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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Two-Player Games

Does she have a winning
strategy?
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Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p;,q;, . . ., Pn,qn
There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable py
2. player Q can choose a value for variable g,

Player P wins if after n rounds the chosen values satisfy formula G
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:
G Outcome

1. p P wins with { p; +— 1}
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3. 1 —>q
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. py Pwinswith { p; — 1}
p1 — Q1 P wins with { p; — 0}

3. 1 —>q

G has no p; vars, P’s choices are immaterial
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Consider several special cases:
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G Outcome
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

p1 A\ —p1

G Outcome
1. py Pwinswith { p; — 1}
2. p1—q: P wins with { p; — 0 }
3. 91— G has no p; vars, P’s choices are immaterial
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

p1 A\ —p1

G Outcome
1. py Pwinswith { p; — 1}
2. p1—q: P wins with { p; — 0 }
3. 91— G has no p; vars, P’s choices are immaterial
4. g1 — q1 Gisvalid, P always wins!
5.

G is unsatisfiable, Q always wins!
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

P1 <> Q1

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4, q; —q; Gisvalid, P always wins!
5. p1 A—p; G is unsatisfiable, Q always wins!
6.
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Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

P1 <> Q1

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4, q; —q; Gisvalid, P always wins!
5. p1 A—p; G is unsatisfiable, Q always wins!
6.

each move by P can be beaten by Q
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Winning Strategy

Problem: does P have a winning strategy?
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Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that

for all moves of Q (values for g,)
the formula G is satisfiable
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Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that
for all moves of Q (values for g,)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

Jp1Vq:13p.Vq, - - - IpaVq, G
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Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and | areformulas
e |f Fisaformula, then —F is aformula

o IfF . ..., F,, are formulas, where n > 2,
thenF, A---AF,and F; V- --\V F, are formulas

e |f F and G are formulas, then F — G and F <+ G are formulas
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Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and | areformulas
e |f Fisaformula, then —F is aformula

o IfF, ..., F, are formulas, wheren > 2,
thenF, A---AF,and F; V- --\V F, are formulas

e |f F and G are formulas, then F — G and F <+ G are formulas

Quantified Boolean Formulas (QBFs):
® Every propositional formula is a QBF

® |f pisaBoolean variable and Fis a QBF,
thenVp F and Ip F are QBFs
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Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”
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Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”

For every variable p, we treat Vp and -p as unary operators applied
to aformula F

Vp and Jp have the highest precedence (like ), e.g.:

Vop—q = (Vpp)—q # Vp(p—q)
Note: Some texts give quantifiers lower precedence than all Boolean connectives
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Changing interpretations pointwise

Let 7 be an interpretation

Notation:

Z[p — b](q) { f@‘ EI,’i . :
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Changing interpretations pointwise

Let 7 be an interpretation

Notation:

Zlp bl(q) = { 1 P2

Example: 7 = {p+— 1, 0,r — 1}

IZlg—1] = {p—1,g—1,r—1}

Z[g—0 = {p—1,9g—0r—1} = T

I[p+—0 = {p—0,g—0,r— 1}
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QBF Semantics

A
A

o U~ W N

CI(T) = landI( )=0
(FL A AF,) = 1iff Z(F) = 1foralli
(FL V- F,) = 1 iff Z(F;) = 1 for some
I(-F)=1 |ffI( )=0
Z(F— G)=1iff Z(F) = 0or Z(G) =
I(F + G) =1 iff Z(F) = Z(G)
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QBF Semantics

1. Z(T) = landI( )=0

2. Z(Fy A - F,) = 1iff Z(F;) = 1foralli

3. Z(Fy V - F,) = 1 iff Z(F;) = 1 for some

4. T(—F) =1 |ffI( )=0

5 7(F — G)=1iff Z(F) = 0or Z(G) =

6. Z(F «+» G) = 1 iff Z(F) = Z(G)

7. Z(VpF) = 1 iff Z|p — 0|(F) = 1and Z|[p — 1](F) =
8. Z(3pF) =1 iff Z[p — 0](F) = lorZ[p — 1](F) =



Evaluating a formula: and-or trees

How to evaluate Vp 4q (p <+ q) ininterpretation { p > 1, +> 0}
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Evaluating a formula: and-or trees

