CS:4350 Logic in Computer Science

Quantified Boolean Formulas

Cesare Tinelli

Spring 2022

L

ThE ﬁ

UNIVERSITY
OF lowa

1/54

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2/54

Outline

Quantified Boolean Formulas
Syntax and Semantics
Free and Bound Variables
Prenex Form

Satisfiability Checking
Splitting
Conjunctive Normal Form
DPLL

3/54

Two-Player Games

Does she have a winning
strategy?

4/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q;, Pns Qn

5/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q;, Pns Qn

There are two players: P and Q

5/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p;,q;, . . ., Pn,qn
There are two players: P and Q

At round of the game k each player makes a move:

5/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p;,q;, . . ., Pn,qn
There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable py

5/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p;,q;, . . ., Pn,qn
There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable py
2. player Q can choose a value for variable g,

5/54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p;,q;, . . ., Pn,qn
There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable py
2. player Q can choose a value for variable g,

Player P wins if after n rounds the chosen values satisfy formula G

5/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

1.

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

1. p P wins with { p; +— 1}

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

1. py Pwinswith { p; — 1}
2. pr—q

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

1. py Pwinswith { p; — 1}
2. p1— ¢ P wins with { p; — 0}

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:
G Outcome

1. p P wins with { p; +— 1}
p1 — Q1 P wins with { p; — 0}

3. 1 —>q

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. py Pwinswith { p; — 1}
p1 — Q1 P wins with { p; — 0}

3. 1 —>q

G has no p; vars, P’s choices are immaterial

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

q: — q

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4,

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

q: — q

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4,

Gisvalid, P always wins!

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

p1 A\ —p1

G Outcome
1. py Pwinswith { p; — 1}
2. p1—q: P wins with { p; — 0 }
3. 91— G has no p; vars, P’s choices are immaterial
4. g1 — q1 Gisvalid, P always wins!
5.

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

p1 A\ —p1

G Outcome
1. py Pwinswith { p; — 1}
2. p1—q: P wins with { p; — 0 }
3. 91— G has no p; vars, P’s choices are immaterial
4. g1 — q1 Gisvalid, P always wins!
5.

G is unsatisfiable, Q always wins!

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

P1 <> Q1

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4, q; —q; Gisvalid, P always wins!
5. p1 A—p; G is unsatisfiable, Q always wins!
6.

6/54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

P1 <> Q1

G Outcome
1. py Pwinswith { p; — 1}
2. p1— a1 P wins with { p; — 0}
3. 91— G has no p; vars, P’s choices are immaterial
4, q; —q; Gisvalid, P always wins!
5. p1 A—p; G is unsatisfiable, Q always wins!
6.

each move by P can be beaten by Q

6/54

Winning Strategy

Problem: does P have a winning strategy?

7/54

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy

iff

there exists a move for P (a value for p;) such that

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy

iff

there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that
for all moves of Q (values for g,)

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that

for all moves of Q (values for g,)
the formula G is satisfiable

7/54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g,)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,) such that
for all moves of Q (values for g,)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

Jp1Vq:13p.Vq, - - - IpaVq, G

7/54

Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and | areformulas
e |f Fisaformula, then —F is aformula

o IfF, F,, are formulas, where n > 2,
thenF, A---AF,and F; V- --\V F, are formulas

e |f F and G are formulas, then F — G and F <+ G are formulas

8/54

Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and | areformulas
e |f Fisaformula, then —F is aformula

o IfF, ..., F, are formulas, wheren > 2,
thenF, A---AF,and F; V- --\V F, are formulas

e |f F and G are formulas, then F — G and F <+ G are formulas

Quantified Boolean Formulas (QBFs):
® Every propositional formula is a QBF

® |f pisaBoolean variable and Fis a QBF,
thenVp F and Ip F are QBFs

8/54

Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”

9/54

Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”

For every variable p, we treat Vp and -p as unary operators applied
to aformula F

9/54

Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”

For every variable p, we treat Vp and -p as unary operators applied
to aformula F

Vp and Jp have the highest precedence (like), e.g.:

Vop—q = (Ypp)—q # Vp(p—q)

9/54

Quantifiers

e Y/ is called the universal quantifier (symbol)
® is called the existential quantifier (symbol)
® YpFisreadas “forallp, F”

® p Fisread as “there exists p such that F” or “for some p, F”

For every variable p, we treat Vp and -p as unary operators applied
to aformula F

Vp and Jp have the highest precedence (like), e.g.:

Vop—q = (Vpp)—q # Vp(p—q)
Note: Some texts give quantifiers lower precedence than all Boolean connectives

9/54

Changing interpretations pointwise

Let 7 be an interpretation

Notation:

