
CS:4350 Logic in Computer Science

Propositional Satisfiability

Cesare Tinelli

Spring 2022

1 / 34

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 34

Outline

Satisfiability Checking
Satisfiability. Examples
Truth Tables
Splitting
Positions and subformulas

3 / 34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

When these constraints are expressible in Propositional Logic, the
problem reduces to checking the satisfiability of a set of formulas.

Satisfiability in PL is a very general problem

4 / 34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

When these constraints are expressible in Propositional Logic, the
problem reduces to checking the satisfiability of a set of formulas.

Satisfiability in PL is a very general problem

4 / 34

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of
constraints is solvable.

When these constraints are expressible in Propositional Logic, the
problem reduces to checking the satisfiability of a set of formulas.

Satisfiability in PL is a very general problem

4 / 34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A1, . . . , An |= B i� {A1, . . . , An, ¬B} is unsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5 / 34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A1, . . . , An |= B i� {A1, . . . , An, ¬B} is unsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5 / 34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A1, . . . , An |= B i� {A1, . . . , An, ¬B} is unsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5 / 34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A1, . . . , An |= B i� {A1, . . . , An, ¬B} is unsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5 / 34

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

A1, . . . , An |= B i� {A1, . . . , An, ¬B} is unsatisfiable

Upshot: we do not really need a derivation system to prove PL
formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Bad news: no fast (polynomial-time) and general algorithms for SAT
in general are known

Reality: there are automated reasoning techniques that work
extremely well for SAT in practice

5 / 34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6 / 34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6 / 34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6 / 34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6 / 34

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual
International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

Isaac reported that Louis won the fair, while Rene came in second. Albert, on the
other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the
science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

6 / 34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of themost famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7 / 34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of themost famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7 / 34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of themost famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7 / 34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of themost famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7 / 34

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

If it is, also find a satisfying assignment for A (a model of A).

One of themost famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large
number of practical applications.

It was also the first ever problem to be proved NP-complete.

7 / 34

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is a spy.

When Stirlitz meets Müller in a hallway, he makes the
following joke: “you know, Müller, you are as German
as I am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

How can we solve problems of this kind?

8 / 34

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is a spy.

When Stirlitz meets Müller in a hallway, he makes the
following joke: “you know, Müller, you are as German
as I am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

How can we solve problems of this kind?

8 / 34

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is a spy.

When Stirlitz meets Müller in a hallway, he makes the
following joke: “you know, Müller, you are as German
as I am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

How can we solve problems of this kind?

8 / 34

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is
known that exactly one of them is Russian, while the
other two are German. Is is also know that every Russian
is a spy.

When Stirlitz meets Müller in a hallway, he makes the
following joke: “you know, Müller, you are as German
as I am Russian”. It is known that Stirlitz always tells
the truth when he is joking.

We have to show that Eismann is not a Russian spy.

How can we solve problems of this kind?

8 / 34

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

Stirlitz Müller Eismann
Russian RS RM RE
German GS GM GE
Spy SS SM SE

Example
SE : Eismann is a Spy
RS : Stirlitz is Russian

9 / 34

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

Stirlitz Müller Eismann
Russian RS RM RE
German GS GM GE
Spy SS SM SE

Example
SE : Eismann is a Spy
RS : Stirlitz is Russian

9 / 34

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are German.

(RS ∧ GM ∧ GE) ∨ (GS ∧ RM ∧ GE) ∨ (GS ∧ GM ∧ RE)

It is also known that every Russian is a spy.

(RS→ SS) ∧ (RM→ SM) ∧ (RE → SE)

When Stirlitz meets Müller in a hallway, he makes the following joke:
“you know, Müller, you are as German as I am Russian.”

RS↔ GM

10 / 34

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are German.

(RS ∧ GM ∧ GE) ∨ (GS ∧ RM ∧ GE) ∨ (GS ∧ GM ∧ RE)

It is also known that every Russian is a spy.

(RS→ SS) ∧ (RM→ SM) ∧ (RE → SE)

When Stirlitz meets Müller in a hallway, he makes the following joke:
“you know, Müller, you are as German as I am Russian.”

RS↔ GM

10 / 34

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are German.

(RS ∧ GM ∧ GE) ∨ (GS ∧ RM ∧ GE) ∨ (GS ∧ GM ∧ RE)

It is also known that every Russian is a spy.