How to evaluate Vp Hg (p <+ g) ininterpretation { p > 1, g+ 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v5 }

Tio = Yp3q (p < q)

=
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T F=3q(p < q)
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Evaluating a formula: and-or trees

How to evaluate Vp Hg (p <+ g) ininterpretation { p > 1, g+ 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v5 }

Zoo =3q(p < q)
TiwEVpIg(p<q) < and

T =g (p < q)

ToEp<rq or
Toif=p < q

& and
InEpeaq
TulEp+q
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Evaluating a formula: and-or trees

Tho |—Vp3q p <
Too =39 (p < q) T =39 (p < q)

SN N

To =p<q InEp+<q IwEp+<q LiuEp<q
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Evaluating a formula

Notation: Denote any interpretation { p — by, g — b, } by Zp, p,
Use wildcards « to denote any Boolean value

Z.. EVpIq (p < q)
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Use wildcards « to denote any Boolean value
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Tox
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Evaluating a formula

Notation: Denote any interpretation { p + by, q ~ by } by Zp p,
Use wildcards « to denote any Boolean value

To. =3q(p < q)
.. EVpIg(p < q) < and

Ti. =3q(p < q)

Too =p <> q or
InfFEp+q

& and
InlEpeaq
TulEp+q
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Evaluating a formula

Notation: Denote any interpretation { p — by, g — b, } by Zp, p,
Use wildcards « to denote any Boolean value

L EVp3g(p+q) <

To. =39 (p < q)
and
T F3q(p < q)
Too =p <+ q or
Tnn=p < q
and
IinkEp+q or
TuFEp+q

The variables p and g are bound by the quantifiers Vp and g, so
the value of the formula does not depend on the values p and g
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Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
® [ ..., F, are the immediate subformulasof F; A -~ A F,
® ..., F,, are the immediate subformulasof F; \V - - -V F,,

F, and F, are the immediate subformulas of F; — F,

F; and F, are the immediate subformulas of F; «+ F,
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Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
® [ ..., F, are the immediate subformulasof /; A -+ - A F,
® ..., F, are the immediate subformulasof F; \V - - -V F,
® [ andF, are the immediate subformulasof F; — F,
® [ and F; are the immediate subformulas of F; «+ F,

Quantified Boolean formulas:
® [istheimmediate subformula of Vp F and of 9p F
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Positions and polarity by example

p/ﬂxv
\/q/ Xr

p—vq3p(q < p)Vr



Positions and polarity by example

p/ﬁxv
Vq/ Xr

Ip Fl2.1 =Yq3p(q < p)

p—Y¥q3p(q<p)Vr
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Positions and polarity by example

p/ﬂxv
Vq/ Xr

Jp Fl2.. =Vq3p(q < p)

p—Y¥q3p(q<p)Vr

Flai111=9
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Positions and Polarity

LetF|, =A

Propositional formulas:
e |f Ahastheform —4;,
then 7.1 isa positionin 7, £, “ A, and pol(F. =.1) < —pol(F. =)
o IfAhastheformA; A ANA,orAL V- VA,andie {1,...,n},

then 7.jis a position in F and pol(F, r.i) o pol(F, )
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Positions and Polarity

LetF|, =A

Propositional formulas:
e |f Ahastheform —4;,
then 7.1 isa positionin 7, £, “ A, and pol(F. =.1) < —pol(F. =)
o IfAhastheformA; A ANA,orAL V- VA,andie {1,...,n},
then 7.jis a position in F and pol(F, r.i) o pol(F, )

Quantified Boolean formulas:
® [fAhastheformYpBorJpB,
then 7.1 is a positionin 7, £, ' Band pol(F, =.1) “~ pol(F.r)
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Free and bound variables by example
*>
e >
(free)
Vq \ r

’

(free)

N
1 \
1
1

| —
|
|
|
|

p
(bound) (bound)

p—Vqip(q<p)Vr
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Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)

intk=1i>3j37? 1i-3: j-1i;
return a + k

sum = i + offset_sym_diff(3,4);
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Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

binding
int offstf(ins int §)
{
intk=1i>3? i-3: j-i;
return a + k
bound
sum = i +|offset_sym_diff(3,4);

N\

free
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Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G
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Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence
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Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7
The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables
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Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1l
Suppose 7;(p) = Z,(p) for all free variables p of F. Then

