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Credits

Part of these slides are based on Chap. 2 of Logic in Computer Science by M. Huth
and M. Ryan, Cambridge University Press, 2nd edition, 2004.
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Outline

Natural Deduction
Derivation Rules
Soundness and Completeness
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Natural deduction

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation
rules designed to mimic the way people reason deductively
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Natural deduction

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation
rules designed to mimic the way people reason deductively

Note
® “Natural” here is meant in contraposition to “mechanical / automated”

® Other derivation systems for PL are more machine-oriented and so arguably
not as natural for people

¢ Natural deduction is actually automatable but less conveniently than other,
more machine-oriented derivation systems
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Natural deduction

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation
rules designed to mimic the way people reason deductively

Note

For simplicity but without loss of generality, we will
® notuse T (as T = —1)
® notuse <> (asA«+» B=(A— B) A (B — A))
® use /A only with two arguments (asAABAC= (AAB)AC)
® use V only with two arguments (asAV BV C = (AVB) V()
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Natural deduction

There are many derivation systems for propositional logic

Natural deduction is a family of derivation systems with derivation
rules designed to mimic the way people reason deductively

We will write

sequent

to indicate that A is derivable from A, . . .. A, using the rules of
natural deduction
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A introduction and elimination rules

A B ANB ANB
AC]

/\(,‘2
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A introduction and elimination rules

A B ANB ANB
E— ey

/\(,‘2

Usage Given: Aset S of formulas

Ai: forany two formulasAand BinS,add A A Bto S
Aeq: forany formula of the form A A BinS,add Ato S
Aey: forany formula of theform A A BinS,addAto S
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Example derivation | |

Let’s prove that we can derive g A r from p A g and r, i.e., that

pAqg,rEqgnr
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= qgAr
—— =

premises conclusion
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Example derivation | |

A B . ANB ANB
e

Let’s prove that we can derive g A r from p A g and r, i.e., that

pAqg,rt= qgAr
—— N~

premises conclusion

I like cats and (like) dogs, Jill likes birds + I like dogs and Jill likes birds
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that
pAqg,rt= qgAr
——— ~——

premises conclusion

(Linear) Proof
1 pAQ premise
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= qgAr
—— N~

premises conclusion

(Linear) Proof
1 pAQ premise

> premise
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= gAr
—— N~

premises conclusion

(Linear) Proof
1 pAQg premise

> premise
3 q Ae, appliedto1

6/27



Example derivation
A B
ANB

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= gAr
—— N~

premises conclusion
(Linear) Proof
1 pAQg premise
> T premise
3 g Ae, appliedto1

4+ gAr Aiappliedtos,2
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Example derivation
A B
ANB

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= gAr
—— N~

premises conclusion
(Linear) Proof Proof tree
1 A remise
pAqg p ‘ pAg
2 premise Aea
. q ro
3 g Ne, appliedto1 7q I Ai

4+ gAr Aiappliedtos,2
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— introduction and elimination rules

A _ ——A

——e
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— introduction and elimination rules

A _ ——A

——e

Example Prove p, ==(gAr) b =—pAr
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— introduction and elimination rules

A ——A

——i

e

/1,

Example Prove p, ==(gAr) b =—pAr

1 p premise
> ——(gAr) premise
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— introduction and elimination rules

A ——A

——i

e

/1,

Example Prove p, ==(gAr) b =—pAr

1 p premise
> ——(gAr) premise
3 QAT —1e 2
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— introduction and elimination rules

A ——A

——i

e

/1,

Example Prove p, ==(qAr) = ——pAr

1 p premise
> ——(gAr) premise
3 QAT ——e 2
4 F Ney 3
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— introduction and elimination rules

A ——A

——i

——e

/1,

Example Prove p, ==(qAr) = ——pAr

1 p premise
> ——(gAr) premise
3 QAT ——e 2

4 I Ney 3

5 ﬁﬁp -1 1
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— introduction and elimination rules

A ——A

——i

——e

/1,

Example Prove p, ==(qAr) = ——pAr

1 p premise
> ——(gAr) premise

3 gATr —1e 2
4 I Ney 3
5 ﬁﬁp -1 1

6 TP ATr Al 5,4
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— elimination rules

A A—B
B

—e
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— elimination rules

A A— B
B

—e

Example Prove p,p—q,g—rtr
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— elimination rules

A A— B
B

—e

Example Prove p,p—q,g—rtr

1 p premise
> p—q premise
3 q—r premise
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— elimination rules