(RS→ SS) ∧ (RM→ SM) ∧ (RE → SE)

When Stirlitz meets Müller in a hallway, he makes the following joke:
“you know, Müller, you are as German as I am Russian.”

RS↔ GM

10 / 34

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that
exactly one of them is Russian, while the other two are German.

(RS ∧ GM ∧ GE) ∨ (GS ∧ RM ∧ GE) ∨ (GS ∧ GM ∧ RE)

It is also known that every Russian is a spy.

(RS→ SS) ∧ (RM→ SM) ∧ (RE → SE)

When Stirlitz meets Müller in a hallway, he makes the following joke:
“you know, Müller, you are as German as I am Russian.”

RS↔ GM

10 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.

To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.

To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.

To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

(RS↔ ¬GS) ∧ (RM↔ ¬GM) ∧ (RE ↔ ¬GE)

Wewant to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

RE ∧ SE

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, thenEismann cannot be aRussian spy

11 / 34

Circuit Equivalence
Given two circuits, check if they are equivalent. For example:

12 / 34

Circuit Equivalence
Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula and . . .

12 / 34

Circuit Equivalence
Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula and . . .

equivalence checking for propositional formulas
can be reduced to unsatisfiability checking

12 / 34

Circuit Equivalence
Given two circuits, check if they are equivalent. For example:

C1 C2

C1 ≡ C2 i� ¬(C1 ↔ C2) is unsatisfiable

12 / 34

Idea for SAT: use formula evaluationmethods

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

We can evaluate A in any interpretation, e.g., I1 = { p 7→ 0, q 7→ 0, r 7→ 0 }:

subformula I1
1 ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0
2 (p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1
3 p→ r 1
4 (p→ q) ∧ (p ∧ q→ r) 1
5 p ∧ q→ r 1
6 p→ q 1
7 p ∧ q 0
8 p p p 0
9 q q 0
10 r r 0

13 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Similarly, we can evaluate A in all interpretations:

subformula I1 I2 I3 I4 I5 I6 I7 I8
1 ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0 0 0 0 0
2 (p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1 1 1 1 1
3 p→ r 1 1 1 1 0 1 0 1
4 (p→ q) ∧ (p ∧ q→ r) 1 1 1 1 0 0 0 1
5 p ∧ q→ r 1 1 1 1 1 1 0 1
6 p→ q 1 1 1 1 0 0 1 1
7 p ∧ q 0 0 0 0 0 0 1 1
8 p p p 0 0 0 0 1 1 1 1
9 q q 0 0 1 1 0 0 1 1
10 r r 0 1 0 1 0 1 0 1

14 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automatedmethod to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2n di�erent interpretations!

Generating and checking each interpretation in 1ms for a formula with 50
variables would take 250ms ≈ 257 centuries . . .

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automatedmethod to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2n di�erent interpretations!

Generating and checking each interpretation in 1ms for a formula with 50
variables would take 250ms ≈ 257 centuries . . .

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automatedmethod to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2n di�erent interpretations!

Generating and checking each interpretation in 1ms for a formula with 50
variables would take 250ms ≈ 257 centuries . . .

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automatedmethod to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2n di�erent interpretations!

Generating and checking each interpretation in 1ms for a formula with 50
variables would take 250ms ≈ 257 centuries . . .

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15 / 34

Truth tables

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

Formula A is unsatisfiable since it is false in every interpretation

So we have a fully automatedmethod to check the satisfiability propositional
formulas

Problem: A propositional formula with n variables has 2n di�erent interpretations!

Generating and checking each interpretation in 1ms for a formula with 50
variables would take 250ms ≈ 257 centuries . . .

With current automated reasoning technology, we can check formulas with 10K
variables in seconds

15 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

J2 stands for 2 (total) interpretations
J1 stands for 4 interpretations

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Compact truth table
Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula J2 J3 J4 J1
¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 0 0 0 0

(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1 1 1 1
p→ r 1 0 0 1

(p→ q) ∧ (p ∧ q→ r) 0 0
p ∧ q→ r 1 0 1

p→ q 0 1
p ∧ q 0 1

p p p 0 1 1
q q 0 1

r r 0 0 0 1

Note: The size of the compact table (but not the result) depends on the order of
variables!

