula?

$\exists x$ Smart(x)

Which element are we saying is smart?
Some person? Some dog? Some student at lowa?
Some student at lowa taking this course?

```
\existsx(Person(x)^ Smart(x))
\existsx(\operatorname{Dog}(x)^ Smart(x))
\existsx(Student (x) ^ At (x, Ulowa) }\wedge\mathrm{ Smart (x))
\existsx(Student (x) ^At (x, Ulowa) ^ Enrolled (x, CS4350) }\wedge\mathrm{ Smart (x))
```


General Quantification Schemas

Universal quantification

$$
\forall \boldsymbol{x} \text { (Qualifier for } \boldsymbol{x} \rightarrow \text { Statement involving } \boldsymbol{x})
$$

Existential quantification
$\exists x$ (Qualifier for $x \wedge$ Statement involving x)

Incorrect Qualifications

$$
\forall x(\operatorname{Dog}(x) \wedge \operatorname{Smart}(\mathrm{x}))
$$

Incorrect Qualifications

$$
\forall x(\operatorname{Dog}(x) \wedge \operatorname{Smart}(x))
$$

This states that everything is a dog and is smart!

Incorrect Qualifications

$$
\forall x(\operatorname{Dog}(\mathrm{x}) \wedge \operatorname{Smart}(\mathrm{x}))
$$

This states that everything is a dog and is smart!

$$
\exists x(\operatorname{Dog}(\mathrm{x}) \rightarrow \operatorname{Smart}(\mathrm{x}))
$$

Incorrect Qualifications

$$
\forall x(\operatorname{Dog}(x) \wedge \operatorname{Smart}(x))
$$

This states that everything is a dog and is smart!

$$
\exists x(\operatorname{Dog}(\mathrm{x}) \rightarrow \operatorname{Smart}(\mathrm{x}))
$$

This is satisfied by any interpretation where $\operatorname{Dog}(x)$ is always false!

Useful Quantifier Equivalences

Exactly as with QBFs:

$$
\begin{aligned}
\forall x \forall y F & \equiv \forall y \forall x F & \exists x \exists y F & \equiv \exists y \exists x F \\
\neg \forall x F & \equiv \exists x \neg F & \neg \exists x F & \equiv \forall x \neg F \\
\forall x(F \wedge G) & \equiv \forall x F \wedge \forall x G & \exists x(F \vee G) & \equiv \exists x F \vee \exists x G
\end{aligned}
$$

Conditional Quantifier Equivalences

Exactly as with QBFs:

$$
\begin{aligned}
\forall x G & \equiv G & \exists x G & \equiv G \\
\forall x(F \vee G) & \equiv \forall x F \vee G & \exists x(F \wedge G) & \equiv \exists x F \wedge G \\
\forall x(F \rightarrow G) & \equiv \exists x F \rightarrow G & \exists x(F \rightarrow G) & \equiv \forall x F \rightarrow G \\
\forall x(G \rightarrow F) & \equiv G \rightarrow \forall x F & \exists x(G \rightarrow F) & \equiv G \rightarrow \exists x F
\end{aligned}
$$

if x is not free in G

From English to FOL

First step

Choose a set of constant, function and predicate symbols to represent specific individuals, functions, and relations, respectively

From English to FOL

First step

Choose a set of constant, function and predicate symbols to represent specific individuals, functions, and relations, respectively

Example

Constant	Intended meaning	Function	Intended meaning
ann	some person named Ann		
jane	some person named Jane	mother (x) father (x)	x 's mother x 's father

Predicate	Intended meaning	Predicate	Intended meaning
Person (x)	x is a person	$\operatorname{Brothers}(x, y)$	x and y are brothers
$\operatorname{Married}(x)$	x is married	$\operatorname{Sisters}(x, y)$	x and y are sisters
$\operatorname{Dog}(x)$	x is a dog	$\operatorname{Siblings}(x, y)$	x and y are siblings
$\operatorname{Male}(x)$	x is a male	$\operatorname{Cousin}(x, y)$	x and y are first cousins
Female (x)	x is a female	$\operatorname{Spouse}(x, y)$	y is x 's spouse
Mammal (x)	x is a mammal	Parent (x, y)	y is a parent of x

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
$\forall x(\operatorname{Dog}(x) \rightarrow$ Mammal $(x))$
$\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow$ Siblings $(x, y))$
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x))
\end{array}
$$

Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother

$$
\begin{aligned}
& \forall x(\operatorname{Dog}(x) \rightarrow \text { Mammal }(x)) \\
& \forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \text { Siblings }(x, y)) \\
& \forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
& \text { jane }=\text { mother(ann) }
\end{aligned}
$$

Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
\text { jane }=\text { mother }(\operatorname{ann}) \\
\text { Spouse }(\text { mother }(a n n), \text { father }(a n n))
\end{array}
$$

Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
\text { jane }=\text { mother }(\text { ann }) \\
\text { Spouse }(\text { mother }(\text { ann }), \text { father }(\text { ann })) \\
\exists x(\text { Person }(x) \wedge \operatorname{Male}(x) \wedge \text { Spouse }(\text { jane }, x)) \\
\text { jane }=\text { mother }(\text { ann }) \wedge
\end{array}
$$

One's mother is one's female parent
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
\text { jane }=\text { mother }(\text { ann }) \\
\text { Spouse }(\text { mother }(\text { ann }), \text { father }(\text { ann })) \\
\exists x(\operatorname{Person}(x) \wedge \operatorname{Male}(x) \wedge \text { Spouse }(\text { jane }, x)) \\
\text { jane }=\text { mother }(\text { ann }) \wedge
\end{array}
$$

One's mother is one's female parent $\quad \forall x \forall y(y=\operatorname{mother}(x) \leftrightarrow \operatorname{Female}(y) \wedge \operatorname{Parent}(x, y))$
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
\text { jane }=\text { mother }(\text { ann }) \\
\text { Spouse }(\text { mother }(\text { ann }), \text { father }(\text { ann })) \\
\exists x(\operatorname{Person}(x) \wedge \operatorname{Male}(x) \wedge \text { Spouse }(\text { jane }, x)) \\
\text { jane }=\text { mother }(\text { ann }) \wedge
\end{array}
$$

One's mother is one's female parent $\quad \forall x \forall y(y=\operatorname{mother}(x) \leftrightarrow \operatorname{Female}(y) \wedge \operatorname{Parent}(x, y))$
Everybody is somebody's child

Some people have no children
First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter

$$
\begin{array}{r}
\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x)) \\
\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y)) \\
\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x)) \\
\text { jane }=\text { mother }(\text { ann }) \\
\text { Spouse }(\text { mother }(\text { ann }), \text { father }(\text { ann })) \\
\exists x(\operatorname{Person}(x) \wedge \operatorname{Male}(x) \wedge \text { Spouse }(\text { jane }, x)) \\
\text { jane }=\text { mother }(\text { ann }) \wedge
\end{array}
$$

One's mother is one's female parent $\quad \forall x \forall y(y=\operatorname{mother}(x) \leftrightarrow \operatorname{Female}(y) \wedge \operatorname{Parent}(x, y))$
Everybody is somebody's child
$\forall x(\operatorname{Person}(x) \rightarrow \exists y(\operatorname{Person}(y) \wedge \operatorname{Parent}(x, y)))$
Some people have no children

First cousins are people whose parents are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Ann's mother
Ann's mother and father are married
Jane is married to some man
Ann is Jane's only daughter
$\forall x(\operatorname{Dog}(x) \rightarrow$ Mammal $(x))$
$\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y))$
$\forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x))$
jane $=$ mother $(a n n)$
Spouse(mother(ann), father(ann))
$\exists x(\operatorname{Person}(x) \wedge \operatorname{Male}(x) \wedge \operatorname{Spouse}($ jane,$x))$
jane $=\operatorname{mother}(a n n) \wedge$
$\forall x(\operatorname{Female}(x) \wedge \operatorname{mother}(x)=$ jane $\rightarrow x=$ ann $)$
$\forall x(\operatorname{Person}(x) \rightarrow \exists y(\operatorname{Person}(y) \wedge \operatorname{Parent}(x, y)))$
$\exists x(\operatorname{Person}(x) \wedge \forall y \neg \operatorname{Parent}(y, x))$
$\forall x_{1} \forall x_{2}$ (Cousins $\left(x_{1}, x_{2}\right) \leftrightarrow$
$\left.\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \exists p_{1} \exists p_{2}\left(\operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(x_{1}, p_{1}\right) \wedge \operatorname{Parent}\left(x_{2}, p_{2}\right)\right)\right)$

One's mother is one's female parent $\quad \forall x \forall y(y=\operatorname{mother}(x) \leftrightarrow \operatorname{Female}(y) \wedge \operatorname{Parent}(x, y))$
Everybody is somebody's child
Some people have no children
First cousins are people whose parents are siblings