A A— B
B

—e

Example Prove p,p—q,q—rktr

1 P premise
> p—q premise
3 q—r premise
4 q —e 1,2
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— elimination rules

A A— B
B

—e

Example Prove p.p—q,qg—rtr

1 p premise
> p—q premise
3 q—r premise
4 q —e 1,2
r —e 4,3

ot

8/21



— elimination rules

A A—B A—B -B
— e —— MT
B —A
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— elimination rules

A A—B A—B -B
— e —— MT
B —A

e —cisalso known as Modus Ponens
® MT is known as Modus Tollens
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— introduction rule

>|

o -
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— introduction rule ADB B\t
—A

A

1B

A>B

B

L=

Example Prove p—qg+F —g— —p

If x equals 10 then x is positive - If x is not positive then x does not equal 10
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) ) ]
— introduction rule A2 B 7B yg

-A

:
18]

A58

B

L=

Example Prove p—qgtF —g— —p

1 p—q premise
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A—B —-B
—A

— introduction rule MT

Example Prove p—qgtF —g— —p

1 p—q premise
> —q assumption
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A—B —-B
—A

— introduction rule MT

Example Prove p—qgtF —g— —p

1 p—q premise
> —q assumption
3 ﬁp MT 1,2
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— introduction rule

—-A

Example Prove p—qgtF —g— —p

1 p—q premise

> —q assumption
3 “p MT 1,2

A—B —-B

MT
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A—B —-B
—-A

— introduction rule MT

Example Prove p—qgtF —g— —p

1 p—q premise
> —q assumption
3 “p MT 1,2

4 —g——p —12-3
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Longer Example WL

A—B —B MT B )
Prove = (g = 1) = ((=q = =p) = (p = 1)) s — s
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Longer Example WL

A—B —-B MT B )
Prove (=)= ((ca—-p)=(p=n) L T TAms

vaor assumption
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Longer Example AAZE L A
A= B B o B L
Prove + (g —r)— ((-g — —p) — (p —r)) —A e
o g—=r assumption
2 g — P assumption
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Longer Example JEEYIN ;
A—B —-B MT B )
Prove (=)= ((ca—-p)=(p=n) L T TAms
o g—=r assumption
2 7q—p assumption
3 P assumption
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Longer Example

Prove F (g —r)— ((—g — —p)— (p—r))

1 q—=r
2 g — P
3 P

4 TP

A A—=B

A—B —B
—A

MT

assumption
assumption
assumption

=i 3

10/27



Longer Example AA=E A

N
B
A—B -B B )
—_ MT — L =i
Prove + (g —r)— ((—g — —p) — (p — 7)) —A A— B
1 g—=r assumption
2 g — —p assumption
3 P assumption
4 TP —i 3
5 g MT 2,4
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Longer Example

Prove + (g —r)— ((—g — —p) — (p — 7))

o

6

q—r

—q — —p

A A—=B A
e

A— B —-B
2777 Pmr LB
—A A— B

assumption
assumption
assumption
——i 3
MT 2,4

——e 5
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Longer Example

Prove + (g —r)— ((—g — —p) — (p — 7))

o

6

q—r

—q — —p

A A—=B A
e

A— B —-B
2777 Pmr LB
—A A— B

assumption
assumption
assumption
——i 3
MT 2,4
e 5

—e 1,6
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Longer Example

A A—B e A
B :
A—B —-B B .
—_ MT e
Prove + (g —r)— ((—g — —p) — (p — 7)) —A A= B
1 g—r assumption
2 g — —p assumption
3 p assumption
4 ﬁﬁp ——1 3
5 g MT 2,4
6 q —-—e 5
7 r —e 1,6
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Longer Example

A A B
- —e A
B :
A—B —-B B .
— MT L =i
Prove + (g —r)—= ((—g— —p)—=(p—7)) —A A= B
v g—=r assumption
2 g — —p assumption
3 p assumption
4 TP ——i 3
5 g MT 2,4
6 q ——e 5
. r —e 1,6
8 p—r —1i 3-7
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Longer Example

A A B
- —e A
B :
A—B —-B B .
— MT L =i
Prove + (g —r)—= ((—g— —p)—=(p—7)) —A A= B
o g—=r assumption
2 g — —p assumption
3 p assumption
4 TP ——i 3
5 g MT 2,4
6 q ——e 5
. r —e 1,6
8 p—r —1 3-7
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Longer Example