Z[p — b](q) { f@‘ EI,’i . :

10/54

Changing interpretations pointwise

Let 7 be an interpretation

Notation:

Zlp bl(q) = { 1 P2

Example: 7 = {p+— 1, 0,r — 1}

IZlg—1] = {p—1,g—1,r—1}

Z[g—0 = {p—1,9g—0r—1} = T

I[p+—0 = {p—0,g—0,r— 1}

10/54

QBF Semantics

A
A

o U~ W N

CI(T) = landI()=0
(FL A AF,) = 1iff Z(F) = 1foralli
(FL V- F,) = 1 iff Z(F;) = 1 for some
I(-F)=1 |ffI()=0
Z(F— G)=1iff Z(F) = 0or Z(G) =
I(F + G) =1 iff Z(F) = Z(G)

11/54

QBF Semantics

1. Z(T) = landI()=0

2. Z(Fy A - F,) = 1iff Z(F;) = 1foralli

3. Z(Fy V - F,) = 1 iff Z(F;) = 1 for some

4. T(—F) =1 |ffI()=0

5 7(F — G)=1iff Z(F) = 0or Z(G) =

6. Z(F «+» G) = 1 iff Z(F) = Z(G)

7. Z(VpF) = 1 iff Z|p — 0|(F) = 1and Z|[p — 1](F) =
8. Z(3pF) =1 iff Z[p — 0](F) = lorZ[p — 1](F) =

Evaluating a formula: and-or trees

How to evaluate Vp 4q (p <+ q) ininterpretation { p > 1, +> 0}

12/54

Evaluating a formula: and-or trees

How to evaluate Vp 4q (p <+ q) ininterpretation { p > 1, +> 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v, }

12/54

Evaluating a formula: and-or trees

How to evaluate Vp 4q (p <+ q) ininterpretation { p > 1, +> 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v, }

Tio =Vp3q(p < q)

12/54

Evaluating a formula: and-or trees

How to evaluate Vp Hg (p <+ g) ininterpretation { p > 1, g+ 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v5 }

Tio = Yp3q (p < q)

=

Too =g (p < q)
T F=3q(p < q)

and

12/54

Evaluating a formula: and-or trees

How to evaluate Vp Hg (p <+ g) ininterpretation { p > 1, g+ 0}

Notation: for brevity, let Z,,,, denote the interpretation { p + vy, q — v5 }

Zoo =3q(p < q)
TiwEVpIg(p<q) < and

T =g (p < q)

ToEp<rq or
Toif=p < q

& and
InEpeaq
TulEp+q

12/54

Evaluating a formula: and-or trees

Tho |—Vp3q p <
Too =39 (p < q) T =39 (p < q)

SN N

To =p<q InEp+<q IwEp+<q LiuEp<q

13/54

Evaluating a formula

Notation: Denote any interpretation { p — by, g — b, } by Zp, p,
Use wildcards « to denote any Boolean value

Z.. EVpIq (p < q)

14/54

Evaluating a formula

Notation: Denote any interpretation { p — by, g — b, } by Zp, p,

Use wildcards « to denote any Boolean value

=

Tox

=3Jq(p < q)
Ti- F3q(p < q)

and

14/54

Evaluating a formula

Notation: Denote any interpretation { p + by, q ~ by } by Zp p,
Use wildcards « to denote any Boolean value

To. =3q(p < q)
.. EVpIg(p < q) < and

Ti. =3q(p < q)

Too =p <> q or
InfFEp+q

& and
InlEpeaq
TulEp+q

14/54

Evaluating a formula

Notation: Denote any interpretation { p — by, g — b, } by Zp, p,
Use wildcards « to denote any Boolean value

L EVp3g(p+q) <

To. =39 (p < q)
and
T F3q(p < q)
Too =p <+ q or
Tnn=p < q
and
IinkEp+q or
TuFEp+q

The variables p and g are bound by the quantifiers Vp and g, so
the value of the formula does not depend on the values p and g

14/54

Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
® [..., F, are the immediate subformulasof F; A -~ A F,
® ..., F,, are the immediate subformulasof F; \V - - -V F,,

F, and F, are the immediate subformulas of F; — F,

F; and F, are the immediate subformulas of F; «+ F,

15/54

Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
® [..., F, are the immediate subformulasof /; A -+ - A F,
® ..., F, are the immediate subformulasof F; \V - - -V F,
® [andF, are the immediate subformulasof F; — F,
® [and F; are the immediate subformulas of F; «+ F,

