CS:4350 Logic in Computer Science

Propositional Satisfiability

Cesare Tinelli

Spring 2022

L

THE ﬁ

UNIVERSITY
OF lowa

1/34

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2/34

Outline

Satisfiability Checking
Satisfiability. Examples
Truth Tables
Splitting
Positions and subformulas

3/34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

4/34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

When these constraints are expressible in Propositional Logic, the
problem reduces to checking the satisfiability of a set of formulas.

4/34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

When these constraints are expressible in Propositional Logic, the
problem reduces to checking the satisfiability of a set of formulas.

Satisfiability in PL is a very general problem

4/34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A, ..., A EB iff {A, ..., A), -B} isunsatisfiable

5/34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A, ..., A EB iff {A, ..., A), -B} isunsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

5/34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:
A, ..., A EB iff {A, ..., A), -B} isunsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

5/34

Propositional Satisfiability
In fact, even entailment in PL can be reduced to satisfiability. Recall:
A, ..., A EB iff {A, ..., A), -B} isunsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

5/34

Propositional Satisfiability
In fact, even entailment in PL can be reduced to satisfiability. Recall:
A, ..., A EB iff {A, ..., A), -B} isunsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5/34

A Puzzle
Isaac and Albert were excitedly describing the result of the Third Annual

International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

6/34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

6/34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the

science fair. Each of them had given one true statement and one false statement.

6/34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

6/34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6/34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

7/34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

7/34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

7/34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

7/34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7/34

Russian spy puzzle

/
"‘

: There are three people: Stirlitz, Miller, and Eismann. It is

\ known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is aspy.

8/34

Russian spy puzzle

There are three people: Stirlitz, Miller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is aspy.

When Stirlitz meets Miiller in a hallway, he makes the
following joke: “you know, Miiller, you are as German
as | am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

8/34

Russian spy puzzle

There are three people: Stirlitz, Miller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is aspy.

When Stirlitz meets Miiller in a hallway, he makes the
following joke: “you know, Miiller, you are as German
as | am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

8/34

Russian spy puzzle

There are three people: Stirlitz, Miller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is aspy.

When Stirlitz meets Miiller in a hallway, he makes the
following joke: “you know, Miiller, you are as German
as | am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

How can we solve problems of this kind?

8/34

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

Stirlitz | Miller | Eismann
Russian RS RM RE
German GS GM GE
Spy SS SM SE

9/34

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

Stirlitz | Miller | Eismann
Russian RS RM RE
German GS GM GE
Spy SS SM SE
Example
SE : Eismannisa Spy
RS : Stirlitz is Russian

9/34

Formalization in propositional logic

There are three people: Stirlitz, Miller, and Eismann. Itis known that
exactly one of them is Russian, while the other two are German.

It is also known that every Russian is a spy.

When Stirlitz meets Mdller in a hallway, he makes the following joke:
“you know, Miiller, you are as German as | am Russian.”

10/34

Formalization in propositional logic

There are three people: Stirlitz, Miller, and Eismann. Itis known that
exactly one of them is Russian, while the other two are German.

(RS A GM A GE) \V/ (GS AN RM N GE) vV (GS A GM A RE)

It is also known that every Russian is a spy.

When Stirlitz meets Mdller in a hallway, he makes the following joke:
“you know, Miller, you are as German as | am Russian.”

10/34

Formalization in propositional logic

There are three people: Stirlitz, Miller, and Eismann. Itis known that
exactly one of them is Russian, while the other two are German.

(RS A GM A GE) \V/ (GS AN RM N GE) vV (GS A GM A RE)

It is also known that every Russian is a spy.

(RS — SS) A (RM — SM) A (RE — SE)

When Stirlitz meets Mdller in a hallway, he makes the following joke:
“you know, Miller, you are as German as | am Russian.”

10/34

Formalization in propositional logic

There are three people: Stirlitz, Miller, and Eismann. Itis known that
exactly one of them is Russian, while the other two are German.

(RS A GM A GE) \V/ (GS AN RM N GE) vV (GS A GM A RE)

It is also known that every Russian is a spy.

(RS — SS) A (RM — SM) A (RE — SE)

When Stirlitz meets Mdller in a hallway, he makes the following joke:
“you know, Miller, you are as German as | am Russian.”

RS <+ GM

10/34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

11/34

Formalization in propositional logic
Implicit knowledge: Russians are not Germans.

(RS < —GS) A (RM <> —GM) A (RE <+ —GE)

11/34

Formalization in propositional logic
Implicit knowledge: Russians are not Germans.

(RS <+ —GS) A (RM <> —GM) A (RE <+ —GE)

We want to prove that Eismann is not a Russian spy.

11/34

Formalization in propositional logic
Implicit knowledge: Russians are not Germans.
(RS <+ —GS) A (RM <> —GM) A (RE + —GE)
We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE N SE

11/34

Formalization in propositional logic
Implicit knowledge: Russians are not Germans.

(RS <+ —GS) A (RM <> —GM) A (RE <+ —GE)

We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE N SE

Then we verify that the full set of constraints is unsatisfiable.

