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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their
propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing
problems at a level of abstraction closer to that of natural language

However, in many cases, problems expressed in these languages can then be
translated to propositional logic
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Circuit Design

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is

port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic);

end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal int1, int2, int3: std_logic;
begin
P1: process (A, B)

begin
int1<= A xor B;
int2<= A and B;

end process;
P2: process (int1, int2, Cin)

begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin;
Cout <= int2 or int3;

end process;
end BEHAV_FA;

Circuit: propositional logic

Design: high-level description
language (VHDL)
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Scheduling
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Constraints on Solutions

1. Rooms should have enough
seats

2. Instructors cannot teach
two courses at the same
time

3. Prof. Nightowl cannot teach
at 9am

4. . . .
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State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

Informally

Formally

At each step, the system is in a partic-
ular state

States can be characterized by values
of a set of state variables.

The system state changes over time
There are actions (controlled or not)
that change the state

Actions change values of some of the
state variables
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Computational systems are state-changing systems

Reactive systems
Systems maintaining an ongoing interaction with their environment, as opposed
to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices
(microwaves, traffic lights, trains, planes, . . . )

Concurrent systems
Systems executing simultaneously, and potentially interacting with each other

Examples: operating systems, networks, . . .
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Reasoning about state-changing systems

1. Build a formal model of the state-changing system which
describes, in particular, its temporal behavior or some
abstraction of it

2. Use a logic to specify and verify properties of the system
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Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by
• a set X of variables
• a set V of values
• a mapping dom from X to subsets of V , such that

for every x ∈ X, dom(x) is a non-empty finite set, the domain for x
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Syntax of PLFD

Formulas:

• For all x ∈ X and v ∈ dom(x), the equality x = v is an atomic
formula, or simply atom

• Other formulas are built from atomic formulas as in proposi-
tional logic, using the connectives ⊤, ⊥, ∧, ∨, ¬, →, and ↔

Note: ¬x = v is parsed as ¬(x = v) whereas x1 ∧ x2 = v or x = v1 ∨ v1, for instance,
are not well-formed

Notation: We will often write x ̸= v as an abbreviation of ¬x = v
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Semantics

Fix a set X of variables and a set V of values for them

Interpretation: a mapping I : X → V such that I(x) ∈ dom(x) for all
x ∈ X

Interpretations extend to mappings from formulas to Boolean values
as follows

1. I(x = v) = 1 iff I(x) = v
2. I(F) is as for propositional formulas if F is not atomic

The definitions of truth, models, entailment, validity, satisfiability,
and equivalence are defined exactly as in propositional logic
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Example

If dom(x) = { a, b, c }, then this is a formula which is also valid:

x ̸= a → x = b ∨ x = c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not
valid

as it is falsified by I = { x 7→ d }:

{ x 7→ d } ̸|= x ̸= a → x = b ∨ x = c
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Example: microwave

variable domain of values
mode { idle,micro, grill, defrost }
door { open, closed }
content { none, burger, pizza, soup }
user { nobody, student, prof , staff }
temperature { 0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 }

mode = grill → door = closed ∧ temperature ̸= 0 ∧ user ̸= nobody
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Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain { 0, 1 }

Instead of atoms p use p = 1

One can also use p = 0 for ¬p, since (p = 0) ≡ (p ̸= 1)

This transformation preserves models. For example, the models of

p ∧ q → ¬r

are exactly the models of

p = 1 ∧ q = 1 → r = 0
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Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = { 0, 1 }

In instances of PLFD with both boolean and non-boolean variable,
we will write boolean literals as in propositional logic:
• p instead of p = 1
• ¬p instead of p = 0
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Translation of PLFD into Propositional Logic

While we can embed PL into PLFD we can also translate PLFD to PL!

1. Introduce a propositional variable xv for each variable x and
value v ∈ dom(x)

2. Replace every atom x = v by xv

3. Add domain axiom for each variable x :

(xv1 ∨ · · · ∨ xvn) ∧
∧
i<j

(¬xvi ∨ ¬xvj)

where dom(x) = { v1, . . . , vn }
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Example
To check satisfiability of the formula

¬(x = b ∨ x = c)

where dom(x) = { a, b, c }, we can check satisfiability of the formula

(xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb) ∧ (¬xa ∨ ¬xc) ∧ (¬xb ∨ ¬xc)︸ ︷︷ ︸
domain axiom

∧ ¬(xb ∨ xc)