A AB4> B e
A—B -B )
Prove I (g —r)— ((-g — —p) — (p —r)) M7 -
1 g—r assumption
2 —q — P assumption
3 p assumption
4 TP -i3
5 —q MT 2,4
6 q —-—e 5
7 r —e 1,6
8 p—r —1 3-7
9 (mg—=-p)=(p—r) —i2-8
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Longer Example

A AB4> B e
A—B —-B .
Prove I (g —r)— ((-g — —p) — (p —r)) M7 -
1 g—r assumption
2 7q—p assumption
3 p assumption
4 TP ——i 3
5 —qg MT 2,4
6 q —-—e 5
7 r —e 1,6
8 p—r —1 3-7
9 (mg—=-p)=(p—r) —1 2-8
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Longer Example A A8

B —e
AZE ZByr i
Prove (g —r)—=((=g = —p) = (p—71)) A

o g—=r assumption
2 7q—p assumption
3 p assumption
4 TP ——i 3

5 g MT 2,4

6 g ——e 5

7 r —e 1,6

8 p—r —13-7

9 (~q—-p)—=(p—r) i 2-8

w (@=r—=((~qg—=-p)—(p—q) —i-9
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\/ introduction and elimination rules
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oo - >
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o -

Vi
AV B AV B
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\/ introduction and elimination rules

@)

oo - >
S

o -

A B AV B
\/11 \/12

AV B AV B

Example1 Prove pvghk gVvp
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\/ introduction and elimination rules

@)

oo - >
S

o -

A B AV B
\/11 \/lz

AV B AV B

Example1 Prove pvghk gVvp

1 pVQg premise

n/2r



\/ introduction and elimination rules

@)

oo - >
S

o -

A B AV B
\/11 \/12

AV B AV B

Example1 Prove pvghk gVvp
1 pVg premise

> p assumption
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\/ introduction and elimination rules

@)

S

o -

A B AV B
\/11 \/12

AV B AV B

Example1 Prove pvghk gVvp
1 pVg premise
> p assumption

3 qVp Vip2
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\/ introduction and elimination rules

@)

5

o -

A B AV B
\/11 \/12

AV B AV B

Example1 Prove pvghk gVvp

1 pVg premise

> p assumption

3 qVp Vip2
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\/ introduction and elimination rules

A

1

AV

Example1

B AV B
V1 Vi
B AV B
Prove pvgt qVvp
1 pVqg premise
> p assumption
3 qVp Vip2
4 q assumption
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\/ introduction and elimination rules

A B

Vi

AV B AV

Vip

B

Example1 Prove pvghk gVvp

1

pVq

AV B

premise

2

3

p
qVvp

assumption

Vip 2

q
qvp

assumption

Vip 2
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\/ introduction and elimination rules

A B

Vi

AV B AV

Vip
B

Example1 Prove pvghk gVvp

1

pVq

AV B

premise

2

3

p
qVvp

assumption

Vip 2

q
qVvp

assumption

Vip 2
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\/ introduction and elimination rules

Al [B

A B avp 1€l ¢
. y e
AvB AVB ® C ve

Example1 Prove pvghk gVvp
1 pVqg premise

2 p assumption

3 qVp Vip2

4 q assumption

5. qVp Vi 2

6 gVp Ve1,2-3,4-5
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\/ introduction and elimination rules
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\/ introduction and elimination rules

@)

m‘m :>‘
<

‘q

A B AV B
V1 Vi

AV B AV B

Example2 Prove pVqg,p—r,q—rtr
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\/ introduction and elimination rules

@)

>|

ﬁ‘ﬁ

o

A B AV B
V1 Vi
AV B AV B

Example2 Prove pvg,p—r,g—rtr
1 p\Vg premise
2 p—r premise

g — r premise

nj2r



\/ introduction and elimination rules

Al [B
A B avp 1€l ¢
AvB AvB " c ve

Example2 Prove pVvgqg,p—r,g—rbtr

1 pVQ premise
> p—=r premise
3 q—r premise

4 p assumption||g assumption

5 I —e 4,2 r —e 4,3
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\/ introduction and elimination rules

Al (B
A B Ave ¢ €
AvB AvB " c ve

Example2 Prove pVvgqg,p—r,g—rbtr

1 pVQ premise
> p—=r premise
3 q—r premise

4 p assumption||g assumption

5 I —e 4,2 r —e 4,3

6 r Ve 1,4-5
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| elimination and — elimination rules

1 A -A
— le I
A 1

Example Prove —pVgtk p—gq
I will not need a ride; otherwise, | will tell you = If I need a ride | will tell you



| elimination and — elimination rules

1L A -A
— le - e
A

Example Prove —pVghFk p—gq

1 pVg premise
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1L A -A
— le - e
A

