CS:4350 Logic in Computer Science

Natural Deduction for Propositional Logic

Cesare Tinelli

Spring 2022

Credits

Part of these slides are based on Chap. 2 of *Logic in Computer Science* by M. Huth and M. Ryan, Cambridge University Press, 2nd edition, 2004.

Outline

Natural Deduction

Derivation Rules Soundness and Completeness

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation rules designed to mimic the way people reason deductively

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation rules designed to mimic the way people reason deductively

Note

- "Natural" here is meant in contraposition to "mechanical / automated"
- Other derivation systems for PL are more machine-oriented and so arguably not as natural for people
- Natural deduction is actually automatable but less conveniently than other, more machine-oriented derivation systems

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation rules designed to mimic the way people reason deductively

Note

For simplicity but without loss of generality, we will

- not use \top (as $\top \equiv \neg \bot$)
- not use \leftrightarrow (as $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$)
- use \land only with two arguments (as $A \land B \land C \equiv (A \land B) \land C$)
- use \lor only with two arguments (as $A \lor B \lor C \equiv (A \lor B) \lor C$)

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation rules designed to mimic the way people reason deductively

We will write

$$\underbrace{A_1,\ldots,A_n\vdash A}_{sequent}$$

to indicate that A is derivable from A_1, \ldots, A_n using the rules of natural deduction

$$\frac{A \quad B}{A \wedge B} \wedge i \qquad \qquad \frac{A \wedge B}{A} \wedge e_1$$

$$\frac{A \wedge B}{A} \wedge e_1$$

$$\frac{A \wedge B}{B} \wedge e_2$$

$$\frac{A \quad B}{A \wedge B} \wedge i \qquad \frac{A \wedge B}{A} \wedge e_1 \qquad \frac{A \wedge B}{B} \wedge e_2$$

$$\frac{A \wedge B}{A} \wedge e_1$$

$$\frac{A \wedge B}{B} \wedge e_2$$

Given: A set S of formulas Usage

 \wedge i: for any two formulas A and B in S, add $A \wedge B$ to S

 $\wedge e_1$: for any formula of the form $A \wedge B$ in S, add A to S

 $\triangle e_2$: for any formula of the form $A \triangle B$ in S. add A to S

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$p \wedge q$$
, $r \vdash q \wedge r$

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

I like cats and (like) dogs, Jill likes birds ⊢ I like dogs and Jill likes birds

$$\frac{A \quad B}{A \land B} \land i \quad \frac{A \land B}{A} \land e_1 \quad \frac{A \land B}{B} \land e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

$$p \land q$$
 premise

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

- $p \land q$ premise
- ₂ r premise

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

- $p \wedge q$ premise
- ₂ r premise
- $_3$ q $\wedge e_2$ applied to 1

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\begin{array}{c}
p \land q, r \\
premises
\end{array}
\qquad \begin{array}{c}
q \land r \\
conclusion
\end{array}$$

- $p \wedge q$ premise
- ₂ r premise
- $_3$ q $\wedge e_2$ applied to 1
- $q \wedge r \wedge i$ applied to 3, 2

$$\frac{A \quad B}{A \wedge B} \wedge i \quad \frac{A \wedge B}{A} \wedge e_1 \quad \frac{A \wedge B}{B} \wedge e_2$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$\underbrace{p \land q, r}_{premises} \vdash \underbrace{q \land r}_{conclusion}$$

(Linear) Proof

- $p \wedge q$ premise
- ₂ r premise
- $_3$ q $\wedge e_2$ applied to 1
- $q \wedge r \wedge i$ applied to 3, 2

Proof tree

$$\frac{p \wedge q}{q} \wedge e_2 \over q \wedge r} \wedge$$

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

$$\frac{A}{\neg \neg A} \neg \neg i \qquad \frac{\neg \neg A}{A} \neg \neg e$$

Example Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

premise
$$p \rightarrow q(q \land r)$$
 premise

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

premise
$$p \rightarrow q \wedge r$$
 premise

$$_3$$
 $q \wedge r$ $\neg \neg e 2$

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

premise
$$p \rightarrow q \wedge r$$
 premise $p \rightarrow q \wedge r$ $p \rightarrow q \wedge r$

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

premise
$$premise$$

$$q \wedge r$$

$$r \wedge e_2$$

$$r \wedge e_2$$

$$r \wedge e_3$$

$$\frac{A}{\neg \neg A}$$
 $\neg \neg i$ $\frac{\neg \neg A}{A}$ $\neg \neg e$

Example Prove
$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

6 $\neg \neg p \wedge r \wedge i 5, 4$

$$\frac{A \qquad A \to B}{B} \to e$$

$$\frac{A \qquad A \to B}{B} \to e$$

$$\frac{A \qquad A \to B}{B} \to e$$

- p premise
- $p \rightarrow q$ premise $q \rightarrow r$ premise

$$\frac{A \qquad A \to B}{B} \to e$$

$$\begin{array}{ccc} & p & & \text{premise} \\ & p \rightarrow q & \text{premise} \\ & q \rightarrow r & \text{premise} \end{array}$$

$$_4$$
 q \rightarrow e 1,2

$$\frac{A \qquad A \to B}{B} \to \mathrm{e}$$

$$A \longrightarrow B \longrightarrow \Theta$$

$$\frac{A \qquad A \to B}{B} \to e \qquad \qquad \frac{A \to B \qquad \neg B}{\neg A} \text{ MT}$$

$$\frac{A \longrightarrow B}{B} \rightarrow \epsilon$$

$$\frac{A \qquad A \to B}{B} \to e \qquad \frac{A \to B \qquad \neg B}{\neg A} \text{ MT}$$

- \rightarrow e is also known as *Modus Ponens*
- MT is known as Modus Tollens

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$\frac{\begin{vmatrix} A \\ \vdots \\ B \end{vmatrix}}{A \to B} \to i$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

If x equals 10 then x is positive \vdash If x is not positive then x does not equal 10

$$\frac{A \to B \quad \neg B}{\neg A} \quad \mathsf{MT}$$

$$\begin{array}{c|c}
A \\
\vdots \\
B
\end{array}$$

$$A \to B \to i$$

Example Prove
$$p \rightarrow q \vdash \neg q \rightarrow \neg p$$

 $p \rightarrow q$ premise

$$\frac{A \to B \quad \neg B}{\neg A} \quad \mathsf{MT}$$

$$\begin{array}{c}
A \\
\vdots \\
B
\end{array}$$

$$A \to B \to i$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

- $p \rightarrow q$ premise assumption

$$\frac{A \to B \quad \neg B}{\neg A} \quad \mathsf{MT}$$

$$\begin{array}{c}
A \\
\vdots \\
B
\end{array}$$

$$A \to B \to i$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

 $p \rightarrow q$ premise $p \rightarrow q$ premise $p \rightarrow q$ assumption $p \rightarrow q$ MT 1,2