From FOL to English, Examples

```
\forallx}\neg(\mathrm{ Persont (x) ^ Siblings (x,x))
\forallx\forally (Brothers }(x,y)->\operatorname{Male}(x)\wedge\operatorname{Male}(y)
\forallx(Person }(x)->(\mathrm{ Male }(x)\vee\operatorname{Female}(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
\forall (Person (x) ^ Married (x) ->\existsy Spouse (x,y))
\forallx\forally (Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally (Person (x) ^ Spouse (x,y) -> \negSiblings (x,y))
\neg \forall x ( P e r s o n ~ ( x ) ~ \wedge ~ \exists y ~ P a r e n t ~ ( y , x ) ~ \rightarrow ~ M a r r i e d ~ ( x ) ) ~
\forallx\forally (Person (x)^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person (x) }->y=\mathrm{ mother (x))
\existsy\forallx(Person (x) ->y = mother (x))
```


From FOL to English, Examples

```
\forallx\neg(Persont }(x)\wedge\mathrm{ Siblings }(x,x)
\forallx\forally(Brothers}(x,y)->Male(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
\forallx(Person (x) ^ Married (x) }->\existsy\mathrm{ Spouse (x,y))
\forallx\forally (Person (x) ^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally(Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
\neg \forall x ( \operatorname { P e r s o n } ( x ) \wedge \exists y ~ P a r e n t ~ ( y , x ) ~ \rightarrow ~ M a r r i e d ~ ( x ) )
\forallx \forally (Person (x)^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person}(x)->y=mother(x)
\existsy\forallx(Person (x) ->y = mother (x))
```

No one is his or her own sibling

From FOL to English, Examples

```
\forallx\neg(Persont (x) ^ Siblings (x, x))
    No one is his or her own sibling
\forallx\forally (Brothers }(x,y)->\operatorname{Male}(x)\wedge\operatorname{Male}(y)
                                    Brothers are male
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\operatorname{Female}(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
\forallx(Person (x) ^ Married (x) ->\existsy Spouse (x, y))
\forallx\forally (Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally(Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
\neg \forall x ( P e r s o n ~ ( x ) ~ \wedge ~ \exists y ~ P a r e n t ~ ( y , x ) ~ \rightarrow ~ M a r r i e d ~ ( x ) ) ~
\forallx\forally (Person (x) ^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person (x) }->y=\mathrm{ mother (x))
\existsy\forallx(Person (x) ->y = mother (x))
```


From FOL to English, Examples

```
\forallx\neg(Persont (x) ^ Siblings (x,x))
\forallx\forally (Brothers }(x,y)->\mathrm{ Male }(x)\wedge\mathrm{ Male (y))
No one is his or her own sibling
Brothers are male
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forallx(Person }(x)\wedge\operatorname{Married}(x)->\existsy\mathrm{ Spouse (x,y))
\forallx\forally(Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally(Person (x)^ Spouse (x,y) }->\neg\mathrm{ Siblings }(x,y)
\negx(Person (x) ^\existsy Parent (y,x) -> Married(x))
\forallx\forally (Person (x)^ Parent (x,y) -> Person(y))
\forallx\existsy(Person (x) ->y = mother (x))
\existsy\forallx(Person (x) ->y = mother (x))
```


From FOL to English, Examples

```
\forallx\neg(Persont (x) ^ Siblings (x,x))
\forallx\forally (Brothers }(x,y)->M\operatorname{Male}(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forallx(Person }(x)\wedge\operatorname{Married}(x)->\existsy\operatorname{Spouse}(x,y)
Married people have spouses
\forallx\forally(Person (x) ^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally(Person (x)^ Spouse (x,y) }->\neg\mathrm{ Siblings }(x,y)
\negx(Person }(x)\wedge\existsy\operatorname{Parent}(y,x)->\operatorname{Married}(x)
\forallx\forally (Person (x) ^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person (x) ->y = mother (x))
\existsy\forallx(Person (x) ->y = mother (x))
```


From FOL to English, Examples

```
\forallx\neg(Persont }(x)\wedge\operatorname{Siblings}(x,x))\quadNo one is his or her own sibling
\forallx\forally(Brothers}(x,y)->Male(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\operatorname{Female}(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forall (Person ( }x\mathrm{ ) ^ Married ( }x\mathrm{ ) }->\existsy\mathrm{ Spouse (x, y))
\forallx \forally (Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally(Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
\neg \forall x ( P e r s o n ~ ( x ) ~ \wedge ~ \exists y ~ P a r e n t ~ ( y , x ) ~ \rightarrow ~ M a r r i e d ~ ( x ) ) ~
\forallx\forally (Person (x) ^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person (x) }->y=\mathrm{ mother (x))
\existsy\forallx(Person (x) }->y=mother(x)
```


