CS:4350 Logic in Computer Science

Satisfiability and Randomization

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Satisfiability and Randomization

Randomly Generated Clause Sets Sharp Phase Transition Randomised Algoritms for Satisfiability-Checking

How can one generate a random clause?

How can one generate a random clause? Let's first generate a *random literal*

How can one generate a random clause? Let's first generate a *random literal*

• Fix a number n of boolean variables

How can one generate a random clause? Let's first generate a *random literal*

- Fix a number n of boolean variables
- Select a literal among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability

How can one generate a random clause?

Let's first generate a random literal

A random clause is a disjunction of random literals

- Fix a number n of boolean variables
- Select a literal among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability

How can one generate a random clause?

Let's first generate a random literal

A random clause is a disjunction of random literals

- Fix a number *n* of boolean variables
- Select a literal among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability
- Fix the length *k* of the clause

How can one generate a random clause?

Let's first generate a random literal

A random clause is a disjunction of random literals

- Fix a number n of boolean variables
- Select a literal among $p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n$ with an equal probability
- Fix the length *k* of the clause

Suppose we generate random clauses one by one

How does the set of models of this set change?

S

p_1	p_2	p_3	р4	p_5	
0	0	0	0	0	
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1
1	1	1	0	0
1	1	1	0	1
1	1	1	1	0
1	1	1	1	1

S	
n \/ n	
$\neg p_2 \lor \neg p_3$	

p_1	p_2	p_3	р4	p_5	
0	0	0	0	0	
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	0	1	
0	1	1	1	0	
\cap	1	1	1	1	

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1
1	1	1	0	0
1	1	1	0	1
1	1	1	1	0
1	1	1	1	1

$$\neg p_2 \vee \neg p_3$$

p_1	p_2	p_3	P4	p_5
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1
0	1	0	0	0
0	1	0	0	1
0	1	0	1	0
0	1	0	1	1

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

 $\neg p_2 \lor \neg p_3$ $\neg p_2 \lor p_1$

p_1	p_2	p_3	р4	p_5
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1
0	1	0	0	0
0	1	0	0	1
0	1	0	1	0
0	1	0	1	1

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

$$\neg p_2 \lor \neg p_3$$

 $\neg p_2 \lor p_1$

p_1	p_2	p_3	р4	p_5
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

 $\neg p_2 \lor \neg p_3$ $\neg p_2 \lor p_1$ $\neg p_2 \lor p_2$

p	p_{2}	<i>p</i> ₃	<i>p</i> ₄	p_5	
0	0	0	0	0	_
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	
0	0	1	1	1	

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

S
$\neg p_2 \vee \neg p_3$
$\neg p_2 \lor p_1$
$\neg p_2 \lor p_2$
$p_1 \lor p_1$

p_1	p_2	p_3	<i>p</i> ₄	p_5
0	0	0	0	0
0	0	0	0	1
0	0	0	1	0
0	0	0	1	1
0	0	1	0	0
0	0	1	0	1
0	0	1	1	0
0	0	1	1	1

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

S

p_1	p_2	p_3	<i>p</i> ₄	p_5

$\neg p_2 \vee \neg p_3$		
$\neg p_2 \lor p_1$		
$\neg p_2 \lor p_2$		
$p_1 \vee p_1$		

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

\$ $p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5$ \$\simp_{2} \left\cap p_3 \quad \theta_4 \quad p_5\$

\$\simp_{2} \left\cap p_3 \quad \theta_4 \quad p_5\$

\$\simp_{2} \left\cap p_1 \quad \theta_1 \quad \theta_5 \quad \quad \theta_5 \quad \quad \theta_5 \quad \theta_5 \quad \theta_5 \quad \theta_5 \quad \quad \quad \quad \quad \quad \theta_5 \quad \q

p_1	p_2	p_3	<i>p</i> ₄	p_5
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1
1	0	1	0	0
1	0	1	0	1
1	0	1	1	0
1	0	1	1	1
1	1	0	0	0
1	1	0	0	1
1	1	0	1	0
1	1	0	1	1