Quantified Boolean formulas:
® [istheimmediate subformula of Vp F and of 9p F

15/54

Positions and polarity by example

p/ﬂxv
\/q/ Xr

p—vq3p(q < p)Vr

Positions and polarity by example

p/ﬁxv
Vq/ Xr

Ip Fl2.1 =Yq3p(q < p)

p—Y¥q3p(q<p)Vr

16/54

Positions and polarity by example

p/ﬂxv
Vq/ Xr

Jp Fl2.. =Vq3p(q < p)

p—Y¥q3p(q<p)Vr

Flai111=9

16/54

Positions and Polarity

LetF|, =A

Propositional formulas:
e |f Ahastheform —4;,
then 7.1 isa positionin 7, £, “ A, and pol(F. =.1) < —pol(F. =)
o IfAhastheformA; A ANA,orAL V- VA,andie {1,...,n},

then 7.jis a position in F and pol(F, r.i) o pol(F,)

17/54

Positions and Polarity

LetF|, =A

Propositional formulas:
e |f Ahastheform —4;,
then 7.1 isa positionin 7, £, “ A, and pol(F. =.1) < —pol(F. =)
o IfAhastheformA; A ANA,orAL V- VA,andie {1,...,n},
then 7.jis a position in F and pol(F, r.i) o pol(F,)

Quantified Boolean formulas:
® [fAhastheformYpBorJpB,
then 7.1 is a positionin 7, £, ' Band pol(F, =.1) “~ pol(F.r)

17/54

Free and bound variables by example
*>
e >
(free)
Vq \ r

’

(free)

N
1 \
1
1

| —
|
|
|
|

p
(bound) (bound)

p—Vqip(q<p)Vr

18/54

Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)

intk=1i>3j37? 1i-3: j-1i;
return a + k

sum = i + offset_sym_diff(3,4);

19/54

Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

binding
int offstf(ins int §)
{
intk=1i>3? i-3: j-i;
return a + k
bound
sum = i +|offset_sym_diff(3,4);

N\

free

19/54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

20/54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

20/54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

Free occurrence: not bound

20/54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

20/54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7
The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 7,7, such that F| ., has the form Vp G or 9p G

A bound occurrence of p is an occurrence in the scope of Vp or p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20/54

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1l
Suppose 7;(p) = Z,(p) for all free variables p of F. Then

T = Fiff T, = F

21/54

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1l
Suppose 7;(p) = Z,(p) for all free variables p of F. Then

T = Fiff T, = F

Theorem 2
Let F be a closed formula and let 7, , 7, be two interpretations. Then

T = Fiff T, = F

21/54

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

22/54

Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T = F; (ii) F is satisfiable; and (iii) F is valid.

22/54

Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p-, . . ., Pn-

® [jssatisfiable iff Jp, - - - Jp, F is satisfiable/valid
e Fisvalid iff the formulaVp, - - - Vp, F is satisfiable/valid

22/54

Substitutions for propositional formulas

Substitution: FE: denotes the formula obtained from F by replacing all occurrences
of variable p by G

23/54

Substitutions for propositional formulas

Substitution: FS: denotes the formula obtained from F by replacing all occurrences
of variable p by G

Example:

((PVs)A(g—p)S™ = ((LAS)VS) A (g — (IAS))

23/54

Substitutions for propositional formulas

Substitution: FS: denotes the formula obtained from F by replacing all occurrences
of variable p by G

Example:

((PVs)A(g—p)S™ = ((LAS)VS) A (g — (IAS))

Property: Applying any substitution to a valid formula results in a valid formula

23/54

Substitutions for quantified formulas

Some problems...

24/54

Substitutions for quantified formulas

Some problems...

Consider Hg (—p < q)

24/54

Substitutions for quantified formulas

Some problems...

Consider Hg (—p < q)

We cannot simply replace variables by formulas any more:

Ar—r)(=p<r—r)2?7?7 lllformed

24/54

Substitutions for quantified formulas

Some problems...
Consider Hg (—p < q)

We cannot simply replace variables by formulas any more:
Ar—r)(=p<r—r)2?7?7 lllformed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

Vp((p—q)V-p)A(gV(g—p))

24/54

Renaming bound variables

Notation: ¥: any of 4, V/

25/54

Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[/pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

25/54

Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[/pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Ir(Vp((p-—+r)Ap))Vp renamep to q,obtaining

Ir(vg((g—=r)Aq))Vp

25/54

Renaming bound variables
Notation: : any of -,/

Renaming bound variablesin F[/pG |:

1. Take a fresh variable g (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Ir(Vp((p-—+r)Ap))Vp renamep to q,obtaining

Ir(vg((g—=r)Aq))Vp

Lemma5
F[¥pG]| = F[3¥qG']

25/54

Free and bound variables by example
*>
e >
(free)
Vq \ r

’

(free)