16 / 34

Guessing variable values (i.e., case analysis) and propagation are
the key ideas in nearly all propositional satisfiability algorithms

Case splitting: idea
Notation: A⊥p and A>p denote the formulas obtained by replacing all occurrences of
p in A by⊥ and>, respectively

Lemma 1
Let p be an atom, A be a formula, and I be an interpretation.
1. If I |= p, then A has the same value as A>p in I .
2. If I 6|= p, then A has the same value as A⊥p in I .

Satisfiability checking by case analysis
1. Pick a variable p of A and perform case analysis on it:
Case 1) replace p by⊥ (for false)
Case 2) replace p by> (for true)

2. Simplify formula as much as possible
3. Repeat until A is> or⊥

17 / 34

Case splitting: idea
Notation: A⊥p and A>p denote the formulas obtained by replacing all occurrences of
p in A by⊥ and>, respectively

Lemma 1
Let p be an atom, A be a formula, and I be an interpretation.
1. If I |= p, then A has the same value as A>p in I .
2. If I 6|= p, then A has the same value as A⊥p in I .

Satisfiability checking by case analysis
1. Pick a variable p of A and perform case analysis on it:
Case 1) replace p by⊥ (for false)
Case 2) replace p by> (for true)

2. Simplify formula as much as possible
3. Repeat until A is> or⊥

17 / 34

Case splitting: idea
Notation: A⊥p and A>p denote the formulas obtained by replacing all occurrences of
p in A by⊥ and>, respectively

Lemma 1
Let p be an atom, A be a formula, and I be an interpretation.
1. If I |= p, then A has the same value as A>p in I .
2. If I 6|= p, then A has the same value as A⊥p in I .

Satisfiability checking by case analysis
1. Pick a variable p of A and perform case analysis on it:
Case 1) replace p by⊥ (for false)
Case 2) replace p by> (for true)

2. Simplify formula as much as possible
3. Repeat until A is> or⊥

17 / 34

Case splitting: idea
Notation: A⊥p and A>p denote the formulas obtained by replacing all occurrences of
p in A by⊥ and>, respectively

Lemma 1
Let p be an atom, A be a formula, and I be an interpretation.
1. If I |= p, then A has the same value as A>p in I .
2. If I 6|= p, then A has the same value as A⊥p in I .

Satisfiability checking by case analysis
1. Pick a variable p of A and perform case analysis on it:
Case 1) replace p by⊥ (for false)
Case 2) replace p by> (for true)

2. Simplify formula as much as possible
3. Repeat until A is> or⊥

17 / 34

Case splitting: idea
Notation: A⊥p and A>p denote the formulas obtained by replacing all occurrences of
p in A by⊥ and>, respectively

Lemma 1
Let p be an atom, A be a formula, and I be an interpretation.
1. If I |= p, then A has the same value as A>p in I .
2. If I 6|= p, then A has the same value as A⊥p in I .

Satisfiability checking by case analysis
1. Pick a variable p of A and perform case analysis on it:
Case 1) replace p by⊥ (for false)
Case 2) replace p by> (for true)

2. Simplify formula as much as possible
3. Repeat until A is> or⊥

17 / 34

Simplification rules for> and⊥

Note: we need new simplification rules to account for propositional variables

Simplification rules for>
¬> ⇒ ⊥

A1 ∧ · · · ∧ > ∧ · · · ∧ An ⇒ A1 ∧ · · · ∧ An
A1 ∨ · · · ∨ > ∨ · · · ∨ An ⇒ >

A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for⊥
¬⊥ ⇒ >

A1 ∧ · · · ∧ ⊥ ∧ · · · ∧ An ⇒ ⊥
A1 ∨ · · · ∨ ⊥ ∨ · · · ∨ An ⇒ A1 ∨ · · · ∨ An
A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Claim: If we apply these rules to a formula to completion (i.e., until no more rules
apply), we get either
• ⊥,
• >, or
• a formula with no occurrences of⊥ and>