11/34

Formalization in propositional logic
Implicit knowledge: Russians are not Germans.
(RS <+ —GS) A (RM <> —GM) A (RE + —GE)
We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE N SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, then Eismann cannot be a Russian spy

11/34

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

RTL clock SCH clock
:]—jvl n1h1
wrent) wrent fardnih
iby sreadi {D—i iréad
smem1 imein1 |
rden <D7 rdent
addr addr
swrite iwrite
wren0h1
wren0 wren0
U srpad0 {D"L%hzi irdado
smem0 — 1
rden0 rdentd |me!n0

12/34

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

RTL clock SCH clock
:]—jvl n1h1
wrent) wrent fardnih
iby sreadi {D—i iréad
smem1 imein1 |
rden <D7 rdent
addr addr
swrite iwrite
wren0h1
wren0 wren0
U srpad0 {D"L%hzi irdado
smem0 — 1
rden0 rdentd |me!n0

Every circuit s, in fact, a propositional formula and ...

12/34

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

RTL

wrent

clock

rdent

smem1

sr)

pad1

addr

swrite

wren0

rden0

smem0

sH

pad0

g8 00

SCH clock

W

n1h1

T

ar

wren1 {D—i :

irgad1

rdent

addr

iwrite

wren0h1

wren0]
o

ir¢ado

rden0

Every circuit is, in fact, a propositional formula and ...

equivalence checking for propositional formulas
can be reduced to unsatisfiability checking

12/34

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

RTL

wrent

clock

rdent

smem1

addr

swrite

wren0

rden0

smem0

g8 00

G

G=G

iff

SCH clock
:]_jvlmm
) wrent fardnih
sreadi {:I:)—% irdad
imein1 |
rdent
addr
iwrite
wren0h1
wren0
srpad0 {D"L%hzi irdado
imemo ||
rden0 1

(G «» () is unsatisfiable

12/34

Idea for SAT: use formula evaluation methods
A= (p=ag)A(prAg—=r1)—=(p—T))

We can evaluate A in any interpretation, e.g., 7, = {p+> 0,g +> 0,5 > 0 }:

subformula T
1W=((p=>a)N(pAg—r)—=(p—r)) | O
2l (p=gApAg—=r)=(p—r) |1
3 p—r 1
4 (p—=aA(PAG—T) 1
5 pAq—T 1
6 p—q 1
7 pAQq 0
8 p p p 0
9 q q 0
10 r r 0

13/34

Truth tables

A==(p=a)A(pAg—r)—(p—T1))

Similarly, we can evaluate A in all interpretations:

subformula Ty I, I3 Iy Is Ig 17 Iy
1W=((p—g)AN(prNg—T1)—(p—>r)| 0 0 0 0 0O 0 0 O
2l (p—=gA(pAg—=r)—=(pP—r) [1T 1 1 1 1 1 1 1
3 p—r 1T 1 1 1 0 1 0 1
4 (p—=g)A(pAg—T) T 111 0 0 01
5 PAG—T T 11 1 1 1 0 1
6 p—q 1T 11 1 0 0 1 1
7 pAG 00 0O0O0O0 1 1
8 p p p 000 0 1T 1 11
9 o] q 001 1 0 0 1 1
10 r r 01 0 1 0 1 0 1

14/34

Truth tables

A= (p=ag)A(pAg—=r1)—=(p—T))

Formula A is unsatisfiable since it is false in every interpretation

15/34

Truth tables

A= (p=ag)A(pAg—=r1)—=(p—T))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automated method to check the satisfiability propositional
formulas

15/34

Truth tables

So we have a fully automated method to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2" different interpretations!

15/34

Truth tables

So we have a fully automated method to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2" different interpretations!

Generating and checking each interpretation in 1 ms for a formula with 50
variables would take 2°° ms ~ 257 centuries ...

15/34

Truth tables

So we have a fully automated method to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2" different interpretations!

Generating and checking each interpretation in 1 ms for a formula with 50
variables would take 2°° ms ~ 257 centuries ...

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula

“((p—=a)AN(PpAg—T)=(p—T))
p—=a)AN(pAg—r)—=(p—T)

p—>l’
(pP—=a)AN(pAg—r)
pAC]%I’
p—q
pAg
p p p
q q

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula

T

“((p—=a)AN(PAGg—=T)=(P—T))
p—=a)AN(pAg—r)—(p—T)

p—>l’
(p—=a)AN(pAg—r)
pAC]%I’
p—q
pAg
p p p
q q

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T
~((p—=a)AN(pAg—r)—(p—r)) 0
(P—=a)AN(pAg—r)—=(p—r) 1
p—=r 1
(p—=a)A(pAg—r)
pPAG—T 1
p—q
pAgq
P p P
q q

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T
“((p—=a)A(pAGg—r)—=(p—T)) 0
p=>a)N(pAg—r)—=(p—r) 1
p—=r 1
(P=q)AN(pAg—T)
pPAG—T 1
p—q
pAg
p p P
q q
r r 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T

“((p—=a)AN(PAGg—=T)=(P—T)) 0
p—=a)AN(pAg—r)—(p—T) 1
p—=r 1
(P—=a)N(pAg—r)
pPAG—T 1
p—q
pPAg
p p p 0
q q