S	p_1	p_2	р3	p ₄	<i>p</i> ₅		p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	p_5
$\neg n_0 \setminus / \neg n_0$							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							1	0	0	1	0
$\neg p_2 \lor p_1$							1	0	0	1	1
$\neg p_2 \lor p_2$											
$p_1 \vee p_1$							1	0	1	0	1
$\neg p_5 \lor p_5$							1	0	1	1	0
$p_4 \vee p_5$							1	0	1	1	1
P4 V P5							_	0	_	_	_
							1	4	0	0	1
							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

S	p_1	<i>p</i> ₂	рз	р4	p_5		p_1	p ₂	рз	<i>p</i> ₄	<i>p</i> ₅
n \/ n							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							1	0	0	1	0
$\neg p_2 \lor p_1$							1	0	0	1	1
$\neg p_2 \lor p_2$											
$p_1 \vee p_1$							1	0	1	0	1
$\neg p_5 \lor p_5$							1	0	1	1	0
$p_4 \vee p_5$							1	0	1	1	1
$\neg p_5 \lor \neg p_3$											
, 5 , 7 5							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

S	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	_	p_1	p_2	р3	<i>p</i> ₄	<i>p</i> ₅
-n \/-n							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							1	0	0	1	0
$\neg p_2 \lor p_1$							1	0	0	1	1
$\neg p_2 \lor p_2$											
$p_1 \lor p_1$											
$\neg p_5 \lor p_5$							1	0	1	1	0
$p_4 \vee p_5$							_		_	_	
$\neg p_5 \lor \neg p_3$							1	1	0	0	1
							_		_	_	_
							1	1	0	1	0
							1	1	0	1	1

S	p_1	p_2	p_3	<i>p</i> ₄	p_5	_	p_1	p_2	p_3	<i>p</i> ₄	p_5
-n \/-n							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							1	0	0	1	0
$\neg p_2 \lor p_1$							1	0	0	1	1
$\neg p_2 \lor p_2$											
$p_1 \lor p_1$											
$\neg p_5 \lor p_5$							1	0	1	1	0
$p_4 \vee p_5$											
$\neg p_5 \lor \neg p_3$											
$p_2 \vee \neg p_4$							1	1	0	0	1
12 11							1	1	0	1	0
							1	1	0	1	1

S	p_1	p_2	р3	<i>p</i> ₄	<i>p</i> ₅		p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
$\neg p_2 \lor \neg p_3$							1	0	0	0	1
$\neg p_2 \lor p_3$ $\neg p_2 \lor p_1$											
$ eg p_2 \lor p_2 onumber onum$											
$\neg p_1 \lor p_1$ $\neg p_5 \lor p_5$											
$p_4 \vee p_5$											
$\neg p_5 \lor \neg p_3$ $p_2 \lor \neg p_4$							1	1	0	0	1
							1	1	0	1	0
							1	1	0	1	1

S	p_1	p_2	р3	<i>p</i> ₄	p_5		p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5
							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							Т	U	U	U	Т
$\neg p_2 \lor p_1$											
$\neg p_2 \lor p_2$											
$p_1 \lor p_1$											
$\neg p_5 \lor p_5$											
$p_4 \vee p_5$											
$\neg p_5 \lor \neg p_3$											
$p_2 \vee \neg p_4$							1	1	0	0	1
$p_5 \vee \neg p_2$							1	1	0	1	0
							1	1	0	1	1

S	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	,	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
							1	0	0	0	1
$\neg p_2 \lor \neg p_3$							_				_
$\neg p_2 \lor p_1$											
$\neg p_2 \lor p_2$											
$p_1 \vee p_1$											
$\neg p_5 \lor p_5$											
$p_4 \vee p_5$											
$\neg p_5 \lor \neg p_3$							1	1	0	0	1
$p_2 \lor \neg p_4$ $p_5 \lor \neg p_2$							_	_	9	,	_
P5 V P2							1	1	0	1	1