18 / 34

Simplification rules for> and⊥

Note: we need new simplification rules to account for propositional variables

Simplification rules for>
¬> ⇒ ⊥

A1 ∧ · · · ∧ > ∧ · · · ∧ An ⇒ A1 ∧ · · · ∧ An
A1 ∨ · · · ∨ > ∨ · · · ∨ An ⇒ >

A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for⊥
¬⊥ ⇒ >

A1 ∧ · · · ∧ ⊥ ∧ · · · ∧ An ⇒ ⊥
A1 ∨ · · · ∨ ⊥ ∨ · · · ∨ An ⇒ A1 ∨ · · · ∨ An
A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Claim: If we apply these rules to a formula to completion (i.e., until no more rules
apply), we get either
• ⊥,
• >, or
• a formula with no occurrences of⊥ and>

18 / 34

Simplification rules for> and⊥

Note: we need new simplification rules to account for propositional variables

Simplification rules for>
¬> ⇒ ⊥

A1 ∧ · · · ∧ > ∧ · · · ∧ An ⇒ A1 ∧ · · · ∧ An
A1 ∨ · · · ∨ > ∨ · · · ∨ An ⇒ >

A→ > ⇒ > > → A ⇒ A
A↔ > ⇒ A > ↔ A ⇒ A

Simplification rules for⊥
¬⊥ ⇒ >

A1 ∧ · · · ∧ ⊥ ∧ · · · ∧ An ⇒ ⊥
A1 ∨ · · · ∨ ⊥ ∨ · · · ∨ An ⇒ A1 ∨ · · · ∨ An
A→ ⊥ ⇒ ¬A ⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A ⊥ ↔ A ⇒ ¬A

Claim: If we apply these rules to a formula to completion (i.e., until no more rules
apply), we get either
• ⊥,
• >, or
• a formula with no occurrences of⊥ and>

18 / 34

Splitting algorithm
procedure split(G)
parameters: function select
input: formula G
output: “satisfiable” or “unsatisfiable”
begin
G := simplify(G) // apply simplification rules to completion
if G = > then return “satisfiable”
if G = ⊥ then return “unsatisfiable”
(p, b) := select(G) // pick a variable p of G and a value b for it
case b of
1⇒
if split(G>

p) = “satisfiable”
then return “satisfiable”
else return split(G⊥

p)
0⇒
if split(G⊥

p) = “satisfiable”
then return “satisfiable”
else return split(G>

p)
end

19 / 34

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

q =
0 q

=
1

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬((p→ ⊥) ∧ (p ∧ ⊥ → r)→ (p→ r))

q =
0 q

=
1

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r))

q =
0 q

=
1

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r))

q =
0 q

=
1

¬(¬> → (> → r))

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r))

q =
0 q

=
1

⊥

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r))

q =
0 q

=
1

⊥ ¬(¬⊥ → (⊥ → r))

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ >) ∧ (p ∧ > → r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0 r =

0 r =
1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬((p→ ⊥)→ (p→ ⊥))

r =
0 r =

1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p)

r =
0 r =

1

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p)

r =
0 r =

1

¬(¬⊥ → ¬⊥)

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p)

r =
0 r =

1

⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p)

r =
0 r =

1

⊥ ¬(¬> → ¬>)

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p)

r =
0 r =

1

⊥ ⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p) ¬((p→ >)→ (p→ >))

r =
0 r =

1

⊥ ⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p) ⊥

r =
0 r =

1

⊥ ⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p) ⊥

r =
0 r =

1

⊥ ⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example

¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬(¬p→ (p→ r)) ¬((p→ r)→ (p→ r))

q =
0 q

=
1

⊥ ⊥

p
=
1 p

=
0

¬(¬p→ ¬p) ⊥

r =
0 r =

1

⊥ ⊥

p
=
0 p

=
1

The formula is unsatisfiable

What is happening here is very similar to using compact truth tables, but on the
syntactic level

20 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Exercise

1. For each unsimplified node of the tree in the previous slide, simplify the
formula one step at a time by applying in each step one of the simplification
rules in the slide.

Apply the rules modulo commutativity of ∧, ∨ and↔. For instance, consider
the rule> ∧ A ⇒ A as also standing for the rule A ∧ > ⇒ A.