From FOL to English, Examples

```
\forallx\neg(Persont (x)\wedge Siblings (x,x)) No one is his or her own sibling
\forallx\forally (Brothers }(x,y)->M\operatorname{Male}(x)\wedge Male(y)
Brothers are male
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forall (Person (x) ^ Married (x) ->\existsy Spouse(x,y))
\forallx \forally (Person ( }x\mathrm{ ) ^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally (Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
People cannot be married to their own siblings
\neg \forall x ( P e r s o n ~ ( x ) ~ \wedge ~ \exists y ~ P a r e n t ~ ( y , x ) ~ \rightarrow ~ M a r r i e d ~ ( x ) ) ~
\forallx \forally (Person (x)^ Parent (x,y) }->\mathrm{ Person(y))
\forallx\existsy(Person (x) }->y=\mathrm{ mother (x))
\existsy\forallx(Person (x) ->y = mother(x))
```


From FOL to English, Examples

```
\forallx\neg(Persont (x)\wedge Siblings (x,x)) No one is his or her own sibling
\forallx\forally (Brothers }(x,y)->M\operatorname{Male}(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forallx(Person }(x)\wedge\operatorname{Married}(x)->\existsy\mathrm{ Spouse (x,y))
\forallx\forally(Person (x)^ Spouse (x,y) -> Married (x))
\forallx\forally(Person }(x)\wedge\mathrm{ Spouse }(x,y)->\neg\operatorname{Siblings}(x,y)
People cannot be married to their own siblings
\(\neg \forall x(\operatorname{Person}(x) \wedge \exists y \operatorname{Parent}(y, x) \rightarrow \operatorname{Married}(x))\)
Not everybody who has children is married
\(\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(x, y) \rightarrow \operatorname{Person}(y))\)
\(\forall x \exists y(\operatorname{Person}(x) \rightarrow y=\) mother \((x))\)
\(\exists y \forall x(\operatorname{Person}(x) \rightarrow y=\) mother \((x))\)
```


From FOL to English, Examples

```
\forallx\neg(Persont (x) ^ Siblings (x,x))
\forallx\forally (Brothers }(x,y)->\mathrm{ Male }(x)\wedge\mathrm{ Male (y))
    No one is his or her own sibling
    Brothers are male
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\operatorname{Female}(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
    Every person is either male or female but not both
\forall (Person ( }x\mathrm{ ) ^ Married ( }x\mathrm{ ) }->\existsy\mathrm{ Spouse (x, y))
\forallx \forally (Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally (Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
People cannot be married to their own siblings
\negx(Person (x)^\existsy Parent (y,x) -> Married (x))
Not everybody who has children is married
\(\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(x, y) \rightarrow\) Person \((y))\)
People's parents are people too
\(\forall x \exists y(\operatorname{Person}(x) \rightarrow y=\) mother \((x))\)
\(\exists y \forall x(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x))\)
```


From FOL to English, Examples

```
\forallx\neg(Persont (x)\wedge Siblings (x,x)) No one is his or her own sibling
\forallx\forally (Brothers }(x,y)->M\operatorname{Male}(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forallx(Person }(x)\wedge\operatorname{Married}(x)->\existsy\mathrm{ Spouse (x,y))
\forallx\forally(Person (x)^ Spouse (x,y) -> Married (x))
\forallx\forally(Person }(x)\wedge\mathrm{ Spouse }(x,y)->\neg\operatorname{Siblings}(x,y)
People cannot be married to their own siblings
\negx (Person (x) ^\existsy Parent (y,x) -> Married (x))
Not everybody who has children is married
```

$\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(x, y) \rightarrow \operatorname{Person}(y))$
$\forall x \exists y(\operatorname{Person}(x) \rightarrow y=$ mother $(x))$
$\exists y \forall x(\operatorname{Person}(x) \rightarrow y=$ mother $(x))$