T = Fiff T, = F
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Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1l
Suppose 7;(p) = Z,(p) for all free variables p of F. Then

T = Fiff T, = F

Theorem 2
Let F be a closed formula and let 7, , 7, be two interpretations. Then

T = Fiff T, = F
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Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas
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Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T = F; (ii) F is satisfiable; and (iii) F is valid.
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Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p-, . . ., Pn-

® [ jssatisfiable iff Jp, - - - Jp, F is satisfiable/valid
e Fisvalid iff the formulaVp, - - - Vp, F is satisfiable/valid
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Substitutions for propositional formulas

Substitution: FE: denotes the formula obtained from F by replacing all occurrences
of variable p by G
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Substitutions for propositional formulas

Substitution: FS: denotes the formula obtained from F by replacing all occurrences
of variable p by G

Example:

((PVs)A(g—p)S™ = ((LAS)VS) A (g — (IAS))
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Substitutions for propositional formulas

Substitution: FS: denotes the formula obtained from F by replacing all occurrences
of variable p by G

Example:

((PVs)A(g—p)S™ = ((LAS)VS) A (g — (IAS))

Property: Applying any substitution to a valid formula results in a valid formula
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Substitutions for quantified formulas

Some problems...
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Substitutions for quantified formulas

Some problems...
Consider Hg (—p < q)

We cannot simply replace variables by formulas any more:
Ar—r)(=p<r—r)2?7?7 lllformed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

Vp((p—q)V-p)A(gV(g—p))

24/54



Renaming bound variables

Notation: ¥: any of 4, V/
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Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[ /pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |
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Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[ /pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Ir(Vp((p-—+r)Ap))Vp renamep to q,obtaining

Ir(vg((g—=r)Aq))Vp
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Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[ /pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Ir(Vp((p-—+r)Ap))Vp renamep to q,obtaining

Ir(vg((g—=r)Aq))Vp

Lemma5
F[¥pG]| = F[ 3¥qG']
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Free and bound variables by example
*>
e >
(free)
Vq \ r

’

(free)

N
1 \
1
1

| —
|
|
|
|

p
(bound) (bound)

p—Vq3p(q < p)Vr
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Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. forevery variable p, there is at most one occurrence of quantifier /p in £
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Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. forevery variable p, there is at most one occurrence of quantifier /p in £

[ Any formula can be rectified by renaming its bound variables ]

We can use the usual notation FPG for substitutions into a rectified formula F,
assuming p occurs only freein F
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Rectification: Example

p—3peA Vp(pVr——p))
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Rectification: Example

p—3ppA Vp(pVr——p))
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Rectification: Example

p—3ppAVp(pVr—-p))=

p— Ip(PAVpL(p1Vr— —p1))
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Rectification: Example

p—3ppAVp(pVr—-p))=

p— 3p(PAVPL(pLVr— —p1)) =

p — 3p2 (P2 AVp1(p1 VI — —p1))
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Rectification: Example

p—3ppAVp(pVr—-p))=

p— Ip(PAVPL(pL VT — —p1)) =

p — 3p2 (P2 AVp1(p1 VI — —p1))

Renaming each bound variable to a
fresh one preserves equivalence
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Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)
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Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)

substitute p by g

dg (—q < q) This formula is unsatisfiable!

[ Substitutions below a quantifier should not lead to variable capturing }
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Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in Fg
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Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in FS

(In previous example, (Jg (—p <> q)); does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution
Example:

Since g (—p <> q) = Ar(—p <> 1)

we canuse (Jr(—p <> r))} instead of (Jg (—p <> q));
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Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in FS

(In previous example, (Jg (—p <> q)); does not satisfy this requirement)

( M)
Unifor! tution
From now on, we always assume that:

Ef‘amlf 1. formulas are rectified
Since 5 all substitutions satisfy the requirement above
we can
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Equivalent replacement

Lemma 6
Let 7 be an interpretation and 7 |~ F; <+ F,. Then
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Equivalent replacement

Lemma 6
Let 7 be an interpretation and 7 |~ F; <+ F,. Then

Theorem 7 (Equivalent Replacement)
Let Fl = Fz. Then G[Fl] = G[FZ]
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More equivalences

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
2. dpidp, F = dp,dp: F
3. WpF = F ifpdoesnotoccurfreein F
4. VpF = F; NF,
5 dpF = Fy VF)
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More equivalences