\rightarrow introduction rule

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

1	$p \rightarrow q$	premise
2	$\neg q$	assumption
3	$\neg p$	MT 1,2

\rightarrow introduction rule

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

1	$p \rightarrow q$	premise
2	$\neg q$	assumption
3	$\neg p$	MT 1,2
4	$\neg q \rightarrow \neg p$	ightarrowi 2-3

Prove $\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

 $q \rightarrow r$

assumption

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

- $_1$ $q \rightarrow r$
- $_2$ $\neg q \rightarrow \neg p$

assumption assumption

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

- $a \rightarrow b$
- $_2$ $\neg q \rightarrow \neg p$
 - 3 P

assumption

assumption

assumption

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

 $\frac{A \quad A \to B}{B} \to e$ $\frac{A \to B \quad \neg B}{\neg A} \quad MT$ $\frac{A}{B} \to B \quad \rightarrow i$

- $_1$ $q \rightarrow r$
- $_2$ $\neg q \rightarrow \neg p$
- ₃ p
- $_4$ $\neg \neg p$

assumption

assumption

assumption

¬¬i 3

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

 $\frac{A \quad A \to B}{B} \to e$ $\frac{A \to B \quad \neg B}{\neg A} \quad MT$ $\frac{A}{B} \to B \quad \rightarrow i$

- $_1$ $q \rightarrow r$
- $_2$ $\neg q \rightarrow \neg p$
 - p
- $_4$ $\neg \neg p$
- 5 779

assumption

assumption

assumption

 $\neg \neg i$ 3

MT 2,4

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\frac{A \quad A \to B}{B} \to e$$

$$\frac{A \to B \quad \neg B}{\neg A} \quad MT$$

$$\frac{A}{\vdots}$$

$$\vdots$$

$$B$$

$$A \to B$$

- $q \rightarrow r$
- $_2$ $\neg q \rightarrow \neg p$
 - p
- $_4$ $\neg \neg p$
- $5 \neg \neg q$
- 6 **C**

assumption

assumption

assumption

 $\neg \neg i$ 3

MT 2,4

¬¬е 5

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\frac{A \quad A \to B}{B} \to e \qquad \qquad \begin{vmatrix} A \\ \vdots \\ B \\ \neg A \end{vmatrix} \to i$$

$$\frac{A \to B \quad \neg B}{\neg A} \quad \mathsf{MT} \qquad \frac{B}{A \to B} \to i$$

1 $q \rightarrow r$ 2 $\neg q \rightarrow \neg p$ 3 p4 $\neg \neg p$ 5 $\neg \neg q$ 6 q7 r assumption assumption assumption ¬¬i 3 MT 2,4 ¬¬e 5 \rightarrow e 1,6

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\frac{A \quad A \to B}{B} \to e \qquad \qquad \begin{vmatrix} A \\ \vdots \\ B \end{vmatrix} \\
\xrightarrow{\neg A} MT \qquad \frac{B}{A \to B} \to i$$

1	$q \rightarrow r$	assumption
2	$\neg q ightarrow eg p$	assumption
3	p	assumption
4	$\neg\neg p$	¬¬і з
5	$\neg \neg q$	MT 2,4
6	q	¬¬e 5
7	r	→e 1,6

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\frac{A \quad A \to B}{B} \to e \qquad \qquad \begin{vmatrix} A \\ \vdots \\ B \end{vmatrix} \\
\xrightarrow{-A} MT \qquad \frac{B}{A \to B} \to i$$

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

$$\begin{array}{c}
A & A \to B \\
B & \\
A \to B & \neg B \\
\hline
 & \neg A
\end{array}$$
MT
$$\begin{array}{c}
A \\
\vdots \\
B \\
A \to B
\end{array}$$
 $\rightarrow i$

1	q o r	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg\neg p$	¬¬і з
5	$\neg \neg q$	MT 2,4
6	q	¬¬е 5
7	r	→e 1,6
8	$p \rightarrow r$	→і 3-7

Prove
$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

1	$q \rightarrow r$	assumption
2	$\neg q ightarrow eg p$	assumption
3	p	assumption
4	$\neg\neg p$	¬¬і з
5	$\neg \neg q$	MT 2,4
6	q	¬¬е 5
7	r	→e 1,6
8	p o r	→i 3-7
9	$(\neg q o \neg p) o (p o r)$	ightarrowi 2-8

Prove $\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$

$$\frac{A \quad A \to B}{B} \to e \qquad \qquad \begin{vmatrix} A \\ \vdots \\ B \end{vmatrix} \\
\xrightarrow{\neg A} MT \qquad \frac{B}{A \to B} \to i$$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg\neg p$	¬¬і з
5	$\neg \neg q$	MT 2,4
6	q	¬¬е 5
7	r	→e 1,6
8	$p \rightarrow r$	→i 3-7
9	$(\neg q \to \neg p) \to (p \to r)$	→i 2-8

Prove $\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg\neg p$	¬¬і з
5	$\neg \neg q$	MT 2,4
6	q	¬¬e 5
7	r	→e 1,6
8	p o r	→i 3-7
9	$(\neg q o \neg p) o (p o r)$	→i 2-8
10	$(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q))$	→i 1-9

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \vee_{e}$$

Example 1 Prove $p \lor q \vdash q \lor p$

 $p \lor q$ premise

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \qquad \qquad \vee_{i_3}$$

- $p \lor q$ premise
- ₂ *p* assumption

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \qquad \qquad C$$

- $p \lor q$ premise
- ₂ *p* assumption
- $_3$ $q \lor p \lor i_2 2$

$$p \lor q$$
 premise
$$\begin{array}{cccc} & p \lor q & \text{premise} \\ & 2 & p & \text{assumption} \\ & 3 & q \lor p & \lor i_2 & 2 \end{array}$$

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \vee_{i_3}$$

Example 2 Prove $p \lor q$, $p \to r$, $q \to r \vdash r$

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \qquad \vee_{e}$$

Example 2 Prove
$$p \lor q$$
, $p \to r$, $q \to r \vdash r$

- $p \lor q$ premise
- $_2$ $p \rightarrow r$ premise
- $_3$ $q \rightarrow r$ premise

$$\frac{A}{A \vee B} \vee i_1 \qquad \frac{B}{A \vee B} \vee i_2 \qquad \frac{A \vee B}{C} \vee i_2$$