Example Prove —pVghFk p—gq

1 pVg premise

> —p assumption




| elimination and — elimination rules

1L A -A
— le - e
A

Example Prove —pVghFk p—gq

1 pVgq premise

> —p assumption

3 p assumption




| elimination and — elimination rules

1L A -A
— le - e
A

Example Prove —pVghFk p—gq

1 pVgq premise
> —p assumption
3 p assumption

4 L —e 3,2




| elimination and — elimination rules

1L
A

le

Example Prove —pVghFk p—gq

1

—“pVq

o

—p
p

assumption
assumption
—e 3,2

le 4

premise



| elimination and — elimination rules

1
A

le

Example Prove —pVghFk p—gq

1

—“pVq

—p

assumption

o

P

assumption
—e 3,2

le 4

premise



| elimination and — elimination rules

le - e

1 A -A
A

Example Prove —pVghFk p—gq

1 pVgq premise
> —p assumption

3 p assumption

4 L —e 3,2

5 @ le 4

6 p—q —i3-5




| elimination and — elimination rules

Example Prove -pVgt p—gq

1 A
— le —e
A
1 pVQ premise
2 P assumption assumption
3 P assumption
4 L -e 3,2
5 @ le 4

6

pP—q

—1 3-5




| elimination and — elimination rules

Example Prove -pVgt p—gq

1 A

— le —e

A
1 pVQ premise
2 —p assumption assumption
3 P assumption assumption
4 l -e 3,2
5 ¢ lea

6

pP—q

—1 3-5




| elimination and — elimination rules

Example Prove -pVgt p—gq

1 A

— le —e

A
1 pVQ premise
2 —p assumption assumption
3 P assumption assumption
4 L —e 3,2 copy 2
5 ¢ lea

6

pP—q

—1 3-5




| elimination and — elimination rules

le

Example Prove —pVglk p—gq

1 A
A

1 pVQq premise

2 —p assumption assumption
3 p assumption assumption
4 L —e 3,2 copy 2

5 @ le 4

6 p—q —13-5




| elimination and — elimination rules

Example Prove —pVglk p—gq

1 A -A

— le —e

A L
1 pVQq premise
2 —p assumption || g assumption
3 p assumption||||p assumption
4 L —e 3,2 q copy 2
5 q lea p—q —13-4

pP—q

—1 3-5




| elimination and — elimination rules

Example Prove —pVglk p—gq

1 A -A

— le —e

A L

AVE Ve
c

1 pVQq premise
2 —p assumption || g assumption
3 p assumption||||p assumption
4 L —e 3,2 q copy 2
5 @ le 4 p—q —i3-4
6 p—q —i3-5
7 p—q Ve 1,2-6
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Example1 Prove p—q,p——qt —p
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— introduction and proof by contradiction rules

A “A
= —i L PBC
—A A

Example1 Prove p—q,p——qt —p
1 p—q premise
2 p— g premise
3 P assumption

4 4 —e 1,3

AV —A

LEM



— introduction and proof by contradiction rules

A “A
L —i = PBC
—A A

Example1 Prove p—q,p——qt —p
1 p—q premise
2 p— g premise
3 P assumption
4 q —e 1,3

5 g —e 2,3

AV —-A

LEM



— introduction and proof by contradiction rules

A “A
= —i L PBC
—A A

Example1 Prove p—q,p——qt —p
1 p—q premise

> p— g premise

3 P assumption
4 4 —e 1,3
5 g —e 2,3

6 L —e 4,5
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= —i L PBC
—A A

Example1 Prove p—q,p——qt —p
1 p—q premise

> p— g premise

3 P assumption
4 q —e 1,3
5 g —e 2,3

6 L —e 4,5
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— introduction and proof by contradiction rules

A “A
= —i L PBC
—A A

Example1 Prove p—q,p——qt —p
1 p—q premise

> p— g premise

3 P assumption
4 q —e 1,3
5 g —e 2,3
6 L —e 4,5

7 P -1 2-4

AV —-A

LEM
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— introduction and proof by contradiction rules