2. Verify that the formula you obtain in each case corresponds to the simplified
formula provided in the previous slide.

21 / 34

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

p =
0

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬((⊥ → q) ∧ (⊥ ∧ ¬q→ r)→ (¬⊥ → r))

p =
0

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

¬⊥

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

>

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

>

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

>

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Splitting algorithm, example 2

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬r

p =
0

>

r =
0

The formula is satisfiable

To find a model of this formula, we simply collect choices made on the branch
terminating at>

Any interpretation I such that I(p) = I(r) = 0 satisfies the formula, e.g.,
I = { p 7→ 0, q 7→ 0, r 7→ 0 }

22 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the e�iciency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without
having to try the other alternative)

We will see the case of pure literals

23 / 34

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the e�iciency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without
having to try the other alternative)

We will see the case of pure literals

23 / 34

Improving the search for satisfying assignments

The order in which one chooses
1. the variable to replace and
2. the truth value for the chosen variable
is essential for the e�iciency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without
having to try the other alternative)

We will see the case of pure literals

23 / 34

Parse tree

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬

→

1

∧ →

1 2

p r

1 2

→ →

1 2

p q

1 2

∧ r
1 2

p q

1 2

Position in formula A: 1.1.2.1 Subformula of A at this position: p ∧ q
24 / 34

Parse tree

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬

→

1

∧ →

1 2

p r

1 2

→ →

1 2

p q

1 2

∧ r
1 2

p q

1 2

Position in formula A: 1.1.2.1 Subformula of A at this position: p ∧ q
24 / 34

Parse tree

A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r))

¬

→

1

∧ →

1 2

p r

1 2

→ →

1 2

p q

1 2

∧ r
1 2

p q

1 2

Position in formula A: 1.1.2.1 Subformula of A at this position: p ∧ q
24 / 34

Positions and Subformulas

• Position is any sequence of positive integers a1, . . . , an, where n ≥ 0, written
as a1.a2. · · · .an

• Empty position, denoted by ε: when n = 0
• Position π in a formula A, subformula at a position, denoted by A|π

1. For every formula A, ε is a position in A and A|ε
def
= A

2. Let A|π = B
2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the

position π.i is a position in A and A|π.i
def
= Bi

2.2 If B has the form¬B1, then π.1 is a position in A and A|π.1
def
= B1

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and A|π.1
def
= B1 and

A|π.2
def
= B2

2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i
def
= Bi

If A|π = B, we also say that B occurs in A at position π

25 / 34

Positions and Subformulas

• Position is any sequence of positive integers a1, . . . , an, where n ≥ 0, written
as a1.a2. · · · .an

• Empty position, denoted by ε: when n = 0
• Position π in a formula A, subformula at a position, denoted by A|π

1. For every formula A, ε is a position in A and A|ε
def
= A

2. Let A|π = B
2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the

position π.i is a position in A and A|π.i
def
= Bi

2.2 If B has the form¬B1, then π.1 is a position in A and A|π.1
def
= B1

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and A|π.1
def
= B1 and

A|π.2
def
= B2

2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i
def
= Bi

If A|π = B, we also say that B occurs in A at position π

25 / 34

Positions and Subformulas

• Position is any sequence of positive integers a1, . . . , an, where n ≥ 0, written
as a1.a2. · · · .an

• Empty position, denoted by ε: when n = 0
• Position π in a formula A, subformula at a position, denoted by A|π

1. For every formula A, ε is a position in A and A|ε
def
= A

2. Let A|π = B
2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the

position π.i is a position in A and A|π.i
def
= Bi

2.2 If B has the form¬B1, then π.1 is a position in A and A|π.1
def
= B1

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and A|π.1
def
= B1 and

A|π.2
def
= B2

2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i
def
= Bi

If A|π = B, we also say that B occurs in A at position π

25 / 34

Polarity

Polarity of subformula at a position Notation: pol(A, π) Values: {−1, 0, 1}

1. For every formula A, ε is a position in A and A|ε
def
= A and pol(A, ε) def

= 1
2. Let A|π = B

2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the
position π.i is a position in A and A|π.i

def
= Bi, and pol(A, π.i)

def
= pol(A, π)

2.2 If B has the form¬B1 , then π.1 is a position in A and A|π.1
def
= B1 and

pol(A, π.1) def
= −pol(A, π)

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and we have
A|π.1

def
= B1 and A|π.2

def
= B2, pol(A, π.1)

def
= −pol(A, π), pol(A, π.2) def

= pol(A, π)
2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i

def
= Bi and

pol(A, π.i) def
= 0 for i = 1, 2

• If pol(A, π) = 1 and A|π = B, the occurrence of B at position π in A is positive
• If pol(A, π) = −1 and A|π = B, the occurrence of B at position π in A is negative