Domain axiom for mode in microwave:
(modeidle ∨ modemicro ∨ modegrill ∨ modedefrost) ∧
(¬modeidle ∨ ¬modemicro) ∧
(¬modeidle ∨ ¬modegrill) ∧
(¬modeidle ∨ ¬modedefrost) ∧
(¬modemicro ∨ ¬modegrill) ∧
(¬modemicro ∨ ¬modedefrost) ∧
(¬modegrill ∨ ¬modedefrost)
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Preservation of models

Suppose that I is a propositional model of all the domain axioms

Define a PLFD interpretation I ′ as follows:

I ′(x) = v iff I |= xv

Theorem 1
Let F′ be a PLFD formula and let F be the translation of F′ to
propositional logic. If I |= F, then I ′ |= F′.
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A Tableau System for PLFD

• Use signed formulas

• Use new kind of atomic formula: x ∈ {v1, . . . , vn}
equivalent to x = v1 ∨ · · · ∨ x = vn

(also use x ∈ {v} instead of x = v)

• Abbreviations: instead of (x ∈ D)1 write x ∈ D, instead of
(x ∈ D)0 write x ̸∈ D

• Tableau rules for PL + new tableau rules:

x ̸∈ D ⇝ x ∈ dom(x) \ D
x ∈ D1, x ∈ D2 ⇝ x ∈ D1 ∩ D2

• A branch is closed if it contains any of ⊤0, ⊥1, and x ∈ {}
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Example 1

((x1 ∈ {b} ∨ x2 ∈ {m}) ∧ ¬(x1 ∈ {b}))1

(x1 ∈ {b} ∨ x2 ∈ {m})1

(¬(x1 ∈ {b}))1

x1 ̸∈ {b}

x1 ∈ {a, c}

x1 ∈ {b}

x1 ∈ {}
closed

x2 ∈ {m}

dom(x1) = {a, b, c}

dom(x2) = {s,m, l}

Models:
1. {x1 7→ a, x2 7→ m}
2. {x1 7→ c, x2 7→ m}
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Example 2

, continued

Let’s prove the validity of

F =

((user ∈ {nobody} → content ∈ {none}) ∧
(user ∈ {prof} → content ∈ {none, soup}) ∧
(user ∈ {staff} → content ∈ {none, burger})
) → (content ∈ {pizza} → user ∈ {student})

by deriving a closed tableaux from F0
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Example 2
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Example 2, continued
...

(user ∈ {nobody} → content ∈ {none})1

(user ∈ {prof} → content ∈ {none, soup})1

(user ∈ {staff} → content ∈ {none, burger})1

content ∈ {pizza}
user ̸∈ {student}

user ∈ {nobody, prof , staff}

content ∈ {none}

content ∈ {}
closed

user ̸∈ {nobody}

user ∈ {student, prof , staff}

user ∈ {prof , staff}

user ̸∈ {prof}

...

content ∈ {none, soup}

...
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Natural Deduction for PLFD

• Use again atomic formulas of the form x ∈ {v1, . . . , vn}
equivalent to x = v1 ∨ · · · ∨ x = vn

• Use natural deduction rules for PL + new rules:

x ̸∈ D
x ∈ dom(x) \ D

̸∈e
x ∈ {}
⊥

⊥i

x ∈ D1, x ∈ D2

x ∈ D1 ∩ D2
∩i

x ∈ D1 ∪ D2

x ∈ D1 ∨ x ∈ D2
∪i
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Example 3

Let’s prove the validity of the judment

P1, P2 ⊢ F

where

P1 = user ∈ {nobody, prof} → content ∈ {none, soup}
P2 = user ∈ {staff} → content ∈ {none, burger}
F = content ∈ {pizza} → user ∈ {student}

by deriving F from premises P1 and P2 by natural deduction
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Example 3

1 user ∈ {nobody, prof} → content ∈ {none, soup} premise

2 user ∈ {staff} → content ∈ {none, burger} premise

3 content ∈ {pizza} assumption

4 user ̸∈ {student} assumption

5 user ∈ {nobody, prof , staff} ̸∈e 4

6 user ∈ {nobody, prof} ∨ user ∈ {staff} ∪i 5

7 · · ·

8 content ∈ {} ∨e 6 – 8

9 ⊥ ⊥i 8

10 user ∈ {student} PBC 4 – 9

11 content ∈ {pizza} → user ∈ {student} →i 3 – 10
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