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T
“((p—=@)A(prAg—=r)—=(p—r1)) | O 0
p=a)AN(pAg—=r)=(p—r) | 1 1
p—r 1 1
(p—=a)N(pAg—r)
pPAG—T 1
p—q
pAg
p p p 0
q q
r r 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T T
~((p—=q)A(prAg—=r)—=(p—r1))| O 0
pP=q)AN(pAg—=r1)—=(p—r) |1 1
p—=r 1 1
(P=q)AN(pAg—T)
pPAG—T 1
p—q
pAg
p p p 0 1
q q
r r 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T T
~((p—=q)A(prAg—=r)—=(p—r1))| O 0
pP=q)AN(pAg—=r1)—=(p—r) |1 1
p—r 1 0 1
(P=q)AN(pAg—T)
pPAG—T 1
p—q
pAg
p p p 0 1
q q
r r 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T T
~((p—=q)A(prAg—=r)—=(p—r1))| O 0
pP=q)AN(pAg—=r1)—=(p—r) |1 1
p—r 1 0 1
(P=q)AN(pAg—T)
pPAG—T 1
p—q
pAg
p p p 0 1
q q 0
r r 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T T T
~(p—=gqA(prAg—=r)—=(p—=1)| 0 O 0
p=a)N(pAg—=r)=(p—r) | 11 1
p—r 1 0 1
(p—=a)N(pAg—r) 0
pANg—T 1 1
p—q 0
pAQq 0
p P P 0 1
q q 0
r r 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula

Fo Tz TJs

“((p—=ag)A(PAg—=T1)—=(p—T))
p—=a)AN(pAg—r)—(p—T)

o

0 0
1 1
1

1
p—r 0 1
(p=aq)AN(pAg—T) 0
pPANG—T 1 1
p—q 0
pAQq 0
p p p 0 1 1
q q 0 1
r r 0 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T Tz TJa
“((p—=g)N(pANg—r)—=(p—T1))| O 0 0 0
(p—=aArprAg=r)=(p—=r) |1 1 1 1
p—r 1 0 0 1
(p—=a)AN(pAg—r) 0 0
pANG—T 1 0 1
p—q 0 1
pPAQ 0 1
P P P o 1 1
q q 0 1
r r 0 0 0 1

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T Tz Ta T
((p—=g)AN(pAg—=r1)—=(p—T1)) | O 0 0 o0
(p=a)nlprg=r)=(p—=r) [1T 1T 1 1
p—r 1 0 0 1
(p—=a)AN(pAg—r) 0 0
pANg—T 1 0 1
p—q 0 1
pAQ 0 1
P P P o 1 1
q q 0 1
r r 0 0 0 1

), stands for 2 (total) interpretations

7 stands for 4 interpretations

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula S T Ta T
((p—=g)AN(pAg—=r1)—=(p—T1)) | O 0 0 0
(p=a)nlprg=r)=(p—=r) [1T 1T 1 1
p—r 1 0 0 1
(p—=a)AN(pAg—r) 0 0
pANg—T 1 0 1
p—q 0 1
pAQ 0 1
P P P o 1 1
q q 0 1
r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of

variables!

16/34

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula T Tz Ta
~((p—ag)A(prg—r)—=(p—r))| 0 0 0 O
1
1

p—=a)AN(pAg—r)—(p—T) 1
p—=r 1

(P—=a)N(pAg—r)

n o v

b oo =

1

0
0
al

1

Guessing variable values (i.e., case analysis) and propagation are
the key ideas in nearly all propositional satisfiability algorithms

r r‘0001

Note: The size of the compact table (but not the result) depends on the order of
variables!

16/34

Case splitting: idea

Notation: Aj and ApT denote the formulas obtained by replacing all occurrences of
pinAby | and T, respectively

17/34

Case splitting: idea

Notation: ApL and A; denote the formulas obtained by replacing all occurrences of
pinAby | and T, respectively

Lemmal
Let p be an atom, A be a formula, and T be an interpretation.

1. If T |= p, then A has the same value as ApT inZ.
2. IfZ [~ p, then A has the same value as ApL inZ.

17/34

Case splitting: idea

Notation: Aj and A; denote the formulas obtained by replacing all occurrences of
pinAby | and T, respectively

Lemmal
Let p be an atom, A be a formula, and T be an interpretation.

1. If T |= p, then A has the same value as ApT inZ.
2. If T % p, then A has the same value as A, in 7.

Satisfiability checking by case analysis

1. Pick avariable p of A and perform case analysis onit:
Case 1) replace p by | (forfalse)
Case 2) replace p by T (fortrue)

17/34

Case splitting: idea

Notation: Aj and A; denote the formulas obtained by replacing all occurrences of
pinAby | and T, respectively

Lemmal
Let p be an atom, A be a formula, and T be an interpretation.