Example 2 Prove $p \lor q$, $p \to r$, $q \to r \vdash r$

$$\frac{A}{A \vee B} \vee_{i_1} \qquad \frac{B}{A \vee B} \vee_{i_2} \qquad \frac{A \vee B}{C} \vee_{i_2} \qquad \vee_{i_3}$$

Example 2 Prove $p \lor q$, $p \to r$, $q \to r \vdash r$

$$\frac{L}{A}$$
 \perp e $\frac{A}{\Box}$

$$\frac{\perp}{A}$$
 \perp e $\frac{A}{\perp}$ \tag{-e}

Example Prove
$$\neg p \lor q \vdash p \rightarrow q$$

I will not need a ride; otherwise, I will tell you ⊢ If I need a ride I will tell you

$$\frac{\bot}{A}$$
 \bot e $\frac{A}{\bot}$ \neg e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

premise

$$\frac{\bot}{4}$$
 \bot e $\frac{A}{\bot}$ $\neg e$

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $\neg p \lor q$ $2 \neg p$ assumption

premise

$$\frac{\bot}{A}$$
 \bot e $\frac{A}{\bot}$ \neg e

premise

Example Prove $\neg p \lor q \vdash p \rightarrow q$

$$\neg p \lor q$$

 $_2$ $\neg p$ assumption $_3$ p assumption

$$\frac{\bot}{A}$$
 \bot e $\frac{A}{\bot}$ \neg e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $_{1}$ $\neg p \lor q$

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $\neg p \lor q$

$$\frac{\perp}{\Lambda}$$
 \perp e

$$\frac{A}{\bot}$$
 $\neg \epsilon$

Example Prove $\neg p \lor q \vdash p \rightarrow q$

$$\neg p \lor q$$

2	$\neg p$	assumption
3	p	assumption
4	\perp	¬e 3,2
5	9	⊥е 4

$$\frac{\bot}{A}$$
 \bot e $\frac{A}{\bot}$ \neg e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $_{1}$ $\neg p \lor q$

2	$\neg p$	assumption
3	р	assumption
4	\perp	¬e 3,2
5	q	⊥е 4
6	$p \rightarrow q$	→і 3-5

$$\frac{\perp}{A}$$
 \perp e $\frac{A}{\perp}$ \neg e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $_{1} \neg p \lor q$

2 ¬p assumption

premise

assumption

_	P	
3	р	assumptio
4	\perp	¬е 3,2
5	9	⊥е 4
6	$p \rightarrow a$	→i 3-5

$$\frac{\perp}{A}$$
 \(\text{Le} \) $\frac{A}{\perp}$ \(\sqrt{A} \)

Example Prove $\neg p \lor q \vdash p \rightarrow q$

1	$\neg p \lor q$			premise
2	$\neg p$	assumption	q	assumption
3	р	assumption	p	assumption
4	\perp	¬е 3,2		
5	q	⊥е 4		
6	p o q	→i 3-5		

$$\frac{\perp}{A}$$
 \perp e $\frac{A}{\perp}$ \neg e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

1	$\neg \rho \lor q$			premise
2	$\neg p$	assumption	q	assumption
3	р	assumption	p	assumption
4	\perp	¬e 3,2	q	сору 2
5	9	⊥е 4		
6	$p \rightarrow q$	→i 3-5		

$$\frac{\perp}{A}$$
 \(\text{Le} \) $\frac{A}{\perp}$ \(\sqrt{\pi} \)

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $\neg p \lor q$

9	assamption
p	assumption
q	сору 2

$$\frac{\perp}{A}$$
 \(\perp \) \(\frac{A}{\pm} \) $\emptyseta \)$

Example Prove $\neg p \lor q \vdash p \rightarrow q$

 $\neg p \lor q$

2	$\neg p$	assumption
3	р	assumption
4	\perp	¬е 3,2
5	q	⊥е 4
6	p o a	→i 3-5

q	assumption
p	assumption
q	сору 2
$p \rightarrow q$	ightarrowi 3-4

$$\frac{\perp}{\Delta}$$
 $\perp e$

$$\frac{A}{---}$$
 ¬e

Example Prove $\neg p \lor q \vdash p \rightarrow q$

$$\neg p \lor q$$

2	$\neg p$	assumption
3	р	assumption
4	\perp	¬е 3,2
5	q	⊥e 4
6	$p \rightarrow q$	→i 3-5

q	assumption
p	assumption
q	сору 2
$p \rightarrow q$	→i 3-4

 $_{7}$ p
ightarrow q ee 1,2-6

Example 1 Prove
$$p \rightarrow q$$
, $p \rightarrow \neg q \vdash \neg p$

- $p \rightarrow q$ premise
- $p \rightarrow \neg q$ premise

Example 1 Prove
$$p \rightarrow q$$
, $p \rightarrow \neg q \vdash \neg p$

- $p \rightarrow q$ premise
- $_{2}$ $p \rightarrow \neg q$ premise
- ₃ *p* assumption

- p o q premise
 - $_{2}$ $p
 ightarrow \neg q$ premise
- ₃ *p* assumption
- $_4$ q \rightarrow e 1,3

$$p \rightarrow q$$
 premise
 $p \rightarrow \neg q$ premise
 $p \rightarrow \neg q$ premise
 $p \rightarrow q$ assumption
 $p \rightarrow q$ $p \rightarrow q$ $p \rightarrow q$ assumption

$$p \rightarrow q$$
 premise
 $p \rightarrow q$ premise
 $p \rightarrow \neg q$ premise
 $p \rightarrow \neg q$ premise
 $p \rightarrow q$ assumption
 $p \rightarrow q$ assumption

$$p \rightarrow q$$
 premise $p \rightarrow \neg q$ premise

3	р	assumption
4	q	ightarrowe 1,3
5	$\neg q$	ightarrowe 2,3
6	\perp	¬e 4,5

$$\begin{array}{cccc}
 & p \rightarrow q & \text{premise} \\
 & p \rightarrow \neg q & \text{premise} \\
 & p & \text{assumption} \\
 & q & \rightarrow e \ 1, 3 \\
 & 5 & \neg q & \rightarrow e \ 2, 3 \\
 & 6 & \bot & \neg e \ 4, 5 \\
 & 7 & \neg p & \neg i \ 2-4
\end{array}$$

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

 $_{\scriptscriptstyle 1}$ $\neg p \rightarrow \bot$ premise

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

- $\neg p \rightarrow \bot$ premise
- ₂ ¬p assumption

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

- $\neg p \rightarrow \bot$ premise
- 2 ¬p assumption
- $_3$ \perp \rightarrow e 1,2