A “A
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—A A AV —A

Example2 Prove -p— L Fp

1 p— L premise

> —p assumption

1 —e 1,2




— introduction and proof by contradiction rules

Example 2

A ﬁA

u —i ‘7L ‘ PBC

-A A

Prove —p— L Fp

1 p— L premise
> —p assumption
3 L —e 1,2
4 —p —i 2-3

AV —A

LEM



— introduction and proof by contradiction rules

Example 2

A “A

L —i = PBC

—A A

Prove —p— L Fp

1 —p— L premise
Y assumption
3 L —e 1,2
4 TP —i 2-3
5 P ——e 4

AV —A

LEM
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— introduction and proof by contradiction rules

A “A
LAAJ —i ‘ i—‘ PBC LEM
—A A AV —A

Example2 Prove -p— L Fp

1 p— L premise

> —p assumption
3 L —e 1,2

4 —p —i 2-3

5 P e 4

PBC can be simulated
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Example 3

>]

-A

i

Prove = pV-—p

3

4

—A

L

A

|
‘ PBC

=(pV —p)
p

pV-p

1

AV —A

assumption
assumption
Vip 2

—e 3,1

LEM
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1 —(pV-—p) assumption

> p assumption
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Example 3
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-A

i

Prove = pV-—p

| A
o

‘i‘ PBC LEM

A AV -A

1 —(pV-—p) assumption
> p assumption
3 pV—p Vip 2

4 L —e 3,1

5 P —i 2-4

6 pV-p Vip 5

7 L —e 6,1



— introduction and proof by contradiction rules
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ES L L]

—a " 4 PBC avoa

Example3 Prove F pV-p 1 —(pV-—p) assumption

> p assumption
3 pV—p Viy 2
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5 —p —i 2-4
6 pV-p Vip 5
7 L —e 6,1




— introduction and proof by contradiction rules

A -A
1L
—a A 8¢ av—a
Example3 Prove F pV-p 1 —(pV-—p) assumption
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— introduction and proof by contradiction rules

A ﬁA
ES N e
—-A A AV —A

PBC and LEM are derived rules

MT and ——i are derived rules too
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Soundness of natural deduction
We will prove a crucial property of natural deduction:

[ Any formula A derived from a set S of premises is a logical consequence of S ]
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Soundness of natural deduction
We will prove a crucial property of natural deduction:

[ Any formula A derived from a set S of premises is a logical consequence of S ]

Theorem 1 (Soundness)
Forall formulas A, . . .. A, and Asuch that Ay, ... A, E A,

we have thatA,, . . ., Ay EA.

For the proof of the theorem, we will rely on this lemma:

Lemma 2
Forall formulas A, . . ., A, Aand B,
T AL, AnAEBIff A, ..., Ay =A— B
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Soundness proof

The proof of Theorem 1is by induction on proof length

The length of a natural deduction proof is the number of lines in it
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By induction on the length [ of [1.
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Soundness proof

Proof of Theorem 1. (if4. ..., A, B AthenA, ... A, = A)

Let [l be the a proof of A, . . .| A, b A, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.
By induction on the length [ of [1.

(Base case: [ = n)

Then A = A forsomei € {1,..., nt. Trivially, A, . . ., Ar E AL

(continued)
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Soundness proof (continued)

(Inductive step: [ > n)
Assume by induction that the theorem holds for all proofs of length [ < .
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Soundness proof (continued)

(Inductive step: [ > n)
Assume by induction that the theorem holds for all proofs of length [ < .

The proof depends on the final rule used to derive A.
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(Inductive step: [ > n)

Assume by induction that the theorem holds for all proofs of length [ < .
The proof depends on the final rule used to derive A.

(Aeq) If Awas derived by /ey, then [ looks like:

A premise
AANB
A /\(\]

for some formula B.
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(Aeq) If Awas derived by /ey, then [ looks like:

A premise
AANB
A /\(\]

for some formula B.
Note that the subsequence of [1 from A, to A A Biis a proof of A A B of length < [.
Then, by inductive hypothesis, A;. . . ., A, EANB.
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Soundness proof (continued)

(Inductive step: [ > n)
Assume by induction that the theorem holds for all proofs of length [ < .

The proof depends on the final rule used to derive A.

(Aeq) If Awas derived by /ey, then [ looks like:

A premise
AANB
A /\(\]

for some formula B.
Note that the subsequence of [1 from A, to A A Biis a proof of A A B of length < [.
Then, by inductive hypothesis, A;, . . .| A, = AN B. Hence, Ay, . . ., An EA.
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Soundness proof (continued)

(1)
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(A1) Then A has the form B; A B,
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Soundness proof (continued)

(A1) Then A has the form B; A B, and I looks like:

A premise A premise
B, S B,

: or

B, o B;

BiABy A By AB, Ai
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(A1) Then A has the form B; A B, and I looks like:

A premise A premise
B, S B,
: or
B, o B,
BiABy A By AB, Ai

This implies that 1 contains a (shorter) proof of B, and of B,.
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A premise A premise
B, S B,
: or
B, o B;
BiABy A By AB, Ai

This implies that 1 contains a (shorter) proof of B, and of B,.

