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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Outline

Satisfiability and Randomization
Randomly Generated Clause Sets
Sharp Phase Transition
Randomised Algoritms for Satisfiability-Checking
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Random Clause Generation

How can one generate a random clause?
Let’s first generate a random literal
A random clause is a disjunction of random literals

® Fix a number n of boolean variables

® Select aliteralamongp:.....p,, —p1..... —p, with an equal
probability
¢ Fix the length k of the clause

Suppose we generate random clauses one by one

How does the set of models of this set change?
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Example (obtained by a program) forn = 5and k = 2

P2 P33 Psa  Ps

j%1

P2 Pz pa  Ps

P1

Number of models for clause set S over 5 vars: 32
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Example (obtained by a program) forn = 5and k = 2

P2 pP3 pa  Ps
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Example (obtained by a program) forn = 5and k = 2

S Pi_ P2 P3 P4 Ps

—p2 V 7ps3
—p2 V p1
P2V P2

p1V p1

Number of models for clause set S over 5 vars: 12

Pr P2 P3 Pas  Ps
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
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Example (obtained by a program) forn = 5and k = 2

S
K
N
e
w
S
IS
i
S

S Pr P2 PpP3 Pas  Ps

—p2 V 7ps3
—p2 V p1
P2V P2

p1V p1
—Ps V Ps

e N e e
R R, HRHOOOOOOOO
OO OO KHKEEKEHOOOO
HH OOKEKEFOOHKRKIMKOO
H O R OFROKHOKRKOIRO

Number of models for clause set S over 5 vars: 12
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Example (obtained by a program) forn = 5and k = 2

S Pr_ P2 Ps ps Ps Pr_Pp2 Ps Pps  Ps

1 0 0 0 0

v 1 0 0 0 1
TP2 V. TPs 1 0 0 1 0
P2V P 1 0 o0 1 1
P2V P2 1 0 1 0 0
p1Vp1 1 0 1 o0 1
—Ps V Ps 1 0 1 1 o0
PaV ps 1 0 1 1 1
1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

Number of models for clause set S over 5 vars: 12
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Example (obtained by a program) forn = 5and k = 2

S Pr_ P2 Ps ps Ps Pr_Pp2 Ps Pps  Ps
1 0 0 0 1
P2V p3
1 0 0 1
P2 x P1 1 0 0 1 1
P2 V p2
p1Vp1 1 0 1 o0 1
—Ps5 V Ps 1 0 1 1
Pa V Ps 1 0 1 1 1

Number of models for clause set S over 5 vars: 9
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Example (obtained by a program) forn = 5and k = 2

S Pi_ P2 P3 P4 Ps

—p2V p3
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P2V P2

p1Vp1
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—ps V p3
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Example (obtained by a program) forn = 5and k = 2

S Pr_ P2 Ps ps Ps Pr_Pp2 Ps Pps  Ps

0,V = 1 0 0 0 1
P2V TP3

—p2 V p1
P2V P2
p1V p1
—Ps V Ps
PaV ps
—ps V p3
P2V —P4
ps V —p2
ps V P2
—Pp1V Py
ps V P2
—p1V ps

Number of models for clause set S over 5 vars: 1
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Example (obtained by a program) forn = 5and k = 2

S Pr_ P2 Ps ps Ps Pr_Pp2 Ps Pps  Ps

P2V p3
P2V p1
—p2 VP2

p1Vp1
—Ps V Ps
PaV ps [ This set of 13 clauses is unsatisfiable }

—ps V p3
P2V 7Ps
ps V P2

ps NV p2

P11V Py
ps V pa

—p1V ps

Number of models for clause set S over 5 vars: 0
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SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length k or less
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SAT and k-SAT

SAT is satisfiability checking for sets of clauses

k-SAT is satisfiability checking for sets of clauses of length k or less

® SAT is NP-complete
® )-SAT is decidable in linear time
® 3-SAT is NP-complete!
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All you need is 3-SAT, 3-SAT is all you need

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

Ll vV L2 vV L3 V L4 VeV Ln

7/21



All you need is 3-SAT, 3-SAT is all you need

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

LiyVLIVI3VLyV--- VL,

and replace it by two clauses:

LiVLI,Vn
“NVIL3VLgV---VLi,

where n is a fresh variable

7/21



All you need is 3-SAT, 3-SAT is all you need

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

LiyVLIVI3VLyV--- VL,

and replace it by two clauses:

Ll\\/szn
—“nVI3VLsV---VL,

where n is a fresh variable

2. Repeat until all clauses have at most 3 literals

7/21



All you need is 3-SAT, 3-SAT is all you need

There is a simple reduction of SAT to 3-SAT based, again on naming:

1. Take a clause having more than 3 literals:

LiyVLIVI3VLyV--- VL,

and replace it by two clauses:

Ll\\/szn
—AV L3V LI V-V,

where n is a fresh variable
2. Repeat until all clauses have at most 3 literals

The final clause set is equisatisfiable with the original clause
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Random Clause Generation

What is the probability that a set of clauses of a given size is unsatisfiable?
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Random Clause Generation

What is the probability that a set of clauses of a given size is unsatisfiable?

Fix:
® number n of propositional variables
® number k of literals per clause, so we will generate k-SAT instances
® real number r: ratio of clauses per variable

Generate [ - n| clauses, each with k literals chosen randomly with an equal
probability from {p;. ..., Pn, P1, - -, —pn}

Note: Probability of unsat is a monotonic function of r:
the larger the clause set, the higher the probability that it is unsatisfiable
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Roulette
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SAT Roulette

We will generate random
instances of 2-SAT with
5-variables

You will bet on whether the
resulting set of clauses is
satisfiable or unsatisfiable
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SAT Roulette

We will generate random
instances of 2-SAT with
5-variables

You will bet on whether the
resulting set of clauses is
satisfiable or unsatisfiable

® What will you bet on if we
generate 5 clauses?

® 100 clauses?
® 15clauses?
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Probability of obtaining an unsatisfiable set

m(r,80)
1.0

0.9 //

0.8
0.7

0.6 /
0.5

0.4 /

0.3

0.2 /

0.1

3.0 3.5 4.0 4.5 5.0 5.5 6.0

m(r,n) = prob. that a randomly generated set of [ - n| 3-clauses over n variables is unsat
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Probability of obtaining an unsatisfiable set

Crossover point: the value of r at which the probability crosses 0.5

7(r, 80)
1.0

0.9 /,

0.8
0.7
0.6

0.5 /
0.4 /1:
=

0.3 /
0.2

0.1

3.0 3.5 4.0 4.5 5.0 5.5 6.0

m(r,n) = prob. that a randomly generated set of [ - n| 3-clauses over n variables is unsat
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c-window
For any (small) number ¢ > 0, the e-window is the interval of values of r where

e<m(r,n)<l—c
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c-window
For any (small) number ¢ > 0, the e-window is the interval of values of r where

e<m(r,n)<l—c

Example ¢=0.1

w(r, 80)
1.0
Y Pl
0.8

1
1
1
1
0.7 / 1
1
0.6 T
1
0.5 T
Snn

0.4
0.3 +
/ |
0.2 '

n1 nd
UL =wWiIrao

3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Scaling Window Effect

200

180

0.01-window

160

140

120

100

80

35 4.0 4.5 5.0 55
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Scaling Window Effect

200 = S
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. — 0.01-window
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Scaling Window Effect

180

0.01-window

40 - 0.1-window

120

100

80 —

35 4.0 4.5 5.0 5.5

Conjecture: for n — oo every e-window degenerates into a point
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Sharp Phase Transition

w(r,n)
1.0 s
0.9 /]
0.8 n—2060 /
0.7 n—=-140 //
0.6 n—=280 I/
/
0.4 I
0.3
0.2 /
0.1 /,//
4 r
3.0 35 4.0 4.5 5.0 5.5 6.0

m(r,n) = prob. that a randomly generated set of [ - n]| 3-clauses over n variables is unsat
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Easy-Hard-Easy Pattern

# branches of DPPL search tree
8000 ;
/\ n =200
7000 '
[
6000 !
/ !
5000 :
[ 1\
1
4000 i
[\
3000 !
/ '
2000 :
easy // ' hard easy
1000 i ~
' _|- crossover point —
3.0 35 4.0 45 5.0 5.5 6.0
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Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)
input: set of clauses S
output: interpretation 7 such that 7 = S or "don’t know"
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Satisfiability Algorithm that Cannot Establish
Unsatisfiability

procedure CHAOS(S)

input: set of clauses S

output: interpretation 7 such that Z = S or "don’t know"
parameters: positive integer MAX-TRIES

begin
repeat MAX-TRIES times
7 := random interpretation

if 7 = S thenreturn 7
return "don’t know"
end

Note:
Satisfiability has short witnesses: interpretations, always checkable in poly-time
Unsatisfiability has long witnesses: proofs (e.g. tableaux), not always checkable in poly-time
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Randomized Algorithms for SAT