S	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅		p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	
							1	0	0	0	1	
$\neg p_2 \lor \neg p_3$								O	O	O	1	
$\neg p_2 \lor p_1$												
$\neg p_2 \lor p_2$												
$p_1 \lor p_1$												
$\neg p_5 \lor p_5$												
$p_4 \vee p_5$												
$\neg p_5 \lor \neg p_3$												
$p_2 \vee \neg p_4$							1	1	0	0	1	
$p_5 \vee \neg p_2$												
$p_5 \vee p_2$							1	1	0	1	1	

S	PI	PZ	PS	P4	Po
$\neg p_2 \vee \neg p_3$					
$\neg p_2 \lor p_1$					
$\neg p_2 \lor p_2$					
$p_1 \lor p_1$					
$\neg p_5 \lor p_5$					
$p_4 \vee p_5$					
$\neg p_5 \lor \neg p_3$					
n \/ -n					

 $p_5 \vee \neg p_2$ $p_5 \vee p_2$

S	p_1	p_2	р3	<i>p</i> ₄	<i>p</i> ₅
$\neg p_2 \vee \neg p_3$					
$\neg p_2 \lor p_1$					
$\neg p_2 \lor p_2$					
$p_1 \vee p_1$					
$\neg p_5 \lor p_5$					
$p_4 \vee p_5$					
$\neg p_5 \lor \neg p_3$					
$p_2 \vee \neg p_4$					
$p_5 \vee \neg p_2$					
$p_5 \vee p_2$					
$\neg p_1 \vee \neg p_4$					

```
1 0 0 0 1
```

S	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
$\neg p_2 \vee \neg p_3$					
$\neg p_2 \lor p_1$					
$\neg p_2 \lor p_2$					
$p_1 \vee p_1$					
$\neg p_5 \lor p_5$					
$p_4 \vee p_5$					
$\neg p_5 \lor \neg p_3$					
$p_2 \vee \neg p_4$					
$p_5 \vee \neg p_2$					
$p_5 \vee p_2$					
$\neg p_1 \lor \neg p_4$					
$p_5 \vee p_2$					

S	p_1	p_2	р3	<i>p</i> ₄	<i>p</i> ₅
$\neg p_2 \vee \neg p_3$					
$\neg p_2 \lor p_1$					
$\neg p_2 \lor p_2$					
$p_1 \lor p_1$					
$\neg p_5 \lor p_5$					
$p_4 \vee p_5$					
$\neg p_5 \vee \neg p_3$					
$p_2 \vee \neg p_4$					
$p_5 \vee \neg p_2$					
$p_5 \vee p_2$					
$\neg p_1 \lor \neg p_4$					
$p_5 \vee p_2$					
$\neg p_1 \lor \neg p_5$					

 p1
 p2
 p3
 p4
 p5

 1
 0
 0
 0
 1

S

$$p_1$$
 p_2 p_3 p_4 p_5

$$p_1$$
 p_2 p_3 p_4 p_5

```
\neg p_2 \vee \neg p_3
 \neg p_2 \lor p_1
 \neg p_2 \lor p_2
  p_1 \vee p_1
 \neg p_5 \lor p_5
  p_4 \vee p_5
\neg p_5 \vee \neg p_3
 p_2 \vee \neg p_4
 p_5 \vee \neg p_2
  p_5 \vee p_2
\neg p_1 \lor \neg p_4
  p_5 \vee p_2
\neg p_1 \lor \neg p_5
```

This set of 13 clauses is unsatisfiable

SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length *k* or less

SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length k or less

- SAT is NP-complete
- 2-SAT is decidable in linear time
- 3-SAT is NP-complete

SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length k or less

- SAT is NP-complete
- 2-SAT is decidable in linear time
- 3-SAT is NP-complete

SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length k or less

- SAT is NP-complete
- 2-SAT is decidable in linear time
- 3-SAT is NP-complete!