N
1 \
1
1

| —
|
|
|
|

p
(bound) (bound)

p—Vq3p(q < p)Vr

26/54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. forevery variable p, there is at most one occurrence of quantifier /p in £

27/54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. forevery variable p, there is at most one occurrence of quantifier /p in £

[Any formula can be rectified by renaming its bound variables]

27/54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. forevery variable p, there is at most one occurrence of quantifier /p in £

[Any formula can be rectified by renaming its bound variables]

We can use the usual notation FPG for substitutions into a rectified formula F,
assuming p occurs only freein F

27/54

Rectification: Example

p—3peA Vp(pVr——p))

28/54

Rectification: Example

p—3ppA Vp(pVr——p))

28/54

Rectification: Example

p—3ppAVp(pVr—-p))=

p— Ip(PAVpL(p1Vr— —p1))

28/54

Rectification: Example

p—3ppAVp(pVr—-p))=

p— 3p(PAVPL(pLVr— —p1)) =

p — 3p2 (P2 AVp1(p1 VI — —p1))

28/54

Rectification: Example

p—3ppAVp(pVr—-p))=

p— Ip(PAVPL(pL VT — —p1)) =

p — 3p2 (P2 AVp1(p1 VI — —p1))

Renaming each bound variable to a
fresh one preserves equivalence

28/54

Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)

29/54

Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)

substitute p by g

29/54

Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)

substitute p by g

dg (—q < q) This formula is unsatisfiable!

29/54

Another problem

dg(—p <> q) Thisformulaisvalid (whatever value p has, choose the opposite
forq)

substitute p by g

dg (—q < q) This formula is unsatisfiable!

[Substitutions below a quantifier should not lead to variable capturing }

29/54

Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in Fg

30/54

Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in FS

(In previous example, (Jg (—p <> q)); does not satisfy this requirement)

30/54

Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in FS

(In previous example, (Jg (—p <> q)); does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution
Example:

Since g (—p <> q) = Ar(—p <> 1)

we canuse (Jr(—p <> r))} instead of (Jg (—p <> q));

30/54

Another restriction

Suppose we want to substitute G for p in F|p]

Requirement: no free variables in G become bound in FS

(In previous example, (Jg (—p <> q)); does not satisfy this requirement)

(M)
Unifor! tution
From now on, we always assume that:

Ef‘amlf 1. formulas are rectified
Since 5 all substitutions satisfy the requirement above
we can

30/54

Equivalent replacement

Lemma 6
Let 7 be an interpretation and 7 |~ F; <+ F,. Then

31/54

Equivalent replacement

Lemma 6
Let 7 be an interpretation and 7 |~ F; <+ F,. Then

Theorem 7 (Equivalent Replacement)
Let Fl = Fz. Then G[Fl] = G[FZ]

31/54

More equivalences

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
2. dpidp, F = dp,dp: F
3. WpF = F ifpdoesnotoccurfreein F
4. VpF = F; NF,
5 dpF = Fy VF)

32/54

More equivalences

Theorem 8

The following holds for all QBFs F:
1. VpiVpo, F = Vp,Vp: F
2. dpidp, F = dp,dp: F
3. WpF = F ifpdoesnotoccurfreein F
4. VpF = F; NF,
5 dpF = Fy VF)

. J

Note: In general, "p,Vp,F # Vp,dp:F !

32/54

More equivalences

r

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
. dp1dp, F = dp,dp: F
. WpF = F ifpdoes notoccur freein F

2
3
4. VpF
5. dpF

-

i T
Fo NFp
gl T
Fy Vv F,

Note: In general, "p,Vp,F # Vp,dp:F !

Example:

*Vpig(p«<q) =T

32/54

More equivalences

r

Theorem 8
The following holds for all QBFs F:
1. Vp,Vp, F = Vp,Vp: F
. dp1dp, F = dp,dp: F
. WpF = F ifpdoes notoccur freein F

2
3
4. VpF
5. dpF

-

gl T
Fo NFp
gl T
Fy Vv F,

Note: In general, "p,Vp,F # Vp,dp:F !