1. If T |= p, then A has the same value as ApT inZ.

2. If T % p, then A has the same value as A, in 7.

Satisfiability checking by case analysis

1. Pick avariable p of A and perform case analysis onit:
Case 1) replace p by | (forfalse)
Case 2) replace p by T (fortrue)

2. Simplify formula as much as possible

17/34

Case splitting: idea

Notation: Aj and A; denote the formulas obtained by replacing all occurrences of
pinAby | and T, respectively

Lemmal
Let p be an atom, A be a formula, and T be an interpretation.

1. If T |= p, then A has the same value as ApT inZ.

2. If T % p, then A has the same value as A, in 7.

Satisfiability checking by case analysis

1. Pick avariable p of A and perform case analysis onit:
Case 1) replace p by | (forfalse)
Case 2) replace p by T (fortrue)

2. Simplify formula as much as possible
3. RepeatuntilAis T or L

17/34

Simplification rules for T and |

Simplification rules for T | | Simplification rules for L \
-7 = 1 -1 =T
AN ANTAANA = A A AA AN ANLAANA = L
AV---VTV--- VA, = T AV---VLIV---VA, = AV---VA,
A—=T =T T—oA=A A— 1L = —A 1l —=A=T
AT = A TA=A A1l = A 1Ll A= A

18/34

Simplification rules for T and |

Note: we need new simplification rules to account for propositional variables

\ Simplification rules for T | | Simplification rules for L \
-T = 1 -1l =T
AN ANTANA = AN ANA, AN ANLANA, = L
AV---VTV--- VA, = T AV---VLILV---VA, = AV ---VA,
A>T =T T—oA=A A— 1L = A 1l —-A=T

AT = A T+—A=A A 1L = A 1+ A= A

18/34

Simplification rules for T and |

Simplification rules for T Simplification rules for L

| || |
\ -T = 1 || L =T \
| AN ATAANA = AN AA || AN ANLA-ANA = L \
\ AV VTV--VA = T | AV VLV VA = AV VA, |
AT =T ToA=A | A= L = A 1 5A=T \
AT = A T+A=A | Ao L => A LeoA=s A |

Claim: If we apply these rules to a formula to completion (i.e., until no more rules
apply), we get either

o |,
® [or

® aformula with no occurrences of | and T

18/34

Splitting algorithm

procedure split(G)
parameters: function select
input: formula G
output: “satisfiable” or “unsatisfiable”
begin
G := simplify(G)
if G = T then return “satisfiable”
if G = | then return “unsatisfiable
(p,b) := select(G)
case b of
1=
if split(G,) = “satisfiable”
then return “satisfiable”
else return split(G,")
0=
if split(G,) = “satisfiable”
then return “satisfiable”
else return split(G,)
end

”»

// apply simplification rules to completion

// pick a variable p of G and a value b for it

19/34

Splitting algorithm, example

“((p—=ag)AN(pAg—T1)—=(p—T))

-T = L
TAA= A
FTVA =T

T A=A
A>T = A
T+ A=A

A—=T =T

-1 =T
1 ANA=> L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

20/34

Splitting algorithm, example

“((p—=q)A(pAg—r)—(p—r))

20/34

Splitting algorithm, example

-T = 1
TAA= A
“((p—=a)AN(pAG—=T1)—=(p—T)) TVA =T
A—=>T =T

Q¢ T A=A
AT = A
T+ A=A

-1l =T

~(=p = (p— 1)) LAAS L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A
1l A= A

20/34

Splitting algorithm, example

“((p—=q)A(pAg—r)—(p—r))

20/34

Splitting algorithm, example

“((p—=ag)AN(pAg—T1)—=(p—T))

-T = L
TAA= A
FTVA =T
A—=>T =T
T A=A
A>T = A
T+ A=A

-1l =T
1 ANA=> L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

“((p—=q)A(pAg—r)—(p—r))
Q

z

o}

=(=p—=(p—r))

7%

—(-L—=(L—=r))

20/34

Splitting algorithm, example

=
“((p—=q)A(pAg—r)—(p—r)) TVA =
Q A—=T =

0\& T —=A=

=

=

=(=p = (p—1)) L =T

1VA=A
A— 1 = —A
1l A= T

20/34

p/\q%r

Splitting algorithm, example

(p—r))

/\

=(=p—=(p—r))

A

=((p—=T)A

(PAT =r1)—

(p—1)

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

=T = 1

TANA= A

p/\q%r (p—r)) TVA=T
A—=T = T

T—>A=A

A>T = A

T+ A=A

-1 =T

—(=p—(p—r)) (p—r)y—=(p—r))

1VA=A
A— 1 = —A
1l A= T

20/34

p/\q%r

Splitting algorithm, example

(p—r))

/\

=(-p—=(p—r))

A

~((p— 1) —

p%r

AN

Q
7

(p— 1))

= (p—r1))

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

p/\q%r

/\

=(=p—=(p—r))

A

p%r
Q

V4
<

=(=p — —p)

Splitting algorithm, example

(p—r))

= (p—r1))

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

ANpANg—r)—(p—r))

/\

—(=p = (p—1)) (p—r)y—=(p—r))
Vi
<
(=p — —p)

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

ANpANg—r)—(p—r))

/\

—(=p = (p—1)) (p—r)y—=(p—r))
Vi
<
(=p — —p)