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \vee \cdots \vee L_n$$

and replace it by two clauses:

$$L_1 \vee L_2 \vee n$$

$$\neg n \vee L_3 \vee L_4 \vee \cdots \vee L_n$$

where *n* is a fresh variable

2. Repeat until all clauses have at most 3 literals

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \vee \cdots \vee L_n$$

and replace it by two clauses:

$$L_1 \lor L_2 \lor n$$

$$\neg n \lor L_3 \lor L_4 \lor \cdots \lor L_n$$

where n is a fresh variable

2. Repeat until all clauses have at most 3 literals

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \vee \cdots \vee L_n$$

and replace it by two clauses:

$$L_1 \lor L_2 \lor n$$

$$\neg n \lor L_3 \lor L_4 \lor \cdots \lor L_n$$

where n is a fresh variable

2. Repeat until all clauses have at most 3 literals

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

$$L_1 \vee L_2 \vee L_3 \vee L_4 \vee \cdots \vee L_n$$

and replace it by two clauses:

$$L_1 \lor L_2 \lor n$$

$$\neg n \lor L_3 \lor L_4 \lor \cdots \lor L_n$$

where *n* is a fresh variable

2. Repeat until all clauses have at most 3 literals

What is the probability that a set of clauses of a given size is unsatisfiable?

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

• number *n* of propositional variables

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

- number *n* of propositional variables
- number k of literals per clause, so we will generate k-SAT instances

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

- number *n* of propositional variables
- number *k* of literals per clause, so we will generate *k*-SAT instances
- number *m* of the clauses

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

- number *n* of propositional variables
- number k of literals per clause, so we will generate k-SAT instances
- number m of the clauses

Generate m clauses, each with k literals chosen randomly with an equal probability from $\{p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n\}$

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

- number *n* of propositional variables
- number k of literals per clause, so we will generate k-SAT instances
- number m of the clauses

Generate m clauses, each with k literals chosen randomly with an equal probability from $\{p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n\}$

Note: Probability of *unsat* is a monotonic function of *m*: the larger the clause set, the higher the probability that it is unsatisfiable

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:

- number *n* of propositional variables
- number k of literals per clause, so we will generate k-SAT instances
- real number r: ratio of clauses per variable

Generate $[r \cdot n]$ clauses, each with k literals chosen randomly with an equal probability from $\{p_1, \ldots, p_n, \neg p_1, \ldots, \neg p_n\}$

Note: Probability of *unsat* is a monotonic function of *r*: the larger the clause set, the higher the probability that it is unsatisfiable

Roulette

We will generate randon instances of 2-SAT with 5-variables

We will generate random instances of 2-SAT with 5-variables

We will generate random instances of 2-SAT with 5-variables

- What will you bet on if we generate 5 clauses?
- 100 clauses?
- 15 clauses?

We will generate random instances of 2-SAT with 5-variables

- What will you bet on if we generate 5 clauses?
- 100 clauses?
- 15 clauses?

We will generate random instances of 2-SAT with 5-variables

- What will you bet on if we generate 5 clauses?
- 100 clauses?
- 15 clauses?

Probability of obtaining an unsatisfiable set

 $\pi(r,n)=$ prob. that a randomly generated set of $[r\cdot n]$ 3-clauses over n variables is unsat

Probability of obtaining an unsatisfiable set

Crossover point: the value of *r* at which the probability crosses 0.5

 $\pi(r,n) = \text{prob. that a randomly generated set of } [r \cdot n]$ 3-clauses over n variables is unsat

ϵ-window

For any (small) number $\epsilon > 0$, the ϵ -window is the interval of values of r where

$$\epsilon \leq \pi(r,n) \leq 1 - \epsilon$$

Example $\epsilon = 0.1$

∈-window

For any (small) number $\epsilon > 0$, the ϵ -window is the interval of values of r where

$$\epsilon \leq \pi(r,n) \leq 1 - \epsilon$$

Example $\epsilon = 0.1$

Conjecture: for $n \to \infty$ every ϵ -window degenerates into a point

Sharp Phase Transition

 $\pi(r,n)=$ prob. that a randomly generated set of $[r\cdot n]$ 3-clauses over n variables is unsat