1. Choose a random interpretation 7
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Randomized Algorithms for SAT

1. Choose a random interpretation 7
2. Until 7 satisfies the clause set, choose a variable and flip it

I(q) ifp#q
flip(Z,p)(q) = § 1 ifp=gandZ(p)=0
0 ifp=gandZ(p) =1

The variables to flip are chosen using heuristics or randomly, or both
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GSAT

procedure GSAT(S)
input: set of clauses S
output: interpretation 7 such that 7 |~ S or "don’t know"
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GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation 7 such that 7 |~ S or "don’t know"
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
7 := random interpretation

repeat MAX-FLIPS times
if 7 = S thenreturn 7
p := avariable such that flip(Z, p) satisfies
the maximal number of clausesin S
T := flip(Z,p)

end
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GSAT

procedure GSAT(S)

input: set of clauses S

output: interpretation 7 such that 7 = S or "don’t know"
parameters: integers MAX-TRIES, MAX-FLIPS

begin
repeat MAX-TRIES times
7 := random interpretation

repeat MAX-FLIPS times
if 7 = S thenreturn 7
p := avariable such that flip(Z, p) satisfies
the maximal number of clausesin S
T := flip(Z,p)
return "don’t know"
end
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GSAT example

0 0 1
pr vV P2 p3
P2 —p3
—P1 —p3
-p1 VvV P2
pr V. p2
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GSAT example

0 0 1
pr vV —p2 Vo op3 v
P2 Voops

~P1 Voops v

-p1 V P2 v

p1r V. p2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pP3 p1  p» p3 | forflipping | variable
1|0 0 1 4
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GSAT example

0 0 1
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flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pP3 p1 P> ps3 | forflipping | variable
1|0 0 1 41 3

18/21



GSAT example

0 1 1
pr V. —p2 Vo ops V
P2 V. ps3

~P1 Vooaps v

-p1 V P2 v

pr VP v
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pP3 p1  pa2 p3 | forflipping | variable
10 0 1 |43 4

18/21



GSAT example

0 1 1
pr vV —p2 Vo op3 v
p2 Voops

~P1 Vooaps v

-p1 V P2 v

p1r V. p2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 pP3 p1  p> p3 | forflipping | variable
1[0 0 1 [4][3 4 4

18/21



GSAT example

0 1 1
p1 V. —2p2 Vo p3
P2 V. ps3

—P1 V. p3

P11 Vo P2

p1r V. p2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 Ps3 p1  p» p3 | forflipping | variable
1|0 0 1 413 4 4 P2, P3
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GSAT example

0 1 1
p1 V. —2p2 Vo p3
P2 V. ps3
—P1 V. p3
P11 Vo P2
p1r V. p2
flip | interpretation | satisfied clauses | candidates | flipped
no. | p1 P2 Ps3 p1  p» p3 | forflipping | variable
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GSAT with random walks

procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation 7 such that Z = S or "don’t know"
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procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation 7 such that 7 = S or "don’t know"
parameters: integers MAX-TRIES, MAX-FLIPS
real number 0 < 7 < 1 (probability of a sideways move)

begin
repeat MAX-TRIES times
7 := random interpretation

repeat MAX-FLIPS times

if Z = Sthenreturn Z

with probability 7

p := avariablesuchthatflip(Z, p) satisfies

the maximal number of clausesin S
with probability 1 — 7
randomly select p among all variables occurring in clauses falsified by 7
7 := flip(Z,p)
return "don’t know"
end
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WSAT

procedure I/SAT(S)
input: set of clauses S
output: interpretation 7 such that 7 = S or "don’t know"
parameters: integers MAX-TRIES, MAX-FLIPS
begin
repeat MAX-TRIES times
7 := random interpretation
repeat MAX-FLIPS times
if 7 = S thenreturn 7
randomly select a clause C € Ssuchthat 7 [~ C
randomly select a variable p in C
T := flip(Z,p)
return "don’t know"
end
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