26 / 34

Polarity

Polarity of subformula at a position Notation: pol(A, π) Values: {−1, 0, 1}

1. For every formula A, ε is a position in A and A|ε
def
= A and pol(A, ε) def

= 1
2. Let A|π = B

2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the
position π.i is a position in A and A|π.i

def
= Bi, and pol(A, π.i)

def
= pol(A, π)

2.2 If B has the form¬B1 , then π.1 is a position in A and A|π.1
def
= B1 and

pol(A, π.1) def
= −pol(A, π)

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and we have
A|π.1

def
= B1 and A|π.2

def
= B2, pol(A, π.1)

def
= −pol(A, π), pol(A, π.2) def

= pol(A, π)
2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i

def
= Bi and

pol(A, π.i) def
= 0 for i = 1, 2

• If pol(A, π) = 1 and A|π = B, the occurrence of B at position π in A is positive
• If pol(A, π) = −1 and A|π = B, the occurrence of B at position π in A is negative

26 / 34

Polarity

Polarity of subformula at a position Notation: pol(A, π) Values: {−1, 0, 1}

1. For every formula A, ε is a position in A and A|ε
def
= A and pol(A, ε) def

= 1
2. Let A|π = B

2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the
position π.i is a position in A and A|π.i

def
= Bi, and pol(A, π.i)

def
= pol(A, π)

2.2 If B has the form¬B1 , then π.1 is a position in A and A|π.1
def
= B1 and

pol(A, π.1) def
= −pol(A, π)

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and we have
A|π.1

def
= B1 and A|π.2

def
= B2, pol(A, π.1)

def
= −pol(A, π), pol(A, π.2) def

= pol(A, π)
2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i

def
= Bi and

pol(A, π.i) def
= 0 for i = 1, 2

• If pol(A, π) = 1 and A|π = B, the occurrence of B at position π in A is positive
• If pol(A, π) = −1 and A|π = B, the occurrence of B at position π in A is negative

26 / 34

Polarity

Polarity of subformula at a position Notation: pol(A, π) Values: {−1, 0, 1}

1. For every formula A, ε is a position in A and A|ε
def
= A and pol(A, ε) def

= 1
2. Let A|π = B

2.1 If B has the form B1 ∧ · · · ∧ Bn or B1 ∨ · · · ∨ Bn, then for all i ∈ { 1, . . . , n } the
position π.i is a position in A and A|π.i

def
= Bi, and pol(A, π.i)

def
= pol(A, π)

2.2 If B has the form¬B1 , then π.1 is a position in A and A|π.1
def
= B1 and

pol(A, π.1) def
= −pol(A, π)

2.3 If B has the form B1 → B2, then π.1 and π.2 are positions in A and we have
A|π.1

def
= B1 and A|π.2

def
= B2, pol(A, π.1)

def
= −pol(A, π), pol(A, π.2) def

= pol(A, π)
2.4 If B has the form B1 ↔ B2, then π.1 and π.2 are positions in A and A|π.i

def
= Bi and

pol(A, π.i) def
= 0 for i = 1, 2

• If pol(A, π) = 1 and A|π = B, the occurrence of B at position π in A is positive
• If pol(A, π) = −1 and A|π = B, the occurrence of B at position π in A is negative

26 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p

0

→

r

0

1

1

q

0

2

2
0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is

• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p

0

→

r

0

1

1

q

0

2

2

0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is

• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p

0

→

r

0

1

1

q

0

2

2

0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is

• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p

0

→

r

0

1

1

q

0

2

2

0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is
• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p 0 →

r 0

1

1

q 0

2

2
0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is
• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬

1

→

-1

1

∧

1

↔

-1

1 2

p 0 →

r 0

1

1

q 0

2

2
0

1

1

2

2

→

1

→

1

1 2

p

-1

q

1

1 2

∧

-1

r

1

1 2

p

-1

q

-1

1 2

The polarity of a position is
• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

The coloring algorithm for determining polarity
A = ¬((p→ q) ∧ (p ∧ q→ r)→ (p↔ (r → q)))
• Color in blue all arcs below an equivalence
• Color in red all uncolored arcs exiting a negation or the le�-hand side of an implication