People's parents are people too
Everyone has a mother

From FOL to English, Examples

```
\forallx\neg(Persont }(x)\wedge\operatorname{Siblings}(x,x))\quadNo one is his or her own sibling
\forallx\forally(Brothers}(x,y)->Male(x)\wedge Male(y)
\forallx(Person }(x)->(\operatorname{Male}(x)\vee\mathrm{ Female }(x))\wedge\neg(\operatorname{Male}(x)\wedge\mathrm{ Female }(x))
Every person is either male or female but not both
\forall (Person ( }x\mathrm{ ) ^ Married ( }x\mathrm{ ) }->\existsy\mathrm{ Spouse (x, y))
\forallx \forally (Person (x)^ Spouse (x,y) }->\mathrm{ Married (x))
\forallx\forally (Person (x)^ Spouse (x,y) ->\negSiblings (x,y))
People cannot be married to their own siblings
\negx(Person (x)^\existsy Parent (y,x) -> Married (x))
Not everybody who has children is married
```

$\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(x, y) \rightarrow \operatorname{Person}(y))$
$\forall x \exists y(\operatorname{Person}(x) \rightarrow y=$ mother $(x))$
$\exists y \forall x(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x))$

People's parents are people too
Everyone has a mother
Everyone has the same mother

Natural Deduction for FOL

The natural deduction inference system for PL extends to FOL

We need additional of rules for

- equality
- quantifiers

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall F_{x}^{t} denotes the result of replacing every free occurrence of x in F by t

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall $\quad F_{x}^{t}$ denotes the result of replacing every free occurrence of x in F by t
t is free for x in F if no free occurrence of x in F occurs in the scope of $\exists y y$ for any variable y of t
iff every variable of t remains free in F_{x}^{t}

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall $\quad F_{x}^{t}$ denotes the result of replacing every free occurrence of x in F by t
t is free for x in F if no free occurrence of x in F occurs in the scope of $\exists \forall y$ for any variable y of t
iff every variable of t remains free in F_{x}^{t}
Example $\quad F: S(x) \wedge \forall y(P(z) \rightarrow Q(y))$

$$
F_{x}^{f(y)}: S(f(y)) \wedge \forall y(P(z) \rightarrow Q(y)) \quad F_{z}^{f(y)}: S(x) \wedge \forall y(P(f(y)) \rightarrow Q(y))
$$

Term $f(y)$ is free for x in F but not for z
$=$ introduction and elimination

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s} \quad s, t \text { free for } x \text { in } A}{A_{x}^{t}}=\mathrm{e}
$$

$=$ introduction and elimination

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s} \quad s, t \text { free for } x \text { in } A}{A_{x}^{t}}=\mathrm{e}
$$

There rules are sufficient to derive all main properties of equality:
$\vdash a=a$
$a=b \vdash b=a$
$a=b, b=c \vdash a=c$
$a=b \vdash f(a)=f(b)$
$a=b \vdash P(a) \leftrightarrow P(b)$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

Proof $1 a=b$ premise

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

$$
\begin{array}{ll}
\text { Proof } \quad{ }_{1} \quad & a=b \\
& \\
& a=a \quad=\mathrm{i}
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

$\begin{array}{rl}\text { Proof } \quad{ }_{1} \quad a=b \quad \text { premise } \\ { }_{2} \quad a=a=\mathrm{i} \\ 3 & b=a \quad=\mathrm{e} \quad 1 \text { applied to left-hand side of } 2\end{array}$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

$$
\begin{aligned}
& \text { Proof } \quad \begin{array}{l}
\text { 1 } \quad a=b \quad \text { premise } \\
2
\end{array} \quad a=a=\mathrm{i} \\
& 3 \quad b=a \quad=\mathrm{e} \quad 1 \text { applied to left-hand side of } 2
\end{aligned}
$$

How could be apply equality 1 to equality 2 ?

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

Proof $1 \quad a=b$ premise
2 $\quad a=a \quad=\mathrm{i}$
$3 \quad b=a=\mathrm{e} \quad 1$ applied to left-hand side of 2

How could be apply equality 1 to equality 2? By seeing 2 as $(x=a)_{x}^{a}$:

$$
\frac{a=b \quad(x=a)_{x}^{a}}{(x=a)_{x}^{b}}=\mathrm{e}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Proof $\quad a=b$ premise

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Proof ${ }_{1} a=b$ premise
2 $b=c \quad$ premise

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Proof $1 \quad a=b$ premise
2 $b=c \quad$ premise
$3 \quad a=c=\mathrm{e} \quad 2$ applied to right-hand side of 1

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\text { Proof } \quad a=b \quad \text { premise }
$$