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

1	7 -	premise
2	$\neg p$	assumption
3	\perp	ightarrowe 1,2

 $\neg n \rightarrow \bot$ premise

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

Example 2 Prove $\neg p \rightarrow \bot \vdash p$

$$\begin{array}{ccc}
 & \neg p \rightarrow \bot & \text{premise} \\
\hline
 & 2 & \neg p & \text{assumption} \\
 & 3 & \bot & \rightarrow e & 1, 2 \\
\hline
 & 4 & \neg \neg p & \neg i & 2-3 \\
\hline
 & 5 & p & \neg \neg e & 4
\end{array}$$

PBC can be simulated

Example 3 Prove $\vdash p \lor \neg p$

Example 3 Prove $\vdash p \lor \neg p$ $_1 \neg (p \lor \neg p)$ assumption

₂ p assumption

Example 3 Prove
$$\vdash p \lor \neg p$$
 1 $\neg (p \lor \neg p)$ assumption

$$\neg (p \lor \neg p)$$
 assumption

Example 3 Prove
$$\vdash p \lor \neg p$$

Example 3 Prove
$$\vdash p \lor \neg p$$
 1 $\neg (p \lor \neg p)$ assumption

$$_3$$
 $p \lor \neg p$ $\lor i_1$ 2
 $_4$ \bot $\neg e$ 3,1

Example 3 Prove $\vdash p \lor \neg p$ $\neg (p \lor \neg p)$ assumption

Example 3 Prove $\vdash p \lor \neg p$ $_1 \neg (p \lor \neg p)$ assumption

 $\neg (p \lor \neg p)$ assumption p assumption $p \lor \neg p$ $\lor i_1 2$ $p \lor \neg p$ $\Rightarrow i_2 1$

Example 3 Prove
$$\vdash p \lor \neg p$$
 $_1 \neg (p \lor \neg p)$ assumption

$$\neg (p \lor \neg p)$$
 assumption

Example 3 Prove
$$\vdash p \lor \neg p$$
 $_1 \neg (p \lor \neg p)$ assumption

$$\neg (p \lor \neg p)$$
 assumption

$$6 \quad p \lor \neg p \qquad \lor i_2 \ 5$$

LEM

Example 3 Prove
$$\vdash p \lor \neg p$$

: _____ PBC

LEN

Example 3 Prove $\vdash p \lor \neg p$

 $p \lor \neg p$ PBC 7

LEN

Example 3 Prove $\vdash p \lor \neg p$

LEM can be simulated too

PBC and LEM are derived rules

PBC and LEM are derived rules

MT and $\neg \neg i$ are derived rules too

Soundness of natural deduction

We will prove a crucial property of natural deduction:

Any formula A derived from a set S of premises is a logical consequence of S

Theorem 1 (Soundness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \vdash A$, we have that $A_1, \ldots, A_n \models A$.

For the proof of the theorem, we will rely on this lemma

Lemma 2

For all formulas A_1, \ldots, A_n , A and B,

- 1. $A_1, \ldots, A_n, A \models B \text{ iff } A_1, \ldots, A_n \models A \rightarrow B$
- 2. $A_1, \ldots, A_n \models B \text{ iff } A_1, \ldots, A_n, \neg B \models \bot$

Soundness of natural deduction

We will prove a crucial property of natural deduction:

Any formula A derived from a set S of premises is a logical consequence of S

Theorem 1 (Soundness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \vdash A$, we have that $A_1, \ldots, A_n \models A$.

For the proof of the theorem, we will rely on this lemma:

Lemma 2

For all formulas A_1, \ldots, A_n , A and B,

- 1. $A_1, \ldots, A_n, A \models B \text{ iff } A_1, \ldots, A_n \models A \rightarrow B$
- 2. $A_1, \ldots, A_n \models B \text{ iff } A_1, \ldots, A_n, \neg B \models \bot$

Soundness of natural deduction

We will prove a crucial property of natural deduction:

Any formula A derived from a set S of premises is a logical consequence of S

Theorem 1 (Soundness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \vdash A$, we have that $A_1, \ldots, A_n \models A$.

For the proof of the theorem, we will rely on this lemma:

Lemma 2

For all formulas A_1, \ldots, A_n, A and B,

- 1. $A_1, \ldots, A_n, A \models B$ iff $A_1, \ldots, A_n \models A \rightarrow B$
- **2.** $A_1, \ldots, A_n \models B$ iff $A_1, \ldots, A_n, \neg B \models \bot$

The proof of Theorem 1 is by induction on proof length

The *length* of a natural deduction proof is the number of lines in it

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas

Assume, without loss of generality, that A is the last formula in the sequence

By induction on the length l of Π .

(Base case: l = n

Then $A = A_i$ for some $i \in \{1, \ldots, n\}$. Trivially, $A_1, \ldots, A_n \models A_i$

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$)

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas.

Assume, without loss of generality, that A is the last formula in the sequence

By induction on the length l of Π .

(Base case: l = n)

Then $A=A_i$ for some $i\in\{1,\ldots,n\}$. Trivially, $A_1,\ldots,A_n\models A_i$.

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$)

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas.

Assume, without loss of generality, that *A* is the last formula in the sequence.

By induction on the length l of Π .

(Base case: l = n)

Then $A = A_i$ for some $i \in \{1, \ldots, n\}$. Trivially, $A_1, \ldots, A_n \models A_i$.

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$)

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas.

Assume, without loss of generality, that A is the last formula in the sequence.

By induction on the length l of Π .

(Base case: l = n

Then $A = A_i$ for some $i \in \{1, \ldots, n\}$. Trivially, $A_1, \ldots, A_n \models A_i$

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$)

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas.

Assume, without loss of generality, that *A* is the last formula in the sequence.

By induction on the length l of Π .

(Base case: l = n)

Then $A=A_i$ for some $i\in\{1,\ldots,n\}$. Trivially, $A_1,\ldots,A_n\models A_i$.

Proof of Theorem 1. (if $A_1, \ldots, A_n \vdash A$ then $A_1, \ldots, A_n \models A$)

Let Π be the a proof of $A_1, \ldots, A_n \vdash A$, seen as a sequence of formulas.

Assume, without loss of generality, that *A* is the last formula in the sequence.

By induction on the length l of Π .

(Base case: l = n)

Then $A = A_i$ for some $i \in \{1, ..., n\}$. Trivially, $A_1, ..., A_n \models A_i$.