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

ANpANg—r)—(p—r))

/\

(—p—=(p—r)) (p—=r)=(P—r)
7
<
ﬁﬁpﬁﬁp

A

ﬁﬁT—>ﬁT

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

p/\q%r

/\

=(-p—=(p—r))

A

p%r
Q

V4
<

ﬁﬁpﬁﬁp

VA

Splitting algorithm, example

(p—r))

= (p—r1))

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

p/\C]*)I’

/\

=(-p—=(p—r))

A

p%r

Splitting algorithm, example

(p—r))

p%r

/\

ﬁﬁpﬁﬁp

7
Q e
L L

“((p—>T)—

(p—T))

=T = 1

TAA= A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

20/34

Splitting algorithm, example

=T = 1

TANA= A

p/\q%r (p—r)) TVA=T

A—=>T =T

T—>A=A

A>T = A

T+ A=A

=(—=p = (p = 1)) p%r (p—r) ~L =T

1 ANA= L

1VA=A
A— 1 = —A
1l A= T

A 1L = —A
ﬁﬁpﬁﬁp 1l A= A

”/\
Q e
L L

20/34

Splitting algorithm, example

=T = 1
TAA= A
p/\q%r (p—r)) TVA= T
A—=>T =T
T—>A=A
A>T = A
T+ A=A

=(=p = (p—71)) p%r (p—r1)) -1 =T

1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T

ﬁﬁpﬁﬁp
Q e
L L

The formula is unsatisfiable

20/34

Splitting algorithm, example

-T = L
TAA=A

pAq%r (p—r)) TVA = T
A—=T = T

T A=A

AT = A

T+ A=A

-1 =T

ﬁﬁ[)—) p%r p—)l’ p~>l’ LAA = L
1VA=A

A— 1 = —A

1A= T

A 1L = —A

=(—p — —p) L A= —A

7 \
Q e
L L

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20/34

Exercise

1. For each unsimplified node of the tree in the previous slide, simplify the
formula one step at a time by applying in each step one of the simplification
rules in the slide.

Apply the rules modulo commutativity of A, \V and «+. For instance, consider
therule T ANA = Aasalsostanding fortherule AN T = A.

2. Verify that the formula you obtain in each case corresponds to the simplified
formula provided in the previous slide.

21/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-T = L
TAA=A
FTVA =T
A—=T = T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA=> L
1L VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

22/34

Splitting algorithm, example 2

((p—=a)AN(pAGg—r)—=(-p—T))

?

“(L—=g)A(LA-g—T1)— (L —=T))

=T = 1

TANA =
TVA =
A—T =
T —=A=
AT =
T+ A=

>x x> 1>

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

22/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-r

Q

=

Q

-T = L
TAA=A
FTVA =T
A—=T = T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA=> L
1L VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

22/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-r

-T = L
TAA=A
FTVA =T
A—=T = T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA=> L
1L VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

22/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-r

-T = L
TAA=A
FTVA =T
A—=T = T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA=> L
1L VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

22/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-r

The formula is satisfiable

-T = L
TANA=A
FTVA =T
A—=T = T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA = L
1L VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1L A= -A

22/34

Splitting algorithm, example 2

“((p=a)A(PpAg—=T1)=(-p—T))

-r

The formula is satisfiable

-T = L

TANA=A
FTVA =T
A—T =
T A=A
AT = A
T+ A=A

-1 =T
1 ANA = L
1VA=A
A— 1 = —A
1 —A=
AL = A

1L A= -A

To find a model of this formula, we simply collect choices made on the branch

terminatingat T

Splitting algorithm, example 2

((p—=qANpPAgG—=T1)—=(=p—r)) AT = T

1 ANA= L
—-r

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminatingat T

Any interpretation 7 such that Z(p) = Z(r) = 0 satisfies the formula, e.g.,
I={p—0,q—0,r—0}

22/34

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the efficiency of the splitting algorithm

23/34

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the efficiency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without
having to try the other alternative)

23/34

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the efficiency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without
having to try the other alternative)

We will see the case of pure literals

23/34

Parse tree

A=-(p=a)A(pAg—r1)—=(p—T))

-

=N
N /N
I\ UN
P\/ \Qq

r

Parse tree

A=-(p=a)A(pAg—r1)—=(p—T))

-

‘ -
N
P SN
P\/ \v)q A\/ \Qr
P\/ \Qq

Position in formula A: 1.1.2.1

r

Parse tree
A==(p—=ag)APAg—=r1)=(p—T))

-

A / X —
I NN
N /XN
P\/ \Qq

Position in formula A: 1.1.2.1 Subformula of A at this position: p A g

24/34

Positions and Subformulas

® Posijtion is any sequence of positive integers ay, . . ., a,, wheren > 0, written
asa,.ap. --- .dp

® Empty position, denoted by e: when n = 0
® Position in a formula A, subformula at a position, denoted by A| .

25/34

Positions and Subformulas

® Posijtion is any sequence of positive integers ay, . . ., a,, wheren > 0, written
asa,.ap. --- .dp

® Empty position, denoted by e: when n = 0
® Position in a formula A, subformula at a position, denoted by A| .