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

Proof	${ }_{1}$	$a=b$
2 $P(a)$ assumption 3 $P(b)$ $=e \quad 1$ applied to 2		

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{gathered}
\text { Proof } \begin{array}{lll}
{ }_{1} & a=b & \text { premise } \\
\begin{array}{|lll}
2 & P(a) & \text { assumption } \\
3 & P(b) & =\text { e } \quad 1 \text { applied to 2 } \\
& 4 & P(a) \rightarrow P(b)
\end{array} \rightarrow \text { i } 2-3
\end{array}
\end{gathered}
$$

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

Proof \begin{tabular}{rll}
\& ${ }_{1}$ \& $a=b$

2	$P(a)$	assumption
3	$P(b)$	$=\mathrm{e} \quad 1$ applied to 2
${ }_{4}$	$P(a) \rightarrow P(b)$	$\rightarrow \mathrm{i} 2-3$
5	$a=a$	$=\mathrm{i}$

\end{tabular}

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\left.\begin{array}{lll}
\text { Proof } & { }_{1} & a=b
\end{array}\right) \text { premise } .
$$

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{aligned}
& \text { Proof }{ }_{1} a=b \quad \text { premise } \\
& \begin{array}{|lll|}
\hline{ }_{2} & P(a) & \text { assumption } \\
3 & P(b) & =\mathrm{e} \quad 1 \text { applied to } 2 \\
\hline
\end{array} \\
& 4 \quad P(a) \rightarrow P(b) \rightarrow \text { 2-3 } \\
& { }_{5} a=a \quad=\mathrm{i} \\
& 6 \quad b=a \quad=\mathrm{e} \quad 1 \text { applied to } 5 \\
& { }_{7} \quad P(b) \rightarrow P(b)=\mathrm{e} \quad 1 \text { applied to } 4
\end{aligned}
$$

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

Proof	1	$a=b$	premise	
	2	$P(a)$		umption
	3	$P(b)$		1 applied to 2
	4	$P(a) \rightarrow P(b)$		
	5	$a=a$	$=\mathrm{i}$	
	6	$b=a$	$=\mathrm{e}$	1 applied to 5
	7	$P(b) \rightarrow P(b)$	$=\mathrm{e}$	1 applied to 4
		$P(b) \rightarrow P(a)$	$=\mathrm{e}$	6 applied to 7

Example derivation

$$
\frac{A \rightarrow B \quad B \rightarrow A}{A \leftrightarrow B} \leftrightarrow \mathrm{i} \quad \overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{array}{cll}
\text { Proof } & { }_{1} & a=b \\
\begin{array}{|lll}
{ }_{2} & P(a) & \text { assumption } \\
3 & P(b) & =\mathrm{e} \quad 1 \text { applied to } 2 \\
{ }_{4} & P(a) \rightarrow P(b) & \rightarrow \mathrm{i} \\
2-3 \\
5 & a=a & =\mathrm{i} \\
6 & b=a & =\mathrm{e} \quad 1 \text { applied to } 5 \\
7 & P(b) \rightarrow P(b) & =\mathrm{e} \quad 1 \text { applied to } 4 \\
8 & P(b) \rightarrow P(a) & =\mathrm{e} \quad 6 \text { applied to } 7 \\
9 & P(a) \leftrightarrow P(b) & \leftrightarrow \mathrm{i} \\
1,2
\end{array}
\end{array}
$$

\forall introduction and elimination

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$
${ }_{1} \forall z P(z)$ premise

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$

$$
\begin{array}{lll}
1 & \forall z P(z) & \text { premise } \\
= & P(a) & \forall \mathrm{e} \quad 1
\end{array}
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

$$
{ }_{1} \quad \forall z(P(z) \wedge Q(z)) \quad \text { premise }
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$
${ }_{1} \quad \forall z(P(z) \wedge Q(z)) \quad$ premise
$x_{0} \quad 2$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

$$
{ }_{1} \quad \forall z(P(z) \wedge Q(z)) \quad \text { premise }
$$

$x_{0} \quad 2$

$$
3 \quad P\left(x_{0}\right) \wedge Q\left(x_{0}\right) \quad \forall \mathrm{e} \quad 1
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

$$
x_{0} \quad 2
$$

$$
\begin{array}{lll}
1 & \forall z(P(z) \wedge Q(z)) & \text { premise } \\
2 & & \\
{ }_{3} & P\left(x_{0}\right) \wedge Q\left(x_{0}\right) & \forall \mathrm{e} \\
{ }_{4} & 1 \\
& Q\left(x_{0}\right) & \wedge \mathrm{e}_{2}
\end{array} \quad 2
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