(Inductive step: l > n)

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 (Ae_1) If A was derived by Ae_1 , then Π looks like:

$$A_1$$
 premise \vdots $A \wedge B \dots$ \vdots $A \wedge A \wedge B \dots$

for some formula B

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length < l.

(Inductive step: l > n)

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 (Ae_1) If A was derived by Ae_1 , then Π looks like:

$$A_1$$
 premise \vdots $A \wedge B \dots$ \vdots $A \wedge A_{e_1}$

for some formula B

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length < l.

```
(Inductive step: l > n)
```

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 $(\wedge e_1)$ If A was derived by $\wedge e_1$, then \square looks like:

$$A_1$$
 premise \vdots $A \wedge B$... \vdots $A \wedge e_1$

for some formula B.

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length < l. Then, by inductive hypothesis, $A_1, \ldots, A_n \models A \wedge B$. Hence, $A_1, \ldots, A_n \models A$.

```
(Inductive step: l > n)
```

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 $(\wedge e_1)$ If A was derived by $\wedge e_1$, then Π looks like:

$$A_1$$
 premise \vdots $A \wedge B$... \vdots $A \wedge e_1$

for some formula B.

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length < l.

```
(Inductive step: l > n)
```

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 $(\wedge e_1)$ If A was derived by $\wedge e_1$, then \square looks like:

$$A_1$$
 premise \vdots $A \wedge B$... \vdots $A \wedge e_1$

for some formula B.

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length < l.

```
(Inductive step: l > n)
```

Assume by induction that the theorem holds for all proofs of length l' < l.

The proof depends on the final rule used to derive A.

 $(\wedge e_1)$ If A was derived by $\wedge e_1$, then Π looks like:

$$A_1$$
 premise \vdots $A \wedge B$... \vdots $A \wedge e_1$

for some formula B.

Note that the subsequence of Π from A_1 to $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ is a proof of $A \wedge B$ of length $A \wedge B$ is a proof of $A \wedge B$ is a pro

(∧i)

(\wedge i) Then A has the form $B_1 \wedge B_2$

(\wedge i) Then A has the form $B_1 \wedge B_2$ and Π looks like:

A_1	premise		A_1	premise
:			:	
B_1			B_2	
:		or	:	
B_2			B_1	
:			:	
$B_1 \wedge B_2$	$\wedge i$		$B_1 \wedge B_2$	$\wedge i$

(\wedge i) Then A has the form $B_1 \wedge B_2$ and Π looks like:

This implies that Π contains a (shorter) proof of B_1 and of B_2 .

(\wedge i) Then A has the form $B_1 \wedge B_2$ and Π looks like:

A_1	premise		A_1	premise
:			:	
B_1			B_2	
:		or	:	
B_2			B_1	
:			:	
$B_1 \wedge B_2$	∧i		$B_1 \wedge B_2$	$\wedge i$

This implies that Π contains a (shorter) proof of B_1 and of B_2 .

Then, by inductive hypothesis, $A_1, \ldots, A_n \models B_i$ for i = 1, 2.

(\wedge i) Then *A* has the form $B_1 \wedge B_2$ and Π looks like:

A_1	premise		A_1	premise
:			:	
B_1			B_2	
:		or	:	
B_2			B_1	
:			:	
$B_1 \wedge B_2$	$\wedge i$		$B_1 \wedge B_2$	$\wedge i$

This implies that Π contains a (shorter) proof of B_1 and of B_2 .

Then, by inductive hypothesis, $A_1, \ldots, A_n \models B_i$ for i = 1, 2.

Hence, $A_1, \ldots, A_n \models B_1 \wedge B_2$.

(→i)

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

□ looks like:

```
<sup>1</sup> A<sub>1</sub> premise
```

2

$$_3$$
 B_1 assumption

4:

$$_5$$
 B_2 ...

6
$$B_1 \rightarrow B_2 \rightarrow i$$

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

□ looks like:

1	A_1	premise
2	:	
3	B ₁	assumption
4	:	
5	B ₂	
6	$B_1 \rightarrow B_2$	\rightarrow i

but then

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

□ looks like:	1	A_1	premise	but then	1	A_1	premise
	2	:			2	:	
	3	B_1	assumption		3	B_1	premise
	4	:			4	:	
	5	B_2			5	B_2	
	6	$B_1 \rightarrow B_2$	\rightarrow i				

is a proof of B_2 from A_1, \ldots, A_n, B_1 that is shorter than Π .

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

□ looks like:	1	A_1	premise	but then	1	A_1	premise
	2	:			2	:	
	3	B ₁	assumption		3	B_1	premise
	4	:			4	:	
	5	B_2			5	B_2	
	6	$B_1 \rightarrow B_2$	\rightarrow i				

is a proof of B_2 from A_1, \ldots, A_n, B_1 that is shorter than Π .

Then, by inductive hypothesis, $A_1, \ldots, A_n, B_1 \models B_2$.

 $(\rightarrow i)$ Then A has the form $B_1 \rightarrow B_2$ and

□ looks like:	1	A_1	premise	but then	1	A_1	premise
	2	:			2	:	
	3	B ₁	assumption		3	B_1	premise
	4	:			4	:	
	5	B ₂			5	B_2	
	6	$B_1 \rightarrow B_2$	\rightarrow i				

is a proof of B_2 from A_1, \ldots, A_n, B_1 that is shorter than Π .

Then, by inductive hypothesis, $A_1, \ldots, A_n, B_1 \models B_2$.

It follows from Lemma 2(1) that $A_1, \ldots, A_n \models B_1 \rightarrow B_2$.

(¬i)

 $(\neg i)$ Then A has the form $\neg B$ and

 $(\neg i)$ Then A has the form $\neg B$ and

 Π looks like:

1 A_1 premise
2 :

3 B assumption
4 :
5 \bot ...

 $(\neg i)$ Then A has the form $\neg B$ and

 Π looks like: 1 A_1 premise 2 : 3 B assumption 4 : 5 \bot ...

but then

 $(\neg i)$ Then A has the form $\neg B$ and

is a proof of \perp from A_1, \ldots, A_n, B that is shorter than \square .

 $(\neg i)$ Then A has the form $\neg B$ and

is a proof of \perp from A_1, \ldots, A_n, B that is shorter than \square .

Then, by inductive hypothesis, $A_1, \ldots, A_n, B \models \bot$.

 $(\neg i)$ Then A has the form $\neg B$ and

is a proof of \perp from A_1, \ldots, A_n, B that is shorter than \square .

Then, by inductive hypothesis, $A_1, \ldots, A_n, B \models \bot$.