Example:

*Vpdg(p«+q) =T
® Jg¥p(p<rq) =1L

32/54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

33/54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix

—T—
V1p1 -+ - Fnpn \G/_/

matrix

with G quantifier-free

33/54

Prenex form
Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

quantifier prefix

——
WVip1 - Vopn \G/_/

matrix

with G quantifier-free

Outermost prefix of %/ 1p, - - - ¥,p,G: the longest subsequence
Wipy - Wyeprof py - W,p,suchthat W, = - = ¥,

33/54

Prenex form
Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix
—
W1p1 -+ WP \G/_/

matrix

with G quantifier-free

Outermost prefix of %/ 1p, - - - ¥,p,G: the longest subsequence
Wipy - Wyeprof py - W,p,suchthat W, = - = ¥,
Example

® outermost prefix of Vp Vg 3r(r Ap — q): VpVq

® outermost prefix of Ip Vg 3r(r Ap — q): Ip

33/54

Prenex form
Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix

—T—
W1p1 -+ WP \G/_/

matrix

with G quantifier-free

Outermost prefix of %/ 1p, - - - ¥,p,G: the longest subsequence
Wipy - Wyeprof py - W,p,suchthat W, = - = ¥,

A formula F is a prenex form of a formula G if F is prenexand F = G

33/54

Conversion to prenex form, Example |

I I | I
Hq/ \v %/ \v ﬂ«/ \v ﬂ/ \Sr i
[AN AN A AV AN S VAN
LA R AN A AN
\A | | \} \)
/\ / / / /

rp rop rop rop rop

34/54

Conversion to prenex form, Example |

Same conversion:

(3g(g — p)) = ~Vr(r—p)Vp

(

()
(g = p) = —Vr(r—p)Vp)
((g = p) = Fr=(r—p)Vp)

vq
vq
Vg ((g = p) = 3r(=(r = p)Vp))
Vq3r((g — p) = —(r —p)Vp)

Pl

35/54

Prenexing rules

(FpF)AN---ANFy = Fp(FLA---NFp)
(FpF)V---VF, = Fp(FLV---VF,)
(VpF) — F, = dp(FL — F) Fi— (3pF) = Jp(FL — F,)
(3pF1) = F, = Yp(FL — F) Fi— (VYpF) = Vp(FL — F)
-VpF = dp—F —dpF = Vp—F

36/54

Conversion to prenex form, Example Il

q(qg—p) = Vr(r—>p)Vvp
dg(q—p) — AIr-(r—p)Vp
q(qg —p) = 3Ir(=(r = p)Vp)
Jr(3g(q = p) = =(r = p)Vp)
Jrvq((g = p) = =(r = p)Vp)

I

37/54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL

38/54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL

Recall:

2. F(py,..., pn) is valid iff Vp1---Vpn F(p1,. .., pn) is satisfiable
3. Aclosed QBF is either always true (valid) or always false (unsatisfiable)

38/54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
e Splitting
® DPLL

Recall:

2. F(p1,...,pn)isvalid iff Vp1---Vpn F(p1,. .., pn) is satisfiable
3. Aclosed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

38/54

Splitting: foundations

Lemma9
® Aclosed formula Vp F evaluates to 1 iff both FpL and FpT evaluate to 1.

® Aclosed formula Hp F evaluates to true iff either F,- or F, evaluates to 1.

39/54

Splitting

Simplification rules for T:

-T = 1
TAFLA--AFy = FLA---AF,
TVFARV---VF, = T
F=T=T T —=F=F
Fe<T =F T+ F=F

Simplification rules for L:

-1l =T
LAFRAN-ANFp = L
1LVFV---VF, = FV---VF,
F— 1 = —F 1L —=F=T
F< 1 = —F 1l <+ F = —F

40/54

Splitting

Simplification rules for T:
-T = L
TAFLA--ANFy = FLA---AF,
TVFAV--VF = T

F=T=T T —=F=F
Fe T = F T F=F
VpoT = T

IpT =T

Simplification rules for L:

-1l =T
LAFRAN-ANFp = L
1LVFV---VF, = FV---VF,
F— 1 = —=F L —=F=T
F< 1 = —F 1l <+ F = —F
Vpl = L
dpl = L

40/54

Splitting, Example

Vp3q(p < q)

41/54

Splitting, Example
Vp3q(p < q)

/A
p=20

Jq (L < q)

41/54

Splitting, Example
Vp3q(p < q)

/A
p=20

3q (—q)

41/54

Splitting, Example

Vpdq(p < q)

/A
p=20

3q (—q)

/v
qg=20

(=1)

41/54

Splitting, Example

Vp3q(p < q)

/A
p=20

3q (—q)

/v
g=20

T

41/54

Splitting, Example

Vp3q(p < q)

/A
p=20

1 3q(—q)

/v
g=20

T

41/54

Splitting, Example

Vp3q(p < q)
P / \
1 Jq(—q) Jq(T < q)

/v
g=20

T

41/54

Jq(q)

Vp3q(p < q)

p:/A\zl

1 39(—q)
V

v

Splitting, Example

qg=

T

1

41/54

Splitting, Example

Vp3q(p < q)

N

1 3q(—q)

(9)

/v

dq

q

\Y

q=0

T

41/54

Splitting, Example

41/54

Splitting, Example

41/54

Splitting, Example

41/54

Splitting, Example

IqVp(p < q)