Then, by inductive hypothesis, A;, . . ., An = Bifori=1,2.
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Soundness proof (continued)

(A1) Then A has the form B; A B, and I looks like:

A premise A premise
B] . BZ
: or
B, o B;
BiABy A By AB, Ai

This implies that 1 contains a (shorter) proof of B, and of B,.
Then, by inductive hypothesis, A;, . . ., An = Bifori=1,2.

Hence, A, .. ., An |E Bi A Ba.
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Soundness proof (continued)

(—1) Then A hasthe form B; — B, and

[1looks like: LA premise but then A
3 B assumption 3 B
4 4
5 B 5 B

6 By — B, —i

is a proof of B, fromA;. . . .| An, By thatis shorter than 1.

premise

premise
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[1looks like: LA premise but then A
3 B assumption 3 B
4 4
5 B 5 B

6 By — B, —i

is a proof of B, fromA;. . . .| Ap. By thatis shorter than 1.

Then, by inductive hypothesis, A;. . . . An, By = Bs.
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Soundness proof (continued)

(—1) Then A hasthe form B; — B, and

[1looks like: LA premise but then A
3 B assumption 3 By
4 4
5 B 5 B

6 By — B, —i

is a proof of B, fromA;. . . .| Ap. By thatis shorter than 1.

Then, by inductive hypothesis, A;. . . . An, By = Bs.

It follows from Lemma 2(1) that A;. . . ., A, E By — Bs.

premise

premise
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Soundness proof (continued)

(1)
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Soundness proof (continued)

(—1) Then A has the form —B and
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Soundness proof (continued)

(—i) Then A has the form —B and

[1looks like: . Ay premise

3 B assumption

6 —B -i
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Soundness proof (continued)

(—i) Then A has the form —B and

[1looks like: . Ay premise but then . Ay premise
3 B assumption 3 B premise
1 1
5 1 e 5 1
6 —B -1

is a proof of | fromA;, ..., A, B that is shorter than I1.
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Soundness proof (continued)

(—i) Then A has the form —B and

[1looks like: . Ay premise but then A
3 B assumption 3 B
1 1
5 1 e 5 1
6 —B -i

is a proof of | fromA;, ..., A, B that is shorter than I1.
Then, by inductive hypothesis, A, ..., A,,B = L.

premise

premise
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Soundness proof (continued)

(—i) Then A has the form —B and

[1looks like: . Ay premise but then A
3 B assumption 3 B
4 1
5 1 e 5 1
6 —B -i

is a proof of | fromA;, ..., A, B that is shorter than I1.
Then, by inductive hypothesis, A, ..., A,,B = L.

It follows from Lemma 2 that A, ... A, = —B.

premise

premise
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Soundness proof (continued)

Ai,) Analogous to /i, case.
V1) Exercise.
Vi) Exercise.
Ve) Exercise.
—e) Exercise.
—e) Exercise.
1e) Exercise.

(
(
(
(
(
(
(
(

——e¢) Exercise.
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Completeness of natural deduction

We will now prove another important property of natural deduction:

[ Any logical consequence A of a set S of formulas has a proof with premises S ]
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Completeness of natural deduction

We will now prove another important property of natural deduction:

[ Any logical consequence A of a set S of formulas has a proof with premises S ]

Theorem 3 (Completeness)

Forall formulas A, . . ., A,and Asuch that A, .. ., An E A
we have thatA,, . . ., A, FA.

To prove this theorem, we will rely on several intermediate results
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Completeness of natural deduction

Lemma 4
Forall formulas A, . . ., A, and A the following holds:

1. AL A, .., An |= A implies = Ay — (A — (- (Ap = A)--+))
2. FA = A= (- (A= A)--)) implies A, A, .. ., A, F A

22/21



Completeness of natural deduction

Lemma 4
Forall formulas A, . . ., A, and A the following holds:

1. AL A, .., An |= A implies = Ay — (A — (- (Ap = A)--+))
2. FA = A= (- (A= A)--)) implies A, A, .. ., A, F A

Proof.
By induction on n in both cases (see Huth & Ryan).
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Forall formulas A, . . ., A, and A the following holds:
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Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if |= B then + B.
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Completeness of natural deduction

e N

Lemma 4
Forall formulas A, . . ., A, and A the following holds:

1. ALAy, .. Ay = A implies = A — (A — (- (A — A) 1))
2. A = (A= (- (A — A)--2)) implies Ay Ay, .. A FA

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if = B then - B.

