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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their
propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing
problems at a level of abstraction closer to that of natural language

However, in many cases, problems expressed in these languages can then be
translated to propositional logic
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Circuit Design

S_ha

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is
port (A, B, Cin : in std_lo§ic;
Sum, Cout : out std_logic
end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal intl, int2, int3: std_logic;
begin
P1: process (A, B)
begin
intl<= A xor B;
int2<= A and B;
end process;
P2: process (intl, int2, Cin)
begin
Sum <= intl xor Cin;
int3 <= intl and Cin;
Cout <= int2 or int3;
end process;
end BEHAV_FA;

H

Circuit: propositional logic

Design: high-level description
language (VHDL)
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Scheduling

All Second Year Timetable 2009-2010 Level 2
prntable Monday Tuesday Wednesday Thursday Friday
Timetable
08:00 - - - - -
09:00 |MATH20701 CRAW TH.1 COMP20051 1.1 6C G23 108} G23 UNIX
scoMP203404] 17407 | rCOMP20081 (8} 623 |rcoMP20340(4] 1m0z
14l a2 UNIX ] @23
MBS EAST B8 ROSCOE 1.007 1141 UNIX|
HCOMP20081(8] G23
10:00 + CRAW TH.1 a3 ROSCOE 1.007 RENG CO16.
SIMON B (B.41) cCOMP20010 G23 | GCOMP20340(A 1T407 (Al G23 rCH UNIX
COMP20340 "‘ FCOMP20241(wit] Toot 1| HCOMP20411141 G23| FCOMP20081(8] G23 rCOMP20340(A] 17407
MATH20701 Mans Coop G20 BMAN10621 e — . s
GCOMP2041114] UNIX,
HCOMP20081(3] G23
11:00 |BMAN20871 MBS EAST B8 CRAW TH.1 1.1 1 G23 W UNIX
MATH29631 SACKVILLE FO47 G623 UNIX HCOMP 2034001 407
MATH10141 3 Toot 1 ENO GOO02 a3
BMANL0621 1.1 BMAN10621 ROSCOE 1.008 MATH20111 TURING G.107 rCOMP2041114) G23
rcoMP20241 LF15
MATHI0141  RENO CO16
12:00 |BMAN21061 ROSCOE 1.008 COMP PAss LF15 c+#COMP20081(3] G23 MATH20111 TURING G.207 MATH20201 UNIPLB
EEEN20019 RENG C002 MATH20411 TURING 6,107 MATH10141  RENO CO16. 4] 623 ey UNIX,
MATH20411 SCH BLACKETT UNIX 1ra07
ICOMP20081(5] G623
FCOMP20411(A1 G23
13:00 |FCOMP20340(A1 1T407 COMP20411 1.1 - COMP20141 1.1 EEEN20019 SSB A16
FCOMP20340(3! UNIX MATH20701  TURING €.107
scomMP20081(8] 623
ICOMP200511A wa+] G23
MATH20411  TURING 6.107
14:00 |BMAN20880 SIMON 3 (3.40) EEEN-LAB 2 e BMAN21061  CRAW TH.2 COMP20141 11
EEEN20019 RENC CO09 COMP20411 1.1 MATH20201 ROSC A EEEN20019 SSB AL6
MATH20111  TURING G.207
FCOMP20340(81 a7
FCOMP20340!8! UNIX
scoMP20081(8] 623
HCOMP20051(A w341 623
15:00 |#COMP20051IAw3t] G23 2nd Yr Tutorial - COMP20051 1.1 COMP20011 1.1
UNIX 1 Toot1 MATH29631 SACKVILLE G037
BMAN20880 SIMON 3 (3.40) EEEN-LAB. ?
16:00 |MATH20201 RENO €016 CARS20021 UNIPLB - COMP20081 1.1 EEEN20027 RENO COD9
HCOMP20051 14 wi+] G23 MATH20411 SCH BLACKETT BMAN20890 CRAW TH.2 MATH20111
CoMP20010 UNIX cCOMP20241043+]  Toot1 2nd ¥r Tutorial ZOCHONIS TH.B (6.7)
EEEN-LAB ?
17:00 - CARS20021 UNIPLB - BMAN20890 CRAW TH.2 -

m AN20880 weeks 8,9 & 10
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Constraints on Solutions