41/54

Splitting, Example

41/54

Splitting, Example

o o<
Q.
uV/
Il
a -
o
—
\m/v
- - =
QN
0 /1/
/WA o [
jﬂ/ =
= NT
P/ﬁ\v
S
m
1/
Il
=

41/54

Splitting, Example

JgVp (p < q)

41/54

Splitting, Example

JgVp (p < q)

vp (p)

41/54

Splitting, Example

41/54

Splitting, Example

— <
[NRSR
[y
o
Il
> a -
/ ©
TN
S5 (ﬁ\A
>
o —
Il
a -
o
—
=,
[
M //
Il
< o [
L |
Q. o @
[
Q= >
o
m
1/
Il
=

41/54

Splitting, Example

IgVp(p <> q) 0

41/54

Splitting, Example

Vp g (qu JqVp (qu
1 3q9(—q) 1 0 Vp(—p) 0
/ */ 7/ /
1 0 L 0 L

To minimize search, the selection of variable values is best seen as a two-player
game:

® by selecting a value for g one is trying to make the formula true

® by selecting a value for Vp one is trying to make the formula false

41/54

Splitting algorithm

Notation: ifp = (p;, px) then /pF denotes p; - - - WpyF

42/54

Splitting algorithm

procedure splitting(F)
input: closed rectified prenex formula £
output: Oor 1
parameters: function select_variable_value /] selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it
F .= simplify(F) // apply extended simplification rules to completion
if - = | thenreturn0
if F = T thenreturn 1
// else F has the form =/pF’ where p is F’s outermost prefix
(p,b) := select_variable_value(F)
Let G be obtained from F by deleting p from p
ifb—=0thenA := |;B := TelseA := T:B := L
b := splitting(G})
case (b, W) of
V) = return 0
3) = return splitting(G,,)
V) = return splitting(G;)
E)

0,
0,
1,
1,9) = returnl

(
(
(
(
end

42/54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

43/54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

43/54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or

® it has the form
37lpl o 37/7[7/1 (Cl VANEERIVA Cm)

whereCy, C,, are clauses

43/54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or

® it has the form
371[31 o 3Vnpn (Cl JARRIAN Cm)

whereCy, C,, are clauses

Example:
VpdgIs((-pVsVvag)A(sV—g)A-s)

43/54

CNF rules

Prenexing rules

+

propositional CNF rules:

R

(=FV G)A (=G VF)
-FVG

—FV -G

-FA -G

F
(FLVGLV---VG,) A
A
(FmV GV ---VGp)

44/54

DPLL for quantified Boolean formulas

Input:
Q: quantifier sequence /.p; - - - ¥,p,
S: set of clauses with variables fromp,. ..., p,

Main components:
Unit propagation
Splitting on literals

45/54

Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

46/54

Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or —p

46/54

Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains —Ip,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

46/54

Unit Propagation
Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unitclauseLin §
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains —Ip,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

® otherwise (O contains Vp),add [1to S

46/54

DPLL algorithm

Why do we add [Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis {’[7, Ci,..., C, } ?

47/54

DPLL algorithm

Why do we add [1to Swhen QisVp W,p; - -V, p» and
Sis{p,Cy. ..., Ch}?

Because
1. Theintended input formula is
G=VYVp¥q FnGm(PACLA---ANCrp)

47/54

DPLL algorithm

Why do we add [1to Swhen QisVp W,p; - -V, p» and
Sis{p,Cy. ..., Co}?

Because
1. Theintended input formula is
G=VYVp¥q FnGm(PACLA---ANCrp)

2.6 = a1 HnGn (PACLA - ACn)y A(PACLA---ACr),)

47/54

DPLL algorithm

Why do we add [1to S when Qis Vp ¥/,p; - - - ¥, p,, and

Because
1. Theintended input formula is
G=Vp¥qr- F¥mGm(PACLA--ACp)
2.6 = a1 HnGn (PACLA - ACn)y A(PACLA---ACr),)
= 191 HnGm (LA(CLA - AC)y A(PACLA - ACp),)

47/54

DPLL algorithm

Why do we add [1to S when Qis Vp ¥/,p; - - - ¥, p,, and

Because
1. Theintended input formula is

G=Vp¥qr- F¥mGm(PACLA--ACp)
2.6 = a1 HnGn (PACLA - ACn)y A(PACLA---ACr),)
¥1G1 - FmQm (LA(CLA - ACn)y A(PACLA---ACr),)
3vlcll"‘gvrnqmj—
1

47/54

DPLL algorithm

Why do we add [Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis {’[7, Ci,..., C, } ?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

47/54

DPLL algorithm

Why do we add [Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis{p.Cy. ..., Ch}?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