1. Forevery formula A, ¢ is a positionin Aand A|. L a

2. LetAl, =8B
2.1 IfBhastheformB; A--- AByorB;V---V By, thenforalli e {1....,n} the
position 7./ is a positionin Aand Al . ; ef B;
2.2 If B has the form —Bs, then 7.1 is a positionin Aand A| . ; i g,
2.3 If B has the form By — B,, then 7r.1and 7.2 are positionsin Aand Al - ‘' B and
Alrs B,

2.4 If B has the form By <+ B,, then 7.1 and 7.2 are positions in Aand A, ; et B

25/34

Positions and Subformulas

® Posijtion is any sequence of positive integers ay, . . ., a,, wheren > 0, written
asa,.ap. --- .dp

® Empty position, denoted by e: when n = 0
® Position in a formula A, subformula at a position, denoted by A| .

1. Forevery formula A, ¢ is a positionin Aand A|. L a

2. LetAl, =8B
2.1 IfBhastheformB; A--- AByorB;V---V By, thenforalli e {1....,n} the
position 7./ is a positionin Aand Al . ; ef B;
2.2 If B has the form —Bs, then 7.1 is a positionin Aand A| . ; i g,
2.3 If B has the form By — B,, then 7r.1and 7.2 are positionsin Aand Al - ‘"B, and
Alrs B,
2.4 If B has the form By <+ By, then 7r.1and 7.2 are positionsin Aand Al . ; e}

If Al = B, we also say that B occurs in A at position

25/34

Polarity

1. For every formula 4, ¢ is a position in Aand A|. '

2. LetAl, =B
2.1 If Bhastheform By A--- AByorB;V---V By, thenforalli € {1,..., n } the
position 7./ is a positionin Aand Al = B,

2.2 If B has the form =By , then .1 is a positionin Aand A| < p,

2.3 If B has the form B; — B, then 7.1 and .2 are positions in A and we have
def def

A‘mw = B andA"ﬂ'.Z =B
2.4 If B has the form By <> B, then 7r.1and 7.2 are positionsin Aand Al . ; i g,
fori=1,2

26/34

Polarity

Polarity of subformula at a position ~ Notation: pol(A, 7) Values: {—1,0,1}

1. For every formula 4, ¢ is a position in Aand A|. '

2. LetAl, =B
2.1 If Bhastheform By A--- AByorB;V ---V By, thenforalli € {1,..., n } the
position 7./ is a position in Aand Al ; = B,

2.2 If B has the form =By , then .1 is a positionin Aand A| < p,

2.3 If B has the form B; — B, then 7.1 and 7.2 are positions in A and we have
A‘W_1 déi B, and A‘ﬂ_z déi B,
2.4 If B has the form By <> B, then 7r.1and 7.2 are positionsin Aand Al . ; i g,

fori=1,2

26/34

Polarity

Polarity of subformula at a position ~ Notation: pol(A, 7) Values: {—1,0,1}
def

1. For every formula 4, ¢ is a positioninAand A|. = Aand pol(A.) 4

~ =B

2.1 If Bhastheform By A --- AB,orB; V---V By, thenforallic {1, ..., n} the
position 7./ is a positionin Aand A - ; d:f Bj, and pol(A, .i) o pol(A,)

2.2 If B has the form =B, , then .1is a position in A andA\m ' B, and

pol(A, w.1) = —pol(A,)
2.3 If B has the form B; — B, then 7.1and 7- 2 are positions in A and We have

Alx1 < Brand Alr.. < By, pol(A, 7.1) < —pol(A,), pol(A, m.2) < pol(A,)
2.4 If Bhasthe form By <> By, then .1and 7.2 are positionsin Aand Al ; 4 B, and

pol(A, ,‘./) S ofori=1.2

26/34

Polarity

Polarity of subformula at a position ~ Notation: pol(A, 7) Values: {—1,0,1}

1. For every formula 4, ¢ is a positionin Aand A|. f pand pol(A, €) 4

2. LetAl, =B
2.1 If Bhastheform By A--- AByorB;V ---V By, thenforalli € {1,..., n } the
position 7./ is a positionin Aand A - ; ' B, and pol(A, m.i) o pol(A,)

2.2 If B has the form =B, , then 7.1is a positionin Aand Al - ; ' B, and

pol(A, m.1) = —pol(A,)

2.3 If B has the form B; — B, then 7.1 and 7.2 are positions in A and we have
Alra 2 BrandAlr2 ¥ B, pol(A, 7.1) ' —pol(A,), pol(A, w.2) < pol(A,)

def

2.4 If B has the form By <+ B, then 7r.1and 7.2 are positionsin Aand A| . ; = B, and
pol(A, m.i) = 0fori=1,2

» = B, the occurrence of B at position 7 in A is positive
~ = B, the occurrence of B at position 7 in A is negative

® Ifpol(A.7) = Tand A
® Ifpol(A,7) = —1andA

26/34

The coloring algorithm for determining polarity

A==(p=>q)A(pAg—r1)—(p+ (r—q)))