It follows from Lemma 2 that $A_1, \ldots, A_n \models \neg B$.

```
(\wedge i_2) Analogous to \wedge i_2 case.
(\vee i_1) Exercise.
(\vee i_1) Exercise.
(∨e) Exercise.
(\rightarrow e) Exercise.
(\neg e) Exercise.
(\perp e) Exercise.
(\neg \neg e) Exercise.
```

We will now prove another important property of natural deduction:

Any logical consequence A of a set S of formulas has a proof with premises S

Theorem 3 (Completeness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \models A$, we have that $A_1, \ldots, A_n \models A$.

To prove this theorem, we will rely on several intermediate results

We will now prove another important property of natural deduction:

Any logical consequence A of a set S of formulas has a proof with premises S

Theorem 3 (Completeness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \models A$, we have that $A_1, \ldots, A_n \vdash A$.

To prove this theorem, we will rely on several intermediate results

We will now prove another important property of natural deduction:

Any logical consequence A of a set S of formulas has a proof with premises S

Theorem 3 (Completeness)

For all formulas A_1, \ldots, A_n and A such that $A_1, \ldots, A_n \models A$, we have that $A_1, \ldots, A_n \vdash A$.

To prove this theorem, we will rely on several intermediate results

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A$ implies $\models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- **2.** $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- **2.** $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Proof.

By induction on n in both cases (see Huth & Ryan).

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

Proof of Theorem 3 $(A_1, \ldots, A_n \models A \text{ implies } A_1, \ldots, A_n \vdash A)$.

Assume $A_1, \ldots, A_n \models A$, prove $A_1, A_2, \ldots, A_n \vdash A$.

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

Proof of Theorem 3 $(A_1, \ldots, A_n \models A \text{ implies } A_1, \ldots, A_n \vdash A)$.

Assume $A_1, \ldots, A_n \models A$, prove $A_1, A_2, \ldots, A_n \vdash A$.

By Lemma 4(1), \models $A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$.

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

Proof of Theorem 3 $(A_1, \ldots, A_n \models A \text{ implies } A_1, \ldots, A_n \vdash A)$.

Assume $A_1, \ldots, A_n \models A$, prove $A_1, A_2, \ldots, A_n \vdash A$.

By Lemma 4(1), \models $A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$.

By Theorem 5, \vdash $A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$.

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

Proof of Theorem 3 $(A_1, \ldots, A_n \models A \text{ implies } A_1, \ldots, A_n \vdash A)$.

Assume $A_1, \ldots, A_n \models A$, prove $A_1, A_2, \ldots, A_n \vdash A$.

By Lemma 4(1), \models $A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$.

By Theorem 5, $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$.

By Lemma 4(2), $A_1, A_2, ..., A_n \vdash A$.

Lemma 4

For all formulas A_1, \ldots, A_n and A the following holds:

- 1. $A_1, A_2, \ldots, A_n \models A \text{ implies } \models A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$
- 2. $\vdash A_1 \rightarrow (A_2 \rightarrow (\cdots (A_n \rightarrow A) \cdots))$ implies $A_1, A_2, \dots, A_n \vdash A$

Theorem 5 (Completeness for validity)

All valid formulas B are provable in natural deduction: if \models B then \vdash B.

So we are left with proving Theorem 5

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \ge 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A

(Base case)

If *A* is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$. If *A* is \bot then n = 0 and $\mathcal{I} \not\models A$. We can prove $\neg \bot$ from no premises by $\neg i$.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A.

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \ge 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A.

(Base case)

If A is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$. If A is \bot then n = 0 and $\mathcal{I} \nvDash A$. We can prove $\neg \bot$ from no premises by $\neg i$.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A.

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \ge 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A.

(Base case)

If *A* is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$.

If A is \perp then n=0 and $\mathcal{I} \not\models A$. We can prove $\neg \perp$ from no premises by $\neg i$.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A.

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \geq 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A.

(Base case)

If A is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$. If A is \bot then n=0 and $\mathcal{I} \not\models A$. We can prove $\neg\bot$ from no premises by \neg i.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \geq 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A.

(Base case)

If *A* is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$. If *A* is \bot then n = 0 and $\mathcal{I} \nvDash A$. We can prove $\neg \bot$ from no premises by $\neg i$.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A.

Lemma 6

Let A be a formula over variables p_1, \ldots, p_n with $n \geq 0$ and let \mathcal{I} be an interpretation. Let $\hat{p}_i = p$ if $\mathcal{I} \models p$ and $\hat{p}_i = \neg p$ otherwise. Then, $\hat{p}_1, \ldots, \hat{p}_n \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg A$ if $\mathcal{I} \not\models A$.

Proof of Lemma 6. By structural induction on A.

(Base case)

If A is just a variable, say p_1 , then it is immediate that $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$.

If A is \bot then n=0 and $\mathcal{I}\not\models A$. We can prove $\neg\bot$ from no premises by $\neg i$.

(Inductive Step) If A is not a variable or \bot , assume the result holds for all proper subformulas of A.

We reason by cases on the form of A.

Proof of Lemma 6. ($\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

 $(A = \neg B)$ (that is, suppose A has the form $\neg B$)

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B$. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg B$.
- If I ⊭ A then I ⊨ B. By inductive hypothesis, p̂₁,..., p̂_n ⊢ B.
 Take a proof of B from p̂₁,..., p̂_n and apply ¬¬i to B.
 The resulting proof is a proof of ¬A.

Proof of Lemma 6. $(\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A)$ (continued)

 $(A = \neg B)$ (that is, suppose A has the form $\neg B$)

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B$. By inductive hypothesis, $\hat{p}_1, \dots, \hat{p}_n \vdash \neg B$.
- If $\mathcal{I} \not\models A$ then $\mathcal{I} \models B$. By inductive hypothesis, $\hat{p}_1, \dots, \hat{p}_n \vdash B$. Take a proof of B from $\hat{p}_1, \dots, \hat{p}_n$ and apply $\neg \neg i$ to B. The resulting proof is a proof of $\neg A$.

Proof of Lemma 6. ($\hat{p}_1, \ldots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \ldots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

 $(A = \neg B)$ (that is, suppose A has the form $\neg B$)

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B$. By inductive hypothesis, $\hat{p}_1, \dots, \hat{p}_n \vdash \neg B$.
- If $\mathcal{I} \not\models A$ then $\mathcal{I} \models B$. By inductive hypothesis, $\hat{p}_1, \dots, \hat{p}_n \vdash B$. Take a proof of B from $\hat{p}_1, \dots, \hat{p}_n$ and apply $\neg \neg i$ to B. The resulting proof is a proof of $\neg A$.