Registra

n Week Timetables

Year 1

% All First Years

All Single Hons (+CBA/IC) A+W+X+Y4Z
All Single Hons (-CBA/IC) W4X+Y+Z
Group A - (CBA + IC)

Group B - (CSWBM: C+D)

Group € - (CSWBM)

Group D - (CSwBM)

Group E - (CSE)

= Group M - (CM)

Group W - (CS,SE,DC,AT}

Group X - (CS,SE,DC,AI)

Group ¥ - (CS,SE,DC,AI)

Group Z - (CS,SE,DC,AL)

Lab grouping A+Z

Lab grouping C+X

Lab grouping D+E+Y

Lab grouping D+Y

Lab grouping M+W

Service Units

Taking BMAN courseunits A+B.

Year 2

All Second Year

Joint Hons (CM)

Joint Hons (CSE)

Joint Hons (CSwBM)

Lab Group F

S Lab Group G

Lab Group H

Lab Group 1

Single Hons (CBA)

= single Hons (CS, SE, DC, AI)

Year 3

5 All Former Sol

All Third Years

Joint Hons (CM)

Joint Hons (CSwBM)

Single Hons (CBA)

Single Hons (Computer Science)

Single Hons (Internet Computing)

Single Hons (Software Engineering - Informatics)

Room Timetables
UG Teaching Rooms

s G33 24 seats
5 Advisory 7 seats
5 LFS 9 seats
& 1re 9 seats
LF15 70 seats
S LF17 27 seats

ITa06 24 seats
= IT407 100 seats

PG Teaching Rooms
5 2,19 100 seats

= 2.15 40 seats

UG Labs

S Toot1 40 seats

s Toot 0 28 seats

Collab 2 4 Pods seats

Collab 1 8 Pods seats

PEVELab ? seats

5 623 65 seats

= 3rdlab 61 seats

S UNIX  70seats
(Al labs]

Meeting Rooms

<120  ?seats

233 15seats
S Atlas 1 28 seats
S Atlas 2 22 seats

1401 24 seats

Mercury 24 seats

=

Rooms should have enough
seats

Instructors cannot teach
two courses at the same
time

Prof. Nightowl cannot teach
at9am
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Our main interest from now on is modeling state-changing systems
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State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken

by the system

Informally

Formally

At each step, the system is in a partic-
ular state

States can be characterized by values
of a set of state variables.

The system state changes over time

There are actions (controlled or not)
that change the state

Actions change values of some of the
state variables
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Computational systems are state-changing systems

Reactive systems
Systems maintaining an ongoing interaction with their environment, as opposed
to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices
(microwaves, traffic lights, trains, planes, ...)
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Computational systems are state-changing systems

Reactive systems

Systems maintaining an ongoing interaction with their environment, as opposed
to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices
(microwaves, traffic lights, trains, planes, ...)

Concurrent systems
Systems executing simultaneously, and potentially interacting with each other

Examples: operating systems, networks, ...
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Reasoning about state-changing systems

1. Build a formal model of the state-changing system which
describes, in particular, its temporal behavior or some
abstraction of it
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Reasoning about state-changing systems

1. Build a formal model of the state-changing system which
describes, in particular, its temporal behavior or some
abstraction of it

2. Use a logic to specify and verify properties of the system
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Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values
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Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values
PLFD is a family of logics

Each instance of PLFD is characterized by
® aset X of variables
e asetV/ of values
® amapping dom from X to subsets of I/, such that
forevery x € X, dom(x) is a non-empty finite set, the domain for x
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Syntax of PLFD

Formulas:

® Forallx € Xand v € dom(x), the equality x = v is an atomic
formula, or simply atom
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Syntax of PLFD

Formulas:

® Forallx € Xand v € dom(x), the equality x = v is an atomic
formula, or simply atom

e Other formulas are built from atomic formulas as in proposi-
tional logic, using the connectives T, |, A, V, -, —,and <«