47/54

DPLL algorithm

Why do we add [Ito S when Qis Vp ,p; - - - ¥, p,y and
Sis{p.Cy. ..., Ch}?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument s similar for { —p. Cy, Co })

47/54

DPLL, Example

dpVq3ar

pV gV -r
pV-qVr
oV aqgVvr
oV qV-r

48/54

DPLL, Example

Vq 3dr
—p
pVaq\V-r
pV-qVr
-pVqgVvr
-pVq\V-r

P

JpVq3r
pVvaqV-r
pV—qVr
-pVqVr

—pVqV-r

48/54

DPLL, Example

Vqdr
qVv-r
-qVr

Ly

Vq 3dr
—p
pVaq\V-r
pV-qVr
-pVqgVvr
-pVq\V-r

P

JpVq3r
pVvaqV-r
pV—qVr
-pVqVr

—pVqV-r

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

—-q

Vqdr
qVv -r
-qVr

X

Vg dr
P
pVvaq\V-or
pV-gVr
—pVvqgVvr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

—pVqgV-r

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

X

Vq3dr
-p
pVvaq\V-or
pVvV-gVr
—pVvqgVr
—pVqV -r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

X

Vq3dr
-p
pVvaq\V-or
pVvV-gVr
—pVvqgVr
—pVqV -r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

ke — — 4
.

LU
S

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

ke — — 4
.

LU
S

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

ke — — 4
.

LU
S

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

ke — — 4
.

LU
S

48/54

DPLL, Example

dr

-q
qV —r
-qVvr

ke — — -

=

—-q

Vqdr
qVv -r
-qVr

Vg dr
-p
pVvaq\V-or
pV-gVr
—pVqVr
-p\VqV-r

-p

JpVq3r
pVvaqV-r
pvV-qgVr
-pVqVr

-pVqV-r

dr

qVv-r
—qVr

ke — — 4
.

LU
S

48/54

DPLL algorithm

procedure DPLL(Q, S)
input: quantifier sequence Q = .p; - - - W,p»,
clause set S with vars from Q
output: Oor 1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if S is empty then return 1
if S contains [] then return 0
(p,b) := select_variable_value(p.,S)
Let Q' be obtained from Q by deleting /1 p from ¥1p;
ifb—=0then.L := —p
elsel :=p
case (DPLL(Q,SU{L}), ¥)of
V) = return 0
,3)=return DPLL(Q',SU{L})
V) = return DPLL(Q", SU {L})
,d) = return1

49/54

Improving DPLL with further simplifications

FpIgVr3s((pVv - r)A(—gVr)AN(=pVgVs)A(-pVgVrVv-s))

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV - r)A(—gVr)AN(-pVgVs)A(-pVgVvrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—-gVI)A(=pVgVS)A(-pVgVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

® We can apply unit propagation

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((mgVr)A(gVs)A(qgVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

® We can apply unit propagation

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((—gVr)A(gVs)A(gVrV-s))

® We cantreat —rinp Vv —r as 0 without loss of generality

® We can apply unit propagation
® We can treat r as 0 everywhere without loss of generality

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((-gVr)A(gVs)A(gVrV—s)) =

3q3s (=g A (qVs)A(gV—s))

® We cantreat —rinp Vv —r as 0 without loss of generality

® We can apply unit propagation
® We can treat r as 0 everywhere without loss of generality

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((-gVr)A(gVs)A(gVrV—s)) =

3q3s (=g A (qVs)A(qV—s))

® We cantreat —rinp Vv —r as 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality
® We can apply unit propagation with —¢g

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((-gVr)A(gVs)A(gVrV—s)) =
dg3s(—-gA(gVs)A(qV —s)) =

s (s A —s)

® We cantreat —rinp Vv —r as 0 without loss of generality
We can apply unit propagation
® We can treat r as 0 everywhere without loss of generality

® We can apply unit propagation with —¢g

50/54

Improving DPLL with further simplifications

FpIgVr3s((pV -r)A(=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
Fp3IgVr3s(pA(—=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
JgVr3s((—gVr)A(gVs)A(gVrV-s)) =
dg3s(—-gA(gVs)A(qV —s)) =

Is(s A —s) =

U

® We cantreat —rinp Vv —r as 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality
® We can apply unit propagation with —¢g

® We can apply unit propagation with s

50/54

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L

51/54

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

51/54

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?