Theorem 8

The following holds for all QBFs F:
1. VpiVpo, F = Vp,Vp: F
2. dpidp, F = dp,dp: F
3. WpF = F ifpdoesnotoccurfreein F
4. VpF = F; NF,
5 dpF = Fy VF)

. J

Note: In general, "p,Vp,F # Vp,dp:F !
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More equivalences

r

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
. dp1dp, F = dp,dp: F
. WpF = F ifpdoes notoccur freein F

2
3
4. VpF
5. dpF

-

i T
Fo NFp
gl T
Fy Vv F,

Note: In general, "p,Vp,F # Vp,dp:F !

Example:

*Vpig(p«<q) =T
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More equivalences

r

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
. dp1dp, F = dp,dp: F
. WpF = F ifpdoes notoccur freein F

2
3
4. VpF
5. dpF

-

gl T
Fo NFp
gl T
Fy Vv F,

Note: In general, "p,Vp,F # Vp,dp:F !

Example:

*Vpdg(p«+q) =T
® Jg¥p(p<rq) =1L
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Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)
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Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix

—T—
V1p1 -+ - Fnpn \G/_/

matrix

with G quantifier-free
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Prenex formula: formula of the form

quantifier prefix
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WVip1 - Vopn \G/_/
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Prenex form
Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix
—
W1p1 -+ WP \G/_/

matrix

with G quantifier-free

Outermost prefix of %/ 1p, - - - ¥,p,G: the longest subsequence
Wipy - Wyeprof py - W,p,suchthat W, = - = ¥,
Example

® outermost prefix of Vp Vg 3r(r Ap — q): VpVq

® outermost prefix of Ip Vg 3r(r Ap — q): Ip
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Prenex form
Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix

—T—
W1p1 -+ WP \G/_/

matrix

with G quantifier-free

Outermost prefix of %/ 1p, - - - ¥,p,G: the longest subsequence
Wipy - Wyeprof py - W,p,suchthat W, = - = ¥,

A formula F is a prenex form of a formula G if F is prenexand F = G
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Conversion to prenex form, Example |

I I | I
Hq/ \v %/ \v ﬂ«/ \v ﬂ/ \Sr i
[ AN AN A AV AN S VAN
LA R AN A AN
\A | | \} \)
/\ / / / /

rp rop rop rop rop
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Conversion to prenex form, Example |

Same conversion:

(3g(g — p)) = ~Vr(r—p)Vp

(

( )
(g = p) = —Vr(r—p)Vp)
((g = p) = Fr=(r—p)Vp)

vq
vq
Vg ((g = p) = 3r(=(r = p)Vp))
Vq3r((g — p) = —(r —p)Vp)

Pl
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Prenexing rules

(FpF)AN---ANFy = Fp(FLA---NFp)
(FpF)V---VF, = Fp(FLV---VF,)
(VpF) — F, = dp(FL — F) Fi— (3pF) = Jp(FL — F,)
(3pF1) = F, = Yp(FL — F) Fi— (VYpF) = Vp(FL — F)
-VpF = dp—F —dpF = Vp—F
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Conversion to prenex form, Example Il

q(qg—p) = Vr(r—>p)Vvp
dg(q—p) — AIr-(r—p)Vp
q(qg —p) = 3Ir(=(r = p)Vp)
Jr(3g(q = p) = =(r = p)Vp)
Jrvq((g = p) = =(r = p)Vp)

I
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Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL
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The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL

Recall:

2. F(py,..., pn) is valid iff Vp1---Vpn F(p1,. .., pn) is satisfiable
3. Aclosed QBF is either always true (valid) or always false (unsatisfiable)
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Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL

Recall:

2. F(p1,...,pn)isvalid iff Vp1---Vpn F(p1,. .., pn) is satisfiable
3. Aclosed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable
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Splitting: foundations

Lemma9
® Aclosed formula Vp F evaluates to 1 iff both FpL and FpT evaluate to 1.