Proof of Lemma 6. $(\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A)$ (continued)

$$(A = B_1 \wedge B_2)$$

Proof of Lemma 6. ($\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

$$(A = B_1 \wedge B_2)$$

• If $\mathcal{I} \models A$ then $\mathcal{I} \models B_1$ and $\mathcal{I} \models B_2$. By inductive hypothesis, $\hat{p}_1, \dots, \hat{p}_n \vdash B_1$ and $\hat{p}_1, \dots, \hat{p}_n \vdash B_2$.

A proof of A from $\hat{p}_1, \ldots, \hat{p}_n$ is obtained by chaining a proof of B_1 and a proof of B_2 and applying \wedge i to B_1 and B_2 .

Proof of Lemma 6. $(\hat{p}_1, ..., \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, ..., \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A)$ (continued)

$$(A = B_1 \wedge B_2)$$

If \(\mu \) \(\mu \) A then \(\mu \) \(\mu \) B_k for some \(k \in \) {1, 2}. Say \(k = 1 \) (the other case is similar).
 By inductive hypothesis, \(\hat{\rho}_1, \ldots, \hat{\rho}_n \) ⊢ \(B_1. \)
 A proof of \(\sigma_B \) can be extended to a proof of \(\sigma_A \) as follows:

$$\begin{array}{cccc}
 & \vdots & & & \\
 & 2 & \neg B_1 & & \\
 & 3 & B_1 \wedge B_2 & \text{assumption} \\
 & 4 & B_1 & & \wedge e_1 3 \\
 & 5 & \bot & & \bot i 4, 2 \\
 & 6 & \neg (B_1 \wedge B_2) & \bot i 3, 5
\end{array}$$

```
Proof of Lemma 6. (\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A) (continued)
```

$$(A = B_1 \vee B_2)$$

Proof of Lemma 6. $(\hat{p}_1, ..., \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, ..., \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A)$ (continued)

$$(A = B_1 \vee B_2)$$

If \(\mathcal{I} \) |= \(A\) then \(\mathcal{I} \) |= \(B_k\) for some \(k \) ∈ \(\{1,2 \) .
 A proof of \(A\) from \(\hat{p}_1, \ldots, \hat{p}_n\) is obtained from a proof of \(B_k\) by applying \(\neq i_k\) to \(B_k\) to get \(B_1 \lor B_2\).

Proof of Lemma 6. $(\hat{p}_1, ..., \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, ..., \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A)$ (continued)

$$(A = B_1 \vee B_2)$$

If \(\mu \models A\) then \(\mu \models B_1\) and \(\mu \models B_2\).
 A proof of ¬A from \(\hat{\rho}_1, \ldots, \hat{\rho}_n\) is obtained by chaining a proof of ¬B₁ and a proof of ¬B₂ and continuing as follows:

Proof of Lemma 6. ($\hat{p}_1, \ldots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \ldots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

$$(A = B_1 \to B_2)$$

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B_1$ or $\mathcal{I} \models B_2$. (exercise)
- If $\mathcal{I} \not\models A$ then $\mathcal{I} \models B_1$ and $\mathcal{I} \not\models B_2$. (exercise)

Proof of Lemma 6. ($\hat{p}_1, \ldots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \ldots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

$$(A = B_1 \to B_2)$$

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B_1$ or $\mathcal{I} \models B_2$. (exercise)
- If $\mathcal{I} \not\models A$ then $\mathcal{I} \models B_1$ and $\mathcal{I} \not\models B_2$. (exercise)

Proof of Lemma 6. ($\hat{p}_1, \dots, \hat{p}_n \vdash A \text{ if } \mathcal{I} \models A \text{ and } \hat{p}_1, \dots, \hat{p}_n \vdash \neg A \text{ if } \mathcal{I} \not\models A$) (continued)

$$(A = B_1 \to B_2)$$

- If $\mathcal{I} \models A$ then $\mathcal{I} \not\models B_1$ or $\mathcal{I} \models B_2$. (exercise)
- If $\mathcal{I} \not\models A$ then $\mathcal{I} \models B_1$ and $\mathcal{I} \not\models B_2$. (exercise)

Lemma 7

Let $L_2, ..., L_n$, A be formulas and let p be one of A's variables. If $p, L_2, ..., L_n \vdash A$ and $\neg p, L_2, ..., L_n \vdash A$ then $L_2, ..., L_n \vdash A$.

Proof of Lemma 7. $(p, L_2, \ldots, L_n \vdash A \text{ and } \neg p, L_2, \ldots, L_n \vdash A \text{ implies } L_2, \ldots, L_n \vdash A)$

Suppose we have the proofs:

1
$$p$$
 premise and 1 $\neg p$ premise
2 L_2 premise
3 \vdots 3 \vdots 4 A ... 4 A ...

The following is a proof of A from L_2, \ldots, L_n :

Proof of Lemma 7. ($p, L_2, \ldots, L_n \vdash A$ and $\neg p, L_2, \ldots, L_n \vdash A$ implies $L_2, \ldots, L_n \vdash A$)

Suppose we have the proofs:

The following is a proof of A from L_2, \ldots, L_n :

Proof of Lemma 7. ($p, L_2, \ldots, L_n \vdash A$ and $\neg p, L_2, \ldots, L_n \vdash A$ implies $L_2, \ldots, L_n \vdash A$)

Suppose we have the proofs:

The following is a proof of A from L_2, \ldots, L_n :

Proof of Lemma 7. $(p, L_2, \ldots, L_n \vdash A \text{ and } \neg p, L_2, \ldots, L_n \vdash A \text{ implies } L_2, \ldots, L_n \vdash A)$

Suppose we have the proofs:

The following is a proof of A from L_2, \ldots, L_n :

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{ p_1, \neg p_1 \} \times \cdots \times \{ p_n, \neg p_n \},$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_{l},\ldots,\hat{p}_{n}\vdash A \ \ ext{for every}\ (\hat{p}_{1},\ldots,\hat{p}_{n})\in \mathbf{S}\ .$$

The theorem then follows from Property (1) for i=n+1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

$$(i>1)$$
 Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbb{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbb{S}$. Let $(\hat{p}_1,\ldots,p_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n)\in \mathbb{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{ p_1, \neg p_1 \} \times \cdots \times \{ p_n, \neg p_n \},$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$.

We prove by induction on i = 1, ..., n + 1 that

$$\hat{p}_{l}, \dots, \hat{p}_{n} \vdash A \text{ for every } (\hat{p}_{1}, \dots, \hat{p}_{n}) \in \mathbf{S}$$
 . (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1) Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,p_l,\hat{p}_{l+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_l,\hat{p}_{l+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{l+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}$$
.