\

Proof of Theorem 3 (4., .. ., A, = Aimplies A, . . ., Ay A

AssumeA, . ... An = A, prove Ay, As. .. A, FA.
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\
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Completeness of natural deduction

e N

Lemma 4
Forall formulas A, . . ., A, and A the following holds:

1. ALAy, .. Ay = A implies = A — (A — (- (A — A) 1))
2. A = (A= (- (A — A)--2)) implies Ay Ay, .. A FA

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if = B then - B.

\

Proof of Theorem 3 (4., .. ., A, = Aimplies A, . . ., Ay A

AssumeA;, ... Ay = A prove A, Ay, ..., A, FA.
By Lemma 4(1), = A1 — (As — (- (A — A) 1))
By Theorem 5, - Ay — (As — (- (An — A) -+ ).

By Lemma 4(2), A1, As, . . ., A EA.
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Completeness of natural deduction

e N

Lemma 4
Forall formulas A, . . ., A, and A the following holds:

1. AL A, .. Ay E A implies = A — (A — (- (A — A)--4))
2. F A — (A — (- (A, — A)--)) implies A Ay, .. A A

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if |= B then + B.

[ So we are left with proving Theorem 5 ]
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Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p1, . . ., pnwithn > 0and let T be an
interpretation. Let p; = p if 7 = p and p; = —p otherwise. Then,

Pr,.. ., pn EAIFZTE=A and pr,..., pn E SAIfT HEA.
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interpretation. Let p; = p if 7 = p and p; = —p otherwise. Then,
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Proof of Lemma 6. By structural induction on A.

(Base case)
If Ais just a variable, say p;, then itis immediate thatp; = p;and —p; b —p;.

If Ais | thenn = 0and Z [~ A. We can prove — | from no premises by —i.

(Inductive Step) If Ais not a variable or |, assume the result holds for all proper
subformulas of A.
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Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p1, . . ., pnwithn > 0and let T be an
interpretation. Let p; = p if 7 = p and p; = —p otherwise. Then,

Pr,.. ., pn EAIFZTE=A and pr,..., pn E SAIfT HEA.

Proof of Lemma 6. By structural induction on A.

(Base case)

If Ais just a variable, say p;, then itis immediate thatp; = p;and —p; b —p;.
If Ais | thenn = 0and Z [~ A. We can prove — | from no premises by —i.
(Inductive Step) If Ais not a variable or |, assume the result holds for all proper
subformulas of A.

We reason by cases on the form of A.
(cont.)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)

e [f7 |= Athen 7 [~ B. By inductive hypothesis, p1, . . ., p, - —B.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)
e [f7 |= Athen 7 [~ B. By inductive hypothesis, p1, . . ., pn F —B.

e If7 [~ Athen 7 |= B. By inductive hypothesis, p1, . . ., pn - B.
Take a proof of B from py, . . ., pn and apply ——i to B.

The resulting proof is a proof of —A.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A= By \By)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A= By \By)
o If7 =AthenZ = Bjand 7 |~ B,.

By inductive hypothesis, p;, . . ., pn b Brandpy, ..., pn F Bs.
Aproofof Afromp, ..., pn is obtained by chaining a proof of B; and a proof of

B, and applying /i to By and B.
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Towards a proof of Theorem 5

Proof of Lemma6. (5.,....p, - AifZ = A and p. ..., Pn F —AIfT £ A)
(continued)

(A= By \By)

o If7 |~ AthenT |~ By forsomek € {1,2}. Say k = 1 (the other case is similar).
By inductive hypothesis, p,...,p, = B.

A proof of —B; can be extended to a proof of —A as follows:

> By

3 By AB, assumption
4 B Nep 3

5 L 1i4)2

6 “(B} AB2) L13.5
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A=BVB,)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)
(A=BVB,)

o If7 = AthenZ = By forsome k ¢ {1,2}.