® Aclosed formula Hp F evaluates to true iff either F,- or F, evaluates to 1.
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Splitting

Simplification rules for T:

-T = 1
TAFLA--AFy = FLA---AF,
TVFARV---VF, = T
F=T=T T —=F=F
Fe<T =F T+ F=F

Simplification rules for L:

-1l =T
LAFRAN-ANFp = L
1LVFV---VF, = FV---VF,
F— 1 = —F 1L —=F=T
F< 1 = —F 1l <+ F = —F
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Splitting

Simplification rules for T:
-T = L
TAFLA--ANFy = FLA---AF,
TVFAV--VF = T

F=T=T T —=F=F
Fe T = F T F=F
VpoT = T

IpT =T

Simplification rules for L:

-1l =T
LAFRAN-ANFp = L
1LVFV---VF, = FV---VF,
F— 1 = —=F L —=F=T
F< 1 = —F 1l <+ F = —F
Vpl = L
dpl = L
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Splitting, Example

Vp3q(p < q)
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/A
p=20

Jq (L < q)
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Splitting, Example

Vpdq(p < q)

/A
p=20

3q (—q)

/v
qg=20

(=1)
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Vp3q(p < q)

/A
p=20

3q (—q)

/v
g=20

T
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Splitting, Example

Vp3q(p < q)

/A
p=20

1 3q(—q)

/v
g=20

T
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Splitting, Example

Vp3q(p < q)
P / \
1 Jq(—q) Jq(T < q)

/v
g=20

T
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Jq(q)

Vp3q(p < q)

p:/A\zl

1 39(—q)
V

v

Splitting, Example

qg=

T

1

41/54



Splitting, Example

Vp3q(p < q)

N

1 3q(—q)

(9)

/v

dq

q

\Y

q=0

T
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Splitting, Example

o o<
Q.
uV/
Il
a -
o
—
\m/v
- - =
QN
0 /1/
/WA o [
jﬂ/ =
= NT
P/ﬁ\v
S
m
1/
Il
=
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Splitting, Example

JgVp (p < q)
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Splitting, Example

JgVp (p < q)

vp (p)
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Splitting, Example

— <
[NRSR
[y
o
Il
> a -
/ ©
TN
S5 (ﬁ\A
>
o —
Il
a -
o
—
=,
[
M //
Il
< o [
L |
Q. o @
[
Q= >
o
m
1/
Il
=
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Splitting, Example

IgVp(p <> q) 0
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Splitting, Example

Vp g ( qu JqVp ( qu
1 3q9(—q) 1 0 Vp(—p) 0
/ */ 7/ /
1 0 L 0 L

To minimize search, the selection of variable values is best seen as a two-player
game:

® by selecting a value for g one is trying to make the formula true

® by selecting a value for Vp one is trying to make the formula false
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Splitting algorithm

Notation: ifp = (p;, .. .. px) then /pF denotes p; - - - WpyF
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Splitting algorithm

procedure splitting(F)
input: closed rectified prenex formula £
output: Oor 1
parameters: function select_variable_value /] selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it
F .= simplify(F) // apply extended simplification rules to completion
if - = | thenreturn0
if F = T thenreturn 1
// else F has the form =/pF’ where p is F’s outermost prefix
(p,b) := select_variable_value(F)
Let G be obtained from F by deleting p from p
ifb—=0thenA := |;B := TelseA := T:B := L
b := splitting(G})
case (b, W) of
V) = return 0
3) = return splitting(G,,)
V) = return splitting(G;)
E)

0,
0,
1,
1,9) = returnl

(
(
(
(
end
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Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

43/54



Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

43/54



Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or

® it has the form
37lpl o 37/7[7/1 (Cl VANEERIVA Cm)

whereCy, . ... C,, are clauses
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Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or

® it has the form
371[31 o 3Vnpn (Cl JARRIAN Cm)

whereCy, . ... C,, are clauses

Example:
VpdgIs((-pVsVvag)A(sV—g)A-s)

43/54



CNF rules

Prenexing rules

+

propositional CNF rules:

R

(=FV G)A (=G VF)
-FVG

—FV -G

-FA -G

F
(FLVGLV---VG,) A
A
(FmV GV ---VGp)
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DPLL for quantified Boolean formulas

Input:
Q: quantifier sequence /.p; - - - ¥,p,
S: set of clauses with variables fromp,. ..., p,

Main components:
Unit propagation
Splitting on literals
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Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses
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Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains —Ip,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses
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Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains —Ip,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

® otherwise (O contains Vp),add [ 1to S
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DPLL algorithm