Easy-Hard-Easy Pattern

procedure CHAOS(S)input: set of clauses Soutput: interpretation \mathcal{I} such that $\mathcal{I} \models S$ or "don't know"

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation \mathcal I such that \mathcal I \models S or "don't know"
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
```

end

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation \mathcal I such that \mathcal I \models S or "don't know"
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
\mathcal I := \text{random interpretation}
if \mathcal I \models S then return \mathcal I
return "don't know"
end
```

```
procedure \mathit{CHAOS}(S) input: set of clauses S output: interpretation \mathcal I such that \mathcal I \models S or "don't know" parameters: positive integer MAX-TRIES begin repeat MAX-TRIES times \mathcal I := \mathsf{random} interpretation if \mathcal I \models S then return \mathcal I return "don't know" end
```

Note:

Satisfiability has short witnesses: interpretations, always checkable in poly-time

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation \mathcal I such that \mathcal I \models S or "don't know"
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
\mathcal I := \text{ random interpretation}
if \mathcal I \models S then return \mathcal I
return "don't know"
end
```

Note:

Satisfiability has short witnesses: interpretations, always checkable in poly-time

Unsatisfiability has long witnesses: proofs (e.g. tableaux), not always checkable in poly-time

- 1. Choose a random interpretation \mathcal{I}
- 2. Until ${\mathcal I}$ satisfies the clause set, choose a variable and flip it

$$extit{flip}(\mathcal{I}, p)(q) = \left\{egin{array}{ll} \mathcal{I}(q) & ext{if } p
eq q \ 1 & ext{if } p = q ext{ and } \mathcal{I}(p) = 0 \ 0 & ext{if } p = q ext{ and } \mathcal{I}(p) = 1 \end{array}
ight.$$

- 1. Choose a random interpretation \mathcal{I}
- 2. Until \mathcal{I} satisfies the clause set, choose a variable and *flip* it

$$extit{flip}(\mathcal{I},p)(q) = \left\{egin{array}{ll} \mathcal{I}(q) & ext{if } p
eq q \ 1 & ext{if } p = q ext{ and } \mathcal{I}(p) = 0 \ 0 & ext{if } p = q ext{ and } \mathcal{I}(p) = 1 \end{array}
ight.$$

- 1. Choose a random interpretation \mathcal{I}
- 2. Until \mathcal{I} satisfies the clause set, choose a variable and *flip* it

$$flip(\mathcal{I}, p)(q) = \begin{cases} \mathcal{I}(q) & \text{if } p \neq q \\ 1 & \text{if } p = q \text{ and } \mathcal{I}(p) = 0 \\ 0 & \text{if } p = q \text{ and } \mathcal{I}(p) = 1 \end{cases}$$

- 1. Choose a random interpretation \mathcal{I}
- 2. Until \mathcal{I} satisfies the clause set, choose a variable and *flip* it

$$flip(\mathcal{I}, p)(q) = \begin{cases} \mathcal{I}(q) & \text{if } p \neq q \\ 1 & \text{if } p = q \text{ and } \mathcal{I}(p) = 0 \\ 0 & \text{if } p = q \text{ and } \mathcal{I}(p) = 1 \end{cases}$$

procedure GSAT(S)

input: set of clauses S

output: interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{S}$ or "don't know"

procedure GSAT(S)

input: set of clauses S

output: interpretation \mathcal{I} such that $\mathcal{I} \models S$ or "don't know"

parameters: integers MAX-TRIES, MAX-FLIPS

```
procedure GSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
\mathcal{I} :=  random interpretation
```

end

```
procedure GSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
\mathcal{I} := \text{random interpretation}
repeat MAX-FLIPS times
if \mathcal{I} \models S then return \mathcal{I}
```

end

end