¬ 1

→ -1

1

∧1 ↔ -1

1 2

p 0 →

r 0

1

1

q 0

2

2
0

1

1

2

2

→1 → 1

1 2

p-1 q1

1 2

∧-1 r 1

1 2

p-1 q -1

1 2

The polarity of a position is
• 0 if it has at least one blue
arc above it

• −1 if it has no blue arc and
an odd number of red arcs
above it

• 1 otherwise

27 / 34

Position and polarity, again

position subformula polarity
ε ¬((p→ q) ∧ (p ∧ q→ r)→ (p→ r)) 1
1 (p→ q) ∧ (p ∧ q→ r)→ (p→ r) −1
1.1 (p→ q) ∧ (p ∧ q→ r) 1
1.1.1 p→ q 1
1.1.1.1 p −1
1.1.1.2 q 1
1.1.2 p ∧ q→ r 1
1.1.2.1 p ∧ q −1
1.1.2.1.1 p −1
1.1.2.1.2 q −1
1.1.2.2 r 1
1.2 p→ r −1
1.2.1 p 1
1.2.2 r −1

28 / 34

Monotonic replacement

Notation A[B]π denotes, indi�erently:
• A formula A having subformula B at position π
• The result of replacing the subformula of A at position π by B

Lemma 2 (Monotonic Replacement)
Let A,B,B′ be formulas, I be an interpretation such that I |= B→ B′.
1. If pol(A, π) = 1, then I |= A[B]π → A[B′]π .
2. If pol(A, π) = −1, then I |= A[B′]π → A[B]π .

29 / 34

Monotonic replacement

Notation A[B]π denotes, indi�erently:
• A formula A having subformula B at position π
• The result of replacing the subformula of A at position π by B

Lemma 2 (Monotonic Replacement)
Let A,B,B′ be formulas, I be an interpretation such that I |= B→ B′.
1. If pol(A, π) = 1, then I |= A[B]π → A[B′]π .
2. If pol(A, π) = −1, then I |= A[B′]π → A[B]π .

29 / 34

Monotonic replacement

Theorem 3 (Monotonic Replacement)
Let A,B,B′ be formulas such that |= B→ B′. Let A−, resp. A+, be the formula
obtained from A by replacing one or more negative, resp. positive, occurrences
of B by B′. Then,

|= A− → A and |= A→ A+ .

Corollary 4
Let A,B,B′, A−, A+ be as above. Then, the following holds.
1. If A− is satisfiable, so is A.
2. If A+ is unsatisfiable, so is A.

30 / 34

Monotonic replacement

Theorem 3 (Monotonic Replacement)
Let A,B,B′ be formulas such that |= B→ B′. Let A−, resp. A+, be the formula
obtained from A by replacing one or more negative, resp. positive, occurrences
of B by B′. Then,

|= A− → A and |= A→ A+ .

Corollary 4
Let A,B,B′, A−, A+ be as above. Then, the following holds.
1. If A− is satisfiable, so is A.
2. If A+ is unsatisfiable, so is A.

30 / 34

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

p ∧ r → (¬q→ (r ∧ ¬p))

→

∧ →

p r ¬

q

∧

r ¬

p
• Both occurrences of p are negative, so p is pure
• The only occurrence of q is positive, so q is pure
• r is not pure, since it has both negative and positive occurrences

31 / 34

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

p ∧ r → (¬q→ (r ∧ ¬p))

→

∧ →

p r ¬

q

∧

r ¬

p
• Both occurrences of p are negative, so p is pure
• The only occurrence of q is positive, so q is pure
• r is not pure, since it has both negative and positive occurrences

31 / 34

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all
occurrences of p in A are negative

p ∧ r → (¬q→ (r ∧ ¬p))

→

∧ →

p r ¬

q

∧

r ¬

p
• Both occurrences of p are negative, so p is pure
• The only occurrence of q is positive, so q is pure
• r is not pure, since it has both negative and positive occurrences

31 / 34

Properties of pure atoms

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 1) (maps p to 1 and is otherwise identical to I)

Then I ′ |= A .
Dually, Suppose p has only negative occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 0) (maps p to 0 and is otherwise identical to I)

Then I ′ |= A .

Theorem 6 (Pure Atom)
Suppose variable p has only positive (respectively, only negative) occurrences
in A. Then A is satisfiable i� so is A>p (respectively, A⊥p).