Why do we add [ Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis {’[7, Ci,..., C, } ?
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DPLL algorithm

Why do we add [ 1to S when Qis Vp ¥/,p; - - - ¥, p,, and

Because
1. Theintended input formula is
G=Vp¥qr- F¥mGm(PACLA--ACp)
2.6 = a1 HnGn (PACLA - ACn)y A(PACLA---ACr),)
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DPLL algorithm

Why do we add [ 1to S when Qis Vp ¥/,p; - - - ¥, p,, and

Because
1. Theintended input formula is

G=Vp¥qr- F¥mGm(PACLA--ACp)
2.6 = a1 HnGn (PACLA - ACn)y A(PACLA---ACr),)
¥1G1 - FmQm (LA(CLA - ACn)y A(PACLA---ACr),)
3vlcll"‘gvrnqmj—
1
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DPLL algorithm

Why do we add [ Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis {’[7, Ci,..., C, } ?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula
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DPLL algorithm

Why do we add [ Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis{p.Cy. ..., Ch}?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF
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DPLL algorithm

Why do we add [ Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis{p.Cy. ..., Ch}?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument s similar for { —p. Cy, .. .. Co })
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DPLL, Example

dpVq3ar

pV gV -r
pV-qVr
oV aqgVvr
oV qV-r
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DPLL, Example

Vq 3dr
—p
pVaq\V-r
pV-qVr
-pVqgVvr
-pVq\V-r

P

JpVq3r
pVvaqV-r
pV—qVr
-pVqVr

—pVqV-r
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DPLL, Example

Vqdr
qVv-r
-qVr

Ly

Vq 3dr
—p
pVaq\V-r
pV-qVr
-pVqgVvr
-pVq\V-r

P

JpVq3r
pVvaqV-r
pV—qVr
-pVqVr

—pVqV-r
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DPLL, Example

dr

-q
qV —r
-qVvr

—-q

Vqdr
qVv -r
-qVr

X

Vg dr
P
pVvaq\V-or
pV-gVr
—pVvqgVvr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

—pVqgV-r
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X
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Vg dr
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DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
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DPLL algorithm

procedure DPLL(Q, S)
input: quantifier sequence Q = .p; - - - W,p»,
clause set S with vars from Q
output: Oor 1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if S is empty then return 1
if S contains [] then return 0
(p,b) := select_variable_value(p.,S)
Let Q' be obtained from Q by deleting /1 p from ¥1p;
ifb—=0then.L := —p
elsel :=p
case (DPLL(Q,SU{L}), ¥)of
V) = return 0
,3)=return DPLL(Q',SU{L})
V) = return DPLL(Q", SU {L})
,d) = return1
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Improving DPLL with further simplifications

FpIgVr3s((pVv - r)A(—gVr)AN(=pVgVs)A(-pVgVrVv-s))
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Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality
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FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((mgVr)A(gVs)A(qgVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

® We can apply unit propagation
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Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
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Is(s A —s) =
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® We cantreat —rinp Vv —r as 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality
® We can apply unit propagation with —¢g

® We can apply unit propagation with s
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Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
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Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?
® The J-player will make L true (satisfying all clauses containing )

® The V-player will make L false (so it can be removed from all clauses
containing L)
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Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables

® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq
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Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables

® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq
® pis quantified before a variable g if p occurs before g in Q

Example: InQ = Vg dp Vr
q is quantified before both p and r; and p is quantified before r
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Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables
® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq

® pis quantified before a variable g if p occurs before g in Q

Theorem 10
Suppose that
1. Cisaclauseins;
2. avariable g in a literal L of C is universal in Q;

3. all existential variables of Q in C are quantified before q.
Then deleting L from C does not change the truth value of Q S.
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Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form
Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om
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Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om
Consider the position before the gy, . . ., gm-moves of the V-player
e |fatleastoneof/,, ..., L, istrue,
then Cis true regardless of the truth value of of (—)q,, . . ., (=)qm
e |fallofl,, ..., L, are false,
the V-player will make all (—)q., . . ., (—)gm false and win the game

In either case, the deletion of (—)q;. . . .. (=)gm will not change the final outcome
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Example revisited

FpIgVrIs((pV -r)A(—=gVr)A(=pVgVs)A(-pVqgVrV-s))
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