	1	$\forall z(P(z) \wedge Q(z)$	premise
x_{0}	2		
	3	$P\left(x_{0}\right) \wedge Q\left(x_{0}\right)$	$\forall \mathrm{e} \quad 1$
	4	$Q\left(x_{0}\right)$	$\wedge \mathrm{e}_{2} \quad 2$
		$\forall y Q(y)$	$\forall \mathrm{i}$ 2-5

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$
$0 \quad 1$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

$$
\begin{array}{lll}
x_{0} & 1 & \\
& { }_{2} & x_{0}=x_{0} \quad=\mathrm{i}
\end{array}
$$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

$$
\begin{array}{|lllll|}
\hline x_{0} & 1 & & & \\
& 2 & x_{0}=x_{0} & =\mathrm{i} & \\
\hline & 3 & \forall x x=x \quad \forall \mathrm{i} & 1-2
\end{array}
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

$X_{0} \quad 1$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

```
X0 1
y0 2
```

Example derivation

$$
\begin{array}{lll}
& & \vdash \forall x \forall y(x=y \rightarrow f(x)=f(y)) \\
x_{0} & { }_{1} \\
y_{0} & { }_{2} & \\
& & \\
& x_{0}=y_{0} & \text { assun }
\end{array}
$$

Example derivation

$$
\begin{array}{lll}
& & \vdash \forall x \forall y(x=y \rightarrow f(x)=f(y)) \\
x_{0} & & \\
y_{0} & & \\
y_{2} & & \\
& & \\
& & x_{0}=y_{0} \\
4 & f\left(x_{0}\right)=f\left(x_{0}\right) & =\mathrm{assumption}
\end{array}
$$

Example derivation

$$
\begin{array}{lll}
& & \vdash \forall x \forall y(x=y \rightarrow f(x)=f(y)) \\
x_{0} & { }_{1} & \\
y_{0} & { }_{2} & \\
& & \\
& & \\
& x_{0}=y_{0} & \text { assumption } \\
& & =\mathrm{i} \\
4 & f\left(x_{0}\right)=f\left(x_{0}\right) & =\mathrm{e} \quad 3 \text { applied to } 4
\end{array}
$$

Example derivation

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

$X_{0} \quad 1$

y_{0}	2		
	3	$x_{0}=y_{0}$	assumption
4	$f\left(x_{0}\right)=f\left(x_{0}\right)$	$=\mathrm{i}$	
	5	$f\left(x_{0}\right)=f\left(y_{0}\right)$	$=\mathrm{e} \quad 3$ applied to 4
6	$x_{0}=y_{0} \rightarrow f\left(x_{0}\right)=f\left(y_{0}\right)$	$\rightarrow \mathrm{i} \quad 3-5$	
	$\forall y\left(x_{0}=y \rightarrow f\left(x_{0}\right)=f(y)\right)$	$\forall \mathrm{i} \quad 2-6$	

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

X_{0}	1	
y_{0}	2	
	$3 \quad x_{0}=y_{0}$	assumption
	$4 \quad f\left(x_{0}\right)=f\left(x_{0}\right)$	$=\mathrm{i}$
	$5 \quad f\left(x_{0}\right)=f\left(y_{0}\right)$	$=\mathrm{e} \quad 3$ applied to 4
	$6 \quad x_{0}=y_{0} \rightarrow f\left(x_{0}\right)=f\left(y_{0}\right)$	$\rightarrow \mathrm{i} \quad 3-5$
	$7 \quad \forall y\left(x_{0}=y \rightarrow f\left(x_{0}\right)=f(y)\right)$	$\forall \mathrm{i} \quad 2-6$
	$8 \quad \forall x \forall y(x=y \rightarrow f(x)=f(y))$	$\forall \mathrm{i} \quad 1-7$

\exists introduction and elimination

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$
${ }_{1} \quad P(a) \quad$ premise

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$

$$
\begin{array}{lll}
1 & P(a) & \text { premise } \\
2 & \exists z P(z) & \exists \mathrm{i}
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$
$1 \exists x P(x) \quad$ premise

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{lll}
1 & \exists x P(x) & \text { premise } \\
2 & \forall x \neg P(x) & \text { premise }
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& 1 & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption }
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& 1 & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption } \\
& 4 & \neg P\left(x_{0}\right) & \forall \mathrm{e} \quad 3
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& { }_{1} & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption } \\
& 4 & \neg P\left(x_{0}\right) & \forall \mathrm{e} \quad 3 \\
& 5 & \perp & \neg \mathrm{e} \quad 3,4
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