32 / 34

Properties of pure atoms

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 1) (maps p to 1 and is otherwise identical to I)

Then I ′ |= A .
Dually, Suppose p has only negative occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 0) (maps p to 0 and is otherwise identical to I)

Then I ′ |= A .

Theorem 6 (Pure Atom)
Suppose variable p has only positive (respectively, only negative) occurrences
in A. Then A is satisfiable i� so is A>p (respectively, A⊥p).

32 / 34

Properties of pure atoms

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 1) (maps p to 1 and is otherwise identical to I)

Then I ′ |= A .
Dually, Suppose p has only negative occurrences in A and I |= A. Define

I ′ def
= I + (p 7→ 0) (maps p to 0 and is otherwise identical to I)

Then I ′ |= A .

Theorem 6 (Pure Atom)
Suppose variable p has only positive (respectively, only negative) occurrences
in A. Then A is satisfiable i� so is A>p (respectively, A⊥p).

32 / 34

Pure atom, example

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬ 1

→ -1

1

∧1 → -1

1 2

¬ 1

p -1

1

r -1

1 2

→1 → 1

1 2

p-1 q1

1 2

∧-1 r 1

1 2

p-1 q -1

1 2

All occurrences of p are negative, so to check for satisfiability we can replace p by⊥

33 / 34

Pure atom, example

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬ 1

→ -1

1

∧1 → -1

1 2

¬ 1

p -1

1

r -1

1 2

→1 → 1

1 2

p-1 q1

1 2

∧-1 r 1

1 2

p-1 q -1

1 2

All occurrences of p are negative, so to check for satisfiability we can replace p by⊥

33 / 34

Pure atom, example

¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

¬ 1

→ -1

1

∧1 → -1

1 2

¬ 1

p -1

1

r -1

1 2

→1 → 1

1 2

p-1 q1

1 2

∧-1 r 1

1 2

p-1 q -1

1 2

All occurrences of p are negative, so to check for satisfiability we can replace p by⊥

33 / 34

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r))

⇒

¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ → r)→ (¬⊥ → r))

⇒

¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

All occurrences of p are negative; so, for the purpose of checking satisfiability we
can replace p by⊥

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ → r)→ (¬⊥ → r))

⇒

¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

All occurrences of p are negative; so, for the purpose of checking satisfiability we
can replace p by⊥

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ → r)→ (¬⊥ → r))

⇒

¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r))

⇒

¬((⊥ → r)→ (¬⊥ → r))

⇒

¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r))

⇒

¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r))

⇒

¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r)

⇒

¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r) ⇒
¬(> → r)

⇒

¬r

⇒

¬⊥

⇒

>

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r) ⇒
¬(> → r) ⇒
¬r

⇒

¬⊥

⇒

>

All occurrences of r are negative; so, for the purpose of checking satisfiability we
can replace r by⊥

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r) ⇒
¬(> → r) ⇒
¬r ⇒
¬⊥

⇒

>

All occurrences of r are negative; so, for the purpose of checking satisfiability we
can replace r by⊥

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

Example, continued
¬((p→ q) ∧ (p ∧ q→ r)→ (¬p→ r)) ⇒
¬((⊥ → q) ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬(> ∧ (⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ ∧ q→ r)→ (¬⊥ → r)) ⇒
¬((⊥ → r)→ (¬⊥ → r)) ⇒
¬(> → (¬⊥ → r)) ⇒
¬(¬⊥ → r) ⇒
¬(> → r) ⇒
¬r ⇒
¬⊥ ⇒
>

We have shown the satisfiability of this formula deterministically (no guesses),
using only the pure atom rule

34 / 34

¬> ⇒ ⊥
> ∧ A ⇒ A
> ∨ A ⇒ >
A→ > ⇒ >
> → A ⇒ A
A↔ > ⇒ A
> ↔ A ⇒ A
¬⊥ ⇒ >
⊥ ∧ A ⇒ ⊥
⊥ ∨ A ⇒ A

A→ ⊥ ⇒ ¬A
⊥ → A ⇒ >
A↔ ⊥ ⇒ ¬A
⊥ ↔ A ⇒ ¬A

	Satisfiability Checking
	Satisfiability. Examples
	Truth Tables
	Splitting
	Positions and subformulas