51/54

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?
® The J-player will make L true (satisfying all clauses containing)

51/54

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?
® The J-player will make L true (satisfying all clauses containing)

® The V-player will make L false (so it can be removed from all clauses
containing L)

51/54

Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables

® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq

52/54

Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables

® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq
® pis quantified before a variable g if p occurs before g in Q

52/54

Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables

® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq
® pis quantified before a variable g if p occurs before g in Q

Example: InQ = Vg dp Vr
q is quantified before both p and r; and p is quantified before r

52/54

Universal literal deletion

Q: quantifier sequence
S: clause set
p, q: variables
® pisexistential in Q if Q contains —Ip
® gisuniversalin Q if Q contains Vq

® pis quantified before a variable g if p occurs before g in Q

Theorem 10
Suppose that
1. Cisaclauseins;
2. avariable g in a literal L of C is universal in Q;

3. all existential variables of Q in C are quantified before q.
Then deleting L from C does not change the truth value of Q S.

52/54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form
Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om

53/54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form
Lyve VLV (=2)gL V-V (—)gm
where all existential variables of Q in C are quantified before gy, . . ., Om

Consider the position before the g1, . . ., qm-moves of the V-player

53/54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om
Consider the position before the gy, . . ., qm-moves of the V-player
e |fatleastoneof/,, ..., L, istrue,

then Cis true regardless of the truth value of of (—)q,, . . ., (=)qm

53/54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om
Consider the position before the gy, . . ., qm-moves of the V-player
e |fatleastoneof/,, ..., L, istrue,
then Cis true regardless of the truth value of of (—)q,, . . ., (=)qm
e |fallofl,, ..., L, are false,

the V-player will make all (—)q., . . ., (—)gm false and win the game

53/54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

Lyve VLV (=2)gL V-V (—)gm

where all existential variables of Q in C are quantified before gy, . . ., Om
Consider the position before the gy, . . ., gm-moves of the V-player
e |fatleastoneof/,, ..., L, istrue,
then Cis true regardless of the truth value of of (—)q,, . . ., (=)qm
e |fallofl,, ..., L, are false,
the V-player will make all (—)q., . . ., (—)gm false and win the game

In either case, the deletion of (—)q;. (=)gm will not change the final outcome

53/54

Example revisited

FpIgVrIs((pV -r)A(—=gVr)A(=pVgVs)A(-pVqgVrV-s))

54/54

Example revisited

FpAgVrIs((pV-r)A(—gVr)A(=pVgVs)A(-pVqgVrV-s))

® Apply universal literal deletion to p \/ —r

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVrIs(pA(—gVr)A(—=pVgVs)A(=pVqgVrV-s))

® Apply universal literal deletion to p \/ —r

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(—-gVIr)A(—pVgVsS)A(-pVgVrV-s))

® Apply universal literal deletion to p \/ —r
® Apply unit propagation

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVrIs(pA(—=gVIr)A(=pVgVs)A(-pVqgVrV-s)) =
AgVr3s((mgVr)A(gVs)A(qgVrV-s))

® Apply universal literal deletion to p \/ —r
® Apply unit propagation

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((—gVr)A(gVs)A(gVrV-s))

® Apply universal literal deletion to p \/ —r
® Apply unit propagation
® Apply the pure literal rule to r

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVrIs(pA(—=gVIr)A(=pVgVs)A(-pVqgVrV-s)) =
AgVr3s((mgVr)A(gVs)A(gVrV=-s)) =
Jg3s(—g A (gVs)A(qV —s))

® Apply universal literal deletion to p \/ —r
® Apply unit propagation
® Apply the pure literal rule to r

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((—gVr)A(gVs)A(gVrV-s)) =

3g3s (=g A (qVs)A(gV—s))

® Apply universal literal deletion to p \/ —r
® Apply unit propagation

® Apply the pure literal rule to r

® Apply unit propagation

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVr3s(pA(=gVIr)A(—pVgVS)A(-pVgVrV-s)) =
AgVr3s((—gVr)A(gVs)A(gVrV-s)) =
Jg3s(—-g A (gVs)A(qV —s)) =

s (s A —s)

® Apply universal literal deletion to p \/ —r
Apply unit propagation
Apply the pure literal rule to r

® Apply unit propagation

54/54

Example revisited

FpIgVr3s((pV -r)A(—=gVr)A(-pVgVs)A(-pVqgVrV-s)) =
FpIgVrIs(pA(—=gVIr)A(=pVgVs)A(-pVqgVrV-s)) =
AgVr3s((mgVr)A(gVs)A(gVrV=-s)) =
Jg3s(—-g A (gVs)A(qV —s)) =

Is(s A —s) =

U

® Apply universal literal deletion to p \/ —r
Apply unit propagation
Apply the pure literal rule to r

® Apply unit propagation

54/54

	Quantified Boolean Formulas
	Syntax and Semantics
	Free and Bound Variables
	Prenex Form
	Satisfiability Checking