-

|
TN
NN
NN TN
P/ Yq

27/34

The coloring algorithm for determining polarity

A=(p=q)A(pAg—r)=(p(r—q))
® Colorinblue all arcs below an equivalence

-

|
TN
A
INUN TR
P% Yq

27/34

The coloring algorithm for determining polarity

((p=a)A(pAg—r)—=(p < (r—q)))
Colorin blue all arcs below an equivalence

A

Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

-

R
N
PO
AT AN

P/ Yq

27/34

The coloring algorithm for determining polarity

A=(p=q)A(pAg—r)=(p(r—q))
Colorin blue all arcs below an equivalence

Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

-

R
The polarity of a position is

=
/ X ® (ifit has at least one blue
/ A K /HK arc above it
— — p —
1 2 1 2 1/ \2
P/ \q A/ \r r/ \q
VZRN
p q

27/34

The coloring algorithm for determining polarity

A=(p=q)A(pAg—r)=(p(r—q))
Colorin blue all arcs below an equivalence

Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

: -) The polarity of a position is
/ \ e 0 ifithasatleast one blue
A A arc above it
SN U
— — po — 0
/N UN R
p q A r ro qgo

27/34

The coloring algorithm for determining polarity

A

((p=a)A(pAg—r)—=(p < (r—q)))
Colorin blue all arcs below an equivalence

Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The polarity of a position is

® (ifit has at least one blue
arc above it

® 1 ifithas no blue arcand
an odd number of red arcs
above it

® | otherwise

27/34

The coloring algorithm for determining polarity

A=(p=q)A(pAg—r)=(p(r—q))
® Colorinblue all arcs below an equivalence

® Colorinred all uncolored arcs exiting a negation or the left-hand side of an implication

DA
/X
LA <A
SN N
1 — — 1 plo — 18
1 2 /2 1/ \2
1 P 149 1A ro ro

go

The polarity of a position is

® (ifit has at least one blue
arc above it

® 1 ifithas no blue arcand
an odd number of red arcs
above it

® | otherwise

27/34

Position and polarity, again

subformula

polarity

position

€ ~((p—q
1 p—q
1.1 p—q
111 p—q
111 p
1.1.1.2 q
1.1.2

1.1.2.1

1.1.2.1.1

1.1.2.1.2

11.2.2

1.2

1.2

1.2.2

pANqQ—r)—(p—r

pAG—T %Ep%l’;)
PAG—T

1
-1
1
1
—1
1
1
—1
—1
—1
1
—1
1
—1

28/34

Monotonic replacement

Notation A[B] . denotes, indifferently:
e Aformula A having subformula B at position 7
® The result of replacing the subformula of A at position 7 by B

29/34

Monotonic replacement

Notation A[B], denotes, indifferently:
e Aformula A having subformula B at position 7
® The result of replacing the subformula of A at position 7 by B

Lemma 2 (Monotonic Replacement)

LetA, B, B" be formulas, 7 be an interpretation such that 7 |= B — B'.
1. Ifpol(A,) = 1,thenZ |= A[B], — A[B], .
2. Ifpol(A,7w) = —1,thenT |= AlB']. — A[B], .

29/34

Monotonic replacement

Theorem 3 (Monotonic Replacement)

LetA, B, B' be formulas such that = B — B'. LetA~, resp. A", be the formula
obtained from A by replacing one or more negative, resp. positive, occurrences
of Bby B'. Then,

EAT —A and [EA—AT.

30/34

Monotonic replacement

Theorem 3 (Monotonic Replacement)

LetA, B, B' be formulas such that = B — B'. LetA~, resp. A", be the formula
obtained from A by replacing one or more negative, resp. positive, occurrences
of Bby B'. Then,

EAT —A and [EA—AT.

Corollary 4

LetA,B,B',A= AT be as above. Then, the following holds.
1. IfA~ is satisfiable, so is A.
2. IfAT is unsatisfiable, so is A.

30/34

Pure atom

Atom pis pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

31/34

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

—
N
A —
ANV
pr oA
/N
g r -

|
p

pAr— (=g — (rA-p))

31/34

Pure atom

Atom pis pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

%
VRN
A —
/\ /\
pr = A
/o /N
g r -

|
p

pAr— (=g — (rA-p))

® Both occurrences of p are negative, so p is pure
® The only occurrence of g is positive, so g is pure
® risnot pure, since it has both negative and positive occurrences

31/34

Properties of pure atoms

7

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in Aand T = A. Define

7T+ (p 1) (mapsptolandisotherwise identical to 7)

ThenZ' = A.

32/34

Properties of pure atoms

7

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in Aand T = A. Define

7T+ (p 1) (mapsptolandisotherwise identical to 7)

ThenZ' = A.
Dually, Suppose p has only negative occurrences in Aand T |= A. Define

7Ty (p+— 0) (maps p to 0 and is otherwise identical to)
ThenZ' = A.

32/34

Properties of pure atoms

7

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in Aand T = A. Define

7T+ (p 1) (mapsptolandisotherwise identical to 7)

ThenZ' = A.
Dually, Suppose p has only negative occurrences in Aand T |= A. Define

7Ty (p+— 0) (maps p to 0 and is otherwise identical to)
ThenZ' = A.