A proof of Afrompy, ..., pn is obtained from a proof of B, by applying /i) to
By toget By V B.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... pn b AfZ =Aand pr,....p, - —AIfT I~ A)
(continued)

(A=BVB,)

o If7 £ AthenZ |~ Biand Z [~ B,.
A proof of A frompy, ..., pn is obtained by chaining a proof of —B; and a

proof of =B, and continuing as follows:

1

> By VB, assumption

By assumption ||B, assumption

w

L Li (with—=By)

L Li (with—By)
1 Ve2,3— —4
6 “(31 V Bz) 1li2— -5

N

2
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A = 81 — Bz)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = 81 — Bz)

o If7 =AthenZ |~ BiorZ |= B,.
(exercise)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)
(A = 81 — Bz)
o If7 =AthenZ |~ BiorZ |= B,.
(exercise)

o If7 [~ AthenZ = Byand 7 [~ B,.
(exercise)
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Towards a proof of Theorem 5

Lemma7
Letl,, ..., L,, A be formulas and let p be one of A's variables.
Ifp, Ly, ..., L, = Aand —p, Ly, ..., L, = Athen L,, ..., L, F A.
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Proof of Lemma 7. (p. L, .. ., L, & Aand —p, Lo, ..., L, & Aimpliesly, ... L, b A)
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Proof of Lemma 7. (p.L5,....L, - Aand —p, L. ..., L, & Aimpliesly, ... L, b A)
Suppose we have the proofs:

1 p premise and 1 —p  premise
> L, premise > L, premise
3 3

4 A L. 4 A
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Proof of Lemma 7. (p. L, .. ., L, & Aand —p,L;

Suppose we have the proofs:

1 p premise and L TP premise
> L, premise > L, premise
3 3 :
4 A 4 A

The following is a proof of Afrom L,, ..., L,
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Proof of Lemma 7. (p, L., ..., L, & Aand —p, Lo, ..., L, & Aimpliesly, ... L, b A)

Suppose we have the proofs:

1 p premise and 1 Tp  premise
> L, premise > L, premise
3 3
4 A L. 4 A
The following is a proof of Afrom L,, ..., L,
1 pV-p LEM
> p assumption||—-p assumption
3 L, premise L, premise
N
5 A
6 A Ve
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Proof of Theorem 5 (= Aimplies + A).
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Proof of Theorem 5 (= Aimplies + A).

Letp:, ..., pn be all of A’s variables and consider the set

S={pi, o1} x-x{Pn,=Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.
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Proof of Theorem 5 (= Aimplies + A).
Letp:, ..., pn be all of A’s variables and consider the set

S={pi, 1} xx{Pn,=Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.

We prove by inductionon/=1.... n+ 1that

21/21



Proof of Theorem 5 (= Aimplies + A).
Letp:, ..., pn be all of A’s variables and consider the set

S={pi, o1} x-x{Pn,=Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.

We prove by inductionon/=1,.. ., n 4+ 1that

The theorem then follows from Property (1) fori = n + 1.
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Proof of Theorem 5 (= Aimplies + A).

Letp:, ..., pn be all of A’s variables and consider the set

S={pi, o1} x-x{Pn,=Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.

We prove by inductionon/=1,.. ., n 4+ 1that
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Proof of Theorem 5 (= Aimplies - A).

Letp:, ..., pn be all of A’s variables and consider the set

S={pi,=pr1}x - xX{Pn,Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.
We prove by inductionon/=1,.. ., n 4+ 1that

Dise s pn B A forevery (pr,..., pn) €S. M

The theorem then follows from Property (1) fori = n + 1.

(i = 1) Property (1) holds by Lemma 6 since every (p, . . ., pn) € S corresponds to
an interpretation of A and all interpretations satisfy A (by def. of validity).
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Proof of Theorem 5 (= Aimplies + A).
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an interpretation of A and all interpretations satisfy A (by def. of validity).

(i > 1) Suppose p;, . . ., pn = Aforall (py,....p,) € S.
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Let(ﬁ1 ~~~~~ pI"ﬁiHv'~~~ﬁn)v(p11~~~~,“pi~,ﬁi-1~~'~1:6n) €S.
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Letp:, ..., pn be all of A’s variables and consider the set

S={pi, o1} x-x{Pn,=Pn},
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Pi,....pn F A forevery (py,..., pn) €S. ]
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(i = 1) Property (1) holds by Lemma 6 since every (p1, . . ., pn) € S corresponds to
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(i > 1) Suppose p;, . . ., pn = Aforall (py,....p,) € S.

We prove that p; 1, .. ., pn = Aforall (P, ..., pn) € S.

Let (P, ..., Pi, Pis1s -5 Pn), (P1s- -, 2Pi, Pivr, -+, Pn) € S.
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Thenpi.q,..., pn = AbylLemmaT. O
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