```
procedure GSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  \mathcal{I} := random interpretation
  repeat MAX-FLIPS times
   if \mathcal{I} \models S then return \mathcal{I}
   p := a \text{ variable such that } flip(\mathcal{I}, p) \text{ satisfies}
            the maximal number of clauses in S
   \mathcal{I} := flip(\mathcal{I}, p)
```

```
procedure GSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  \mathcal{I} := random interpretation
  repeat MAX-FLIPS times
   if \mathcal{I} \models S then return \mathcal{I}
   p := a \text{ variable such that } flip(\mathcal{I}, p) \text{ satisfies}
            the maximal number of clauses in S
   \mathcal{I} := flip(\mathcal{I}, p)
 return "don't know"
end
```

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4					

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3				

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_1	p_2	р3		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4			

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4		

			a ciac	ıses	candidates	flipped
$p_2 p_3$		p_1	p_2	<i>p</i> ₃	for flipping	variable
0 1	4	3	4	4	p_2, p_3	
	0 1	p2 p3 0 1 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 0 1

flip	interpretation			satisfied clauses				candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4		

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_3
3	0	1	0						

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4					

flip	interpretation			sa	tisfie	d clau	ises	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_3
3	0	1	0	4	5	4	4		

flip	inte	rpret	ation	sa	tisfie	d clau	ises	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃		p_1	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_{2}, p_{3}	p_3
3	0	1	0	4	5	4	4	p_1	p_1
	1	1	0	5					-

procedure GSATwithWalks(S)

input: set of clauses S

output: interpretation \mathcal{I} such that $\mathcal{I} \models S$ or "don't know"

procedure GSATwithWalks(S)

input: set of clauses S

output: interpretation \mathcal{I} such that $\mathcal{I} \models S$ or "don't know"

parameters: integers MAX-TRIES, MAX-FLIPS

real number $0 \le \pi \le 1$ (probability of a sideways move)

procedure GSATwithWalks(S) input: set of clauses S output: interpretation $\mathcal I$ such that $\mathcal I \models S$ or "don't know" parameters: integers MAX-TRIES, MAX-FLIPS real number $0 \le \pi \le 1$ (probability of a sideways move) begin

begin

repeat MAX-TRIES times

 $\mathcal{I} := random interpretation$

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
               real number 0 < \pi < 1 (probability of a sideways move)
begin
 repeat MAX-TRIES times
 \mathcal{I} := random interpretation
  repeat MAX-FLIPS times
   if \mathcal{I} \models S then return \mathcal{I}
   with probability \pi
    p := a \text{ variable such that } flip(\mathcal{I}, p) \text{ satisfies}
            the maximal number of clauses in S
   with probability 1-\pi
     randomly select p among all variables occurring in clauses falsified by \mathcal{I}
   \mathcal{I} := flip(\mathcal{I}, p)
 return "don't know"
end
```

WSAT

procedure WSAT(S)

input: set of clauses S

output: interpretation \mathcal{I} such that $\mathcal{I} \models S$ or "don't know"

parameters: integers MAX-TRIES, MAX-FLIPS

WSAT

```
procedure WSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
\mathcal{I} :=  random interpretation
```

WSAT

```
procedure WSAT(S)
input: set of clauses S
output: interpretation \mathcal{I} such that \mathcal{I} \models S or "don't know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  \mathcal{I} := random interpretation
  repeat MAX-FLIPS times
   if \mathcal{I} \models S then return \mathcal{I}
   randomly select a clause C \in S such that \mathcal{I} \not\models C
   randomly select a variable p in C
   \mathcal{I} := flip(\mathcal{I}, p)
 return "don't know"
end
```

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	p_3	clauses	for flipping	variable
1	0	0	1			

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1			

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	p_3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	
				$\neg p_1 \lor p_2$		

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	p_3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1			

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	p_3	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \vee \neg p_3$	p_1, p_2, p_3	
				$\neg p_1 \vee \neg p_3$		

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \vee \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	p_1	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \vee \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \vee \neg p_3$		
	1	1	0			