Theorem 6 (Pure Atom)

Suppose variable p has only positive (respectively, only negative) occurrences
in A. Then Ais satisfiable iff so is A, (respectively, Ay).

32/34

Pure atom, example

“((p—=aq)AN(PAG—T1)—= (=p—T))

33/34

Pure atom, example

“((p—=aq)AN(PAG—T1)—= (=p—T))

33/34

Pure atom, example
“((p=a)A(pAg—r)—=(mp—T))
b
1A/ \)H -1
SN U
/ 2 / 2 })1

2
1 roA
1 p 149 1A ri

/X
ap q A

-1

All occurrences of p are negative, so to check for satisfiability we can replace p by |

33/34

Example, continued

((p—=a)AN(PAG—T)= (=p—T))

All occurrences of p are negative

-T = L
TAA=A
FTVA =T
A>T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1A= A

34/34

Example, continued

=T = 1L |
“((p—=qg)AN(pAg—r1)—= (—p—1)) = TAA = A

FTVA =T

“(L=a)A(LAg—=r)—= (L —=T)) AT > T
T A=A
A>T = A
T+ A=A
-1 =T

1 ANA= L
1VA=A

A— 1 = —A
1 —-A=T
A 1L = —A
1L A= -A

All occurrences of p are negative; so, for the purpose of checking satisfiability we
canreplacep by L

34/34

Example, continued

(=) AN(PAG—r)— (-p—r))
(L= A(LAg—T1)—= (=L —T))
“(TA(LAGg—=T1)—= (L —=1))

=
=

-T = L

TAA
TVA
A—T
T—A
AT
T+ A

TR
>xx 1>

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

34/34

Example, continued

“(p=ag)A(pAg—T1)= (-p—T))
(L= A(LAg—T1)—= (=L —T))
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))

=
=
=

-T = L

TANA =
TVA =
A—=>T =
T —=A=
AT =
T+ A=

x> 1>

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

34/34

Example, continued

“(p=ag)A(pAg—T1)= (-p—T))
(L= A(LAg—T1)—= (=L —T))
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

4l

-T = L

TANA =
TVA =
A—=>T =
T —=A=
AT =
T+ A=

x> 1>

-1l =T
1 ANA= L
1VA=A
A— 1 = —A
1l —-A=T
A 1L = —A

1l A= A

34/34

Example, continued

(=g N(PAg—T1)= (-p—T))
“((L=g)A(LAg—=1)—=(-L =)
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

(T = (=L —=r))

N

34/34

Example, continued

(=g N(PAg—T1)= (-p—T))
“((L=g)A(LAg—=1)—=(-L =)
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

(T = (=L —=r))

(=L =)

L

-T = L

TANA =
TVA =>
A—=T =
T —=A=
AT =
T+ A=

>xx 1>

-1 =T
1 ANA= L
1VA=A

A— 1 = —A
1 —-A=T
A 1L = —A

[Loa=

34/34

Example, continued

(=g N(PAg—T1)= (-p—T))
“((L=g)A(LAg—=1)—=(-L =)
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

(T = (=L —=r))

(=L =)

(T —=r)

R

34/34

Example, continued

[=T = L |
“((p=a)rprg—1)=(p=1) = foaoa
((L=gA(LAg=r)—=(L—=r) = AT = T

“(TA(LAGg—=T1)—= (L —=1)) = /‘Tﬂﬁéj
“((LAg—r)—= (=L —r)) = a2 s
(L —=r)—=(-L—=r)) = -1 =T
(T = (L —=1) = VA
ﬁ(ﬁl—>r) = Aol = —A

1l A= T

(T —=7r) = Ao L = —A

—r Lo A= HA |

All occurrences of r are negative

34/34

Example, continued

“((p—=a)AN(pAg—r1)—=(-p—T))
(L= A(LAg—T1)—= (=L —T))
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

(T —= (=L —r))

(=L —=r)

(T —=r)

—-r
-1

N e R A A

=T = 1

TAA=A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1l =T
1 ANA= L
1VA=A

A— 1 = —A
1l —-A=T
A 1L = —A

1 A= —A

All occurrences of r are negative; so, for the purpose of checking satisfiability we

canreplacerby |

34/34

Example, continued

“((p—=a)AN(pAg—r1)—=(-p—T))
(L= A(LAg—T1)—= (=L —T))
“(TA(LAGg—=T1)—= (L —=1))
-((LAg—=r)— (L —=1))
(L —=r)—=(-L—=r))

(T —= (=L —r))

(=L —=r)

(T —=r)

—-r
-1
-

L 2 0 R

-T = L

TAA=A
TVA=T
A—=T =T
T A=A
A>T = A
T+ A=A

-1 =T
1 ANA= L
1VA=A
A— 1 = —A
1 —-A=T
A 1L = —A

1l A= A

We have shown the satisfiability of this formula deterministically (no guesses),

using only the pure atom rule

34/34

	Satisfiability Checking
	Satisfiability. Examples
	Truth Tables
	Splitting
	Positions and subformulas