		$\exists x P(x)$	premise
	2	$\forall x \neg P(x)$	premise
x_{0}	3	$P\left(x_{0}\right)$	assumption
	4	$\neg P\left(x_{0}\right)$	$\forall \mathrm{e} 3$
	5	\perp	$\neg \mathrm{e} \quad 3,4$
	6	\perp	$\exists \mathrm{e}$ 1, 3-5

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

Example derivation

$$
\begin{gathered}
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
\quad 1 \quad \forall z(P(z) \rightarrow Q(z)) \quad \text { premise }
\end{gathered}
$$

Example derivation

$$
\begin{aligned}
& \forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
& \\
& \quad \forall z(P(z) \rightarrow Q(z)) \text { premise } \\
&=\quad \exists y P(y) \text { premise }
\end{aligned}
$$

Example derivation

$$
\begin{aligned}
& \forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
& { }_{1} \quad \forall z(P(z) \rightarrow Q(z)) \quad \text { premise } \\
& =\exists y P(y) \quad \text { premise } \\
& x_{0} \quad 3 \quad P\left(x_{0}\right) \quad \text { assumption }
\end{aligned}
$$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

${ }_{1} \quad \forall z(P(z) \rightarrow Q(z)) \quad$ premise
$2 \exists y P(y) \quad$ premise
$x_{0} \quad 3 P\left(x_{0}\right) \quad$ assumption
${ }_{4} P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right) \quad \forall \mathrm{e} \quad 1$

Example derivation

$$
\begin{array}{rll}
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) & \vdash \exists x Q(x) \\
& & \\
x_{0} & \forall z(P(z) \rightarrow Q(z)) & \text { premise } \\
x_{0} & \exists y P(y) & \text { premise } \\
{ }_{3} & P\left(x_{0}\right) & \text { assumption } \\
{ }_{4} & P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right) & \forall \mathrm{e} \quad 1 \\
{ }_{5} & Q\left(x_{0}\right) & \rightarrow \mathrm{e} \quad 3,4
\end{array}
$$

Example derivation

$$
\begin{array}{rll}
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) & \vdash \exists x Q(x) \\
& & \\
& & \\
{ }_{1} & \forall z(P(z) \rightarrow Q(z)) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) \\
4 & P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right) & \text { premise } \\
& & \text { assumption } \\
5 & Q\left(x_{0}\right) & \rightarrow \mathrm{e} \quad 3,4 \\
6 & \exists x Q(x) & \exists \mathrm{i} 5
\end{array}
$$

Example derivation

Soundness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas

Theorem 2 (Soundness)
If $F_{1}, \ldots, F_{n} \vdash F$ then $F_{1}, \ldots, F_{n} \models F$.

Soundness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas

Theorem 2 (Soundness)
If $F_{1}, \ldots, F_{n} \vdash F$ then $F_{1}, \ldots, F_{n} \models F$.

As in Propositional Logic, the proof of reduces to proving that

- formulas derivable from no premises are valid
- new derivation rules preserve models

Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas

Theorem 3 (Completeness)
If $F_{1}, \ldots, F_{n} \models F$ then $F_{1}, \ldots, F_{n} \vdash F$.

Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas

Theorem 3 (Completeness)
If $F_{1}, \ldots, F_{n} \models F$ then $F_{1}, \ldots, F_{n} \vdash F$.

As in Propositional Logic, the proof of reduces to proving that

- valid formulas are derivable from no premises

Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas

Theorem 3 (Completeness)
If $F_{1}, \ldots, F_{n} \models F$ then $F_{1}, \ldots, F_{n} \vdash F$.

As in Propositional Logic, the proof of reduces to proving that

- valid formulas are derivable from no premises

However, the full proof is considerably more complex than in the PL case
The first proof, by Kurt Gödel, was a milestone result in mathematical logic

Undecidability of FOL

The problem of determining the validity of FOL formulas is only semi-decidable:

There is no general procedure that for every formula F is guaranteed to determine in finite time if F is invalid

Undecidability of FOL

The problem of determining the validity of FOL formulas is only semi-decidable:

There is no general procedure that for every formula F is guaranteed to determine in finite time if F is invalid

In fact, FOL is powerful enough to encode faithfully several problems known to be undecidable

Decidable Fragments of FOL

Several useful restricted sublogics of FOL are decidable

Decidable Fragments of FOL

Several useful restricted sublogics of FOL are decidable

Some of these sublogics are considered to great practical effect in
Satisfiability Modulo Theories