Note: —x = vis parsed as —(x = v) whereas x; A x, = vorx = v; V vy, forinstance,
are not well-formed

Notation: We will often write x -4 v as an abbreviation of —x = v
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Semantics

Fix a set X of variables and a set I/ of values for them

Interpretation: a mapping Z : X — V such that Z(x) € dom(x) for all
xeX
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Semantics

Fix a set X of variables and a set I/ of values for them

Interpretation: a mapping Z : X — V such that Z(x) € dom(x) for all
xeX

Interpretations extend to mappings from formulas to Boolean values
as follows

1. Z(x=v)=11iff Z(x) = v
2. 7(F)is as for propositional formulas if £ is not atomic

The definitions of truth, models, entailment, validity, satisfiability,
and equivalence are defined exactly as in propositional logic
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Example

If dom(x) = { a,b,c},then thisis aformula which is also valid:

XxX#a—-x=bVx=c
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Example

If dom(x) = { a,b,c},then thisis aformula which is also valid:
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Example

If dom(x) = { a,b.c},thenthisis aformula which is also valid:
XxX#a—-x=bVx=c

In contrast, if dom(x) = { a.b.c,d }, then the formula above is not

valid as it is falsified by 7 = { x v d }:

{x—d}fEx#a—x=bVx=c
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Example: microwave

variable domain of values

mode {idle, micro, grill, defrost }

door { open, closed }

content { none, burger, pizza, soup }

user { nobody, student, prof  staff }

temperature | {0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 }

mode = grill — door = closed N temperature # 0 A user # nobody
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Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain { 0, 1 }
Instead of atomspusep = 1

One canalsouse p = 0for —p,since (p = 0) = (p # 1)
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Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain { 0, 1 }
Instead of atomspusep = 1

One canalsouse p = 0for —p,since (p = 0) = (p # 1)

This transformation preserves models. For example, the models of
pAqg— —r
are exactly the models of

p=1ANg=1—=r=0
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Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = { 0,1}

In instances of PLFD with both boolean and non-boolean variable,
we will write boolean literals as in propositional logic:

e pinsteadofp =1
® —pinsteadofp =0
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Translation of PLFD into Propositional Logic

While we can embed PL into PLFD we can also translate PLFD to PL!

1. Introduce a propositional variable x, for each variable x and
value v € dom(x)

2. Replace every atom x = v by x,
3. Add domain axiom for each variable x :
(X, V- VXx,)A /\(ﬁxv, V )
i<j

where dom(x) = { vy, ..., Vs }
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Example
To check satisfiability of the formula
—“(x=bVx=c)
where dom(x) = { a, b, ¢ }, we can check satisfiability of the formula

(Xa VXp VX) A (—Xa V =Xp) A (—Xg V =X) A (—Xp V —Xe) A —(Xp V Xc)

domain axiom
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Example
To check satisfiability of the formula
—“(x=bVx=c)
where dom(x) = { a, b, ¢ }, we can check satisfiability of the formula

(Xa VXp VX) A (—Xa V =Xp) A (—Xg V =X) A (—Xp V —Xe) A —(Xp V Xc)

domain axiom

Domain axiom for mode in microwave:

(modejge V modemicro V modegin V modegefrost) A
(—=modejge V ~modemico) A

(‘\mode,‘d/g V ﬁmodeg,,',,) A

(—modejgie V ~modederiost) A

(=modemicro V =modegi) A

(“mOdem/’cm V ﬁrr'lOdedefrost) A

(“mOdegn’[/ \% “mOdedefrost)
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Preservation of models

Suppose that 7 is a propositional model of all the domain axioms

Define a PLFD interpretation 7’ as follows:

I’'(x)=viff T E=x,

Theorem 1
Let F" be a PLFD formula and let F be the translation of F' to
propositional logic. If I = F, then 7' |~ F'.
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A Tableau System for PLFD

e Use signed formulas

® Use new kind of atomic formula: x € {v;,...,v,}
equivalenttox = v, V- - Vx =v,

(alsouse x € {v} instead of x = V)

e Abbreviations: instead of (x € D)* write x € D, instead of
(x € D) writex ¢ D

® Tableau rules for PL + new tableau rules:

xX¢D ~ xedom(x)\D
XGD]_,XED2 > XEDlﬂDz

e Abranchis closed if it containsany of 7% [ andx € {}
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xg€D ~~» xé&dom(x)\D