The theorem then follows from Property (1) for i=n+1.1

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1) Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,\hat{p}_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,-p_i,\hat{p}_{i+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $-p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1, \dots, \hat{p}_n) \in \mathbb{S}$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1) Suppose $\hat{
ho}_i,\dots,\hat{
ho}_n\vdash A$ for all $(\hat{
ho}_1,\dots,\hat{
ho}_n)\in \mathbf{S}$. We prove that $\hat{
ho}_{i+1},\dots,\hat{
ho}_n\vdash A$ for all $(\hat{
ho}_1,\dots,\hat{
ho}_n)\in \mathbf{S}$. Let $(\hat{
ho}_1,\dots,\hat{
ho}_i,\hat{
ho}_{i+1},\dots,\hat{
ho}_n), (\hat{
ho}_1,\dots,\neg p_i,\hat{
ho}_{i+1},\dots,\hat{
ho}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\dots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\dots,\hat{p}_n\vdash A$ Then $\hat{
ho}_{i+1},\dots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}$$
. (1)

The theorem then follows from Property (1) for i = n + 1.

(i = 1) Property (1) holds by Lemma 6 since every $(\hat{p}_1, \dots, \hat{p}_n) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1) Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,\hat{p}_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,-p_i,\hat{p}_{i+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $-p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

 $\begin{array}{l} (i>1) \ \text{Suppose} \ \hat{\rho}_i, \dots, \hat{\rho}_n \ \vdash \ A \ \text{for all} \ (\hat{\rho}_1, \dots, \hat{\rho}_n) \in \mathbf{S}. \\ \text{We prove that} \ \hat{\rho}_{i+1}, \dots, \hat{\rho}_n \ \vdash \ A \ \text{for all} \ (\hat{\rho}_1, \dots, \hat{\rho}_n) \in \mathbf{S}. \\ \text{Let} \ (\hat{\rho}_1, \dots, p_i, \hat{\rho}_{i+1}, \dots, \hat{\rho}_n), \ (\hat{\rho}_1, \dots, \neg p_i, \hat{\rho}_{i+1}, \dots, \hat{\rho}_n) \in \mathbf{S}. \\ \text{By induction hypothesis,} \ p_i, \hat{\rho}_{i+1}, \dots, \hat{\rho}_n \ \vdash \ A \ \text{and} \ \neg p_i, \hat{\rho}_{i+1}, \dots, \hat{\rho}_n \ \vdash \ A \\ \text{Then} \ \hat{\rho}_{i+1}, \dots, \hat{\rho}_n \ \vdash \ A \ \text{by Lemma 7}. \end{array}$

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1) Suppose $\hat{\rho}_i,\ldots,\hat{\rho}_n\vdash A$ for all $(\hat{\rho}_1,\ldots,\hat{\rho}_n)\in \mathbf{S}$. We prove that $\hat{\rho}_{l+1},\ldots,\hat{\rho}_n\vdash A$ for all $(\hat{\rho}_1,\ldots,\hat{\rho}_n)\in \mathbf{S}$. Let $(\hat{\rho}_1,\ldots,\hat{\rho}_l,\hat{\rho}_{l+1},\ldots,\hat{\rho}_n),(\hat{\rho}_1,\ldots,\neg p_l,\hat{\rho}_{l+1},\ldots,\hat{\rho}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{\rho}_{l+1},\ldots,\hat{\rho}_n\vdash A$ and $\neg p_i,\hat{\rho}_{l+1},\ldots,\hat{\rho}_n\vdash A$ Then $\hat{\rho}_{l+1},\ldots,\hat{\rho}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(
$$i > 1$$
) Suppose $\hat{p}_i, \dots, \hat{p}_n \vdash A$ for all $(\hat{p}_1, \dots, \hat{p}_n) \in S$.

We prove that $\hat{p}_{l+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,p_l,\hat{p}_{l+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_l,\hat{p}_{l+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_l,\hat{p}_{l+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_l,\hat{p}_{l+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{l+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(
$$i > 1$$
) Suppose $\hat{p}_i, \dots, \hat{p}_n \vdash A$ for all $(\hat{p}_1, \dots, \hat{p}_n) \in S$.
We prove that $\hat{p}_{i+1}, \dots, \hat{p}_n \vdash A$ for all $(\hat{p}_1, \dots, \hat{p}_n) \in S$.

Let $(p_1,\ldots,p_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(p_1,\ldots,\neg p_i,\hat{p}_{i+1},\ldots,p_n)\in \mathbb{S}.$ By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(
$$i > 1$$
) Suppose $\hat{p}_i, \dots, \hat{p}_n \vdash A$ for all $(\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}$. We prove that $\hat{p}_{i+1}, \dots, \hat{p}_n \vdash A$ for all $(\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}$.

Let $(\hat{p}_1,\ldots,p_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n) \in \mathbf{S}.$

By induction hypothesis, $p_i, p_{i+1}, \ldots, p_n \vdash A$ and $\neg p_i, p_{i+1}, \ldots, p_n \vdash A$

Then $p_{i+1}, \ldots, p_n \vdash A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(
$$i>1$$
) Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,p_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$. Then $\hat{p}_i,\ldots,\hat{p}_i\in A$ by Lemma 7.

Let p_1, \ldots, p_n be all of A's variables and consider the set

$$S = \{p_1, \neg p_1\} \times \cdots \times \{p_n, \neg p_n\},\$$

of all tuples $(\hat{p}_1, \dots, \hat{p}_n)$ where each \hat{p}_i is either p_i or $\neg p_i$. We prove by induction on $i = 1, \dots, n+1$ that

$$\hat{p}_i, \dots, \hat{p}_n \vdash A \text{ for every } (\hat{p}_1, \dots, \hat{p}_n) \in \mathbf{S}.$$
 (1)

The theorem then follows from Property (1) for i = n + 1.

(i=1) Property (1) holds by Lemma 6 since every $(\hat{p}_1,\ldots,\hat{p}_n)\in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

(
$$i>1$$
) Suppose $\hat{p}_i,\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. We prove that $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ for all $(\hat{p}_1,\ldots,\hat{p}_n)\in \mathbf{S}$. Let $(\hat{p}_1,\ldots,p_i,\hat{p}_{i+1},\ldots,\hat{p}_n),(\hat{p}_1,\ldots,\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n)\in \mathbf{S}$. By induction hypothesis, $p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ and $\neg p_i,\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ Then $\hat{p}_{i+1},\ldots,\hat{p}_n\vdash A$ by Lemma 7.