Examplel xeDi,xeD, ~~ xeDiND,

dom(x1) = {a,b,c}

dom(xy) = {s,m, [}
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Example 1

((x1 € {b} Vxp € {m}) A =(x1 € {b}))*
|
(Xl S {b} V Xy € {m})l
(=(x € {b}))*
|
x1 € {b}
|
x1 € {a,c}
/N
X1 € {b} Xy € {m}
|
x1 € {}

closed

X¢D ~ xe&dom(x)\D
xeDi,xeD, ~~ xeDiND,

dom(x,) = {a,b,c}

dom(xy) = {s,m, [}
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Example 1

((x1 € {b} Vxp € {m}) A =(x1 € {b}))*
|
(Xl S {b} V Xy € {m})l
(=(x € {b}))*
|
x1 € {b}
|
x1 € {a,c}
/N
X1 € {b} Xy € {m}
|
x1 € {}

closed

X¢D ~ xe&dom(x)\D
xeDi,xeD, ~~ xeDiND,

dom(x,) = {a,b,c}

dom(xy) = {s,m, [}

Models:
1. {x = a, x; —m}
2. {xy =~ ¢, x; =~ m}
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xX¢D ~ xe&dom(x)\D

Examplez xeDi,xeD, ~~ xe&DiND,

Let’s prove the validity of

((user € {nobody} — content € {none}) A
(user € {prof} — content € {none, soup}) A
(user € {staff} — content € {none, burger})

) — (content € {pizza} — user € {student})

by deriving a closed tableaux from F*
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X¢D ~» xe&dom(x)\D

Examplez xeDi,xeD, ~~ xeDiND,

(((user € {nobody} — content € {none}) A (user € {prof} — content € {none, soup}) A
(user € {staff} — content € {none, burger})) — (content € {pizza} — user € {student}))"

((user € {nobody} — content € {none}) A (user € {prof} — content € {none, soup}) A
(user € {staff} — content € {none, burger}))*
(content € {pizza} — user € {student})°

(user € {nobody} — content € {none})*
(user € {prof} — content € {none, soup})*
(user € {staff} — content € {none, burger})*

content € {pizza}
user ¢ {student}

user € {nobody, prof, staff }
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xX¢D ~ xe&dom(x)\D

Example 2, continued B S

(user € {nobody} — content € {none})*

(user € {prof} — content € {none, soup})*
(user € {staff} — content € {none, burger})*

content € {pizza}
user ¢ {student}

user € {nobody, prof, staff }

/

content € {none} user & {nobody}

content € {} user € {student, prof, staff }
closed |

user € {prof, staff}

PN

user ¢ {prof}  content € {none, soup}
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Natural Deduction for PLFD

® Use again atomic formulas of the formx € {v;, ... v,}
equivalenttox = v, V- Vx =y,

e Use natural deduction rules for PL + new rules:

X¢D x € {}
de 1
x € dom(x)\ D 1
X €D, x €Dy xXeDUD,

Ni Ui
X € [)l N [)2 X € [)1 VX E [)2
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Example 3

Let’s prove the validity of the judment

P, P, - F
where
P, = user € {nobody, prof} — content € {none, soup}
P, = user € {staff} — content € {none, burger}
F = content € {pizza} — user € {student}

by deriving F from premises P; and P, by natural deduction
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Example 3

user € {nobody, prof} — content € {none, soup} premise

> user € {staff} — content € {none, burger} premise

3 content € {pizza} assumption
4 user & {student} assumption
5 user € {nobody, prof, staff } de 4

6 user € {nobody, prof} \ user € {staff} Ui s

7

s content € {} Ve 6-8

0 L lis

10 user € {student} PBC 4-9
11 content € {pizza} — user € {student} —13-10
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