
1

Programs as data
first-order functional language

type checking

Copyright 2013-18, Peter Sestoft and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Peter Sestoft at the
University of Copenhagen. These notes are copyrighted materials and may not be used in other course settings
outside of the University of Iowa in their current form or modified form without the express written permission of
one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for
taking notes by any person or commercial firm without the express written permission of one of the copyright
holders.

2

Micro-ML: A small functional language

• First-order: A value cannot be a function
• Dynamically typed, so this is OK:

if true then 1+2 else 1+false

• Eager, or call-by-value: In a call f(e) the
argument e is evaluated before f is called

• Example Micro-ML programs (an F# subset):

5+7

let f x = x + 7 in f 2 end

let fac x = if x=0 then 1 else x * fac(x - 1)
in fac 10 end

Abstract syntax of Micro-ML
type expr =
| CstI of int
| CstB of bool
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr
| If of expr * expr * expr
| Letfun of string * string * expr * expr
| Call of expr * expr

(f, x, fBody, letBody)

Letfun ("f", "x", Prim ("+", Var "x", CstI 7),
Call (Var "f", CstI 2))

let f x = x + 7 in f 2 end

Runtime values, function closures

• Run-time values: integers and functions
type value =
| Int of int
| Closure of string * string * expr * value env

let y = 11
in let f x = x + y

in let y = 22 in f 3 end
end

end

Should always
have value 11

• Closure: a package of a function’s body and its
declaration environment

• A name should refer to a statically enclosing binding:

(f, x, x+y, [(y,11)])
Evaluate as

3 + y

Interpretation of Micro-ML
• Constants, variables, primitives, let, if: as for expressions
• Letfun: Create function closure and bind f to it
• Function call f(e):

– Look up f, it must be a closure
– Evaluate e
– Create environment and evaluate the function’s body

let rec eval (e : expr) (env : value env) : int =
match e with
| Letfun (f, x, e1, e2) ->

let env2 = (f, Closure(f, x, e1, env)) :: env in
eval e2 env2

| ...
| Call (Var f, e) ->

let c = lookup env f in
match c with
| Closure (f, x, b, fenv) ->

let v = Int (eval e env) in
let envf = (x, v) :: (f, c) :: fenv in
eval b envf

| _ -> failwith "eval Call: not a function"

Evaluate fBody in
declaration environment

Evaluation by logical rules

6

In environment ρ,
expression x

evaluates to v

Evaluation by logical rules:
Function declaration and call

• Compare these with the eval interpreter:

• Also, note recursive evaluation of f's body

7

Dynamic scope (instead of static)
• With static scope, a variable refers to the

lexically, or statically, most recent binding
• With dynamic scope, a variable refers to

the dynamically most recent binding:

8

let y = 11
in let f x = x + y

in let y = 22 in f 3 end
end

end Evaluate as
3 + y

9

A dynamic scope variant of Micro-ML
• Very minimal change in interpreter:

• fDeclEnv is ignored; function is just (f, x, fBody)
• Good and bad:

– simple to implement (no closures needed)
– makes type checking difficult
– makes efficient implementation difficult

• Used in macro languages, and Lisp, Perl, Clojure

let rec eval (e : expr) (env : value env) : int =
...
| Call(Var f, eArg) ->
let fClosure = lookup env f
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
let xVal = Int(eval eArg env)
let fBodyEnv = (x, xVal) :: (f, fClosure) :: env
in eval fBody fBodyEnv

Evaluate fBody
in call

environment

10

Lexer and parser for Micro-ML
• Lexer:

– Nested comments, as in F#, Standard ML

• Parser:
– To parse applications e1 e2 e3 correctly,

distinguish atomic expressions from others

• Problem: f(x-1) parses as f(x(-1))
• Solution:

– FunLex.fsl: make CSTINT just [0-9]+ without sign
– FunPar.fsy: add rule Expr := MINUS Expr

1 + (* 33 (* was 44 *) *) 22

11

An explicitly typed fun. language

type tyexpr =
| CstI of int
| CstB of bool
| Var of string
| Let of string * tyexpr * tyexpr
| Prim of string * tyexpr * tyexpr
| If of tyexpr * tyexpr * tyexpr
| Letfun of string * string * typ * tyexpr * typ * tyexpr
| Call of tyexpr * tyexpr

type typ =
| TypI
| TypB
| TypF of typ * typ

(f, x, xT, b, bT, letb)

let f (x : int) : int = x+1
in f 12 end

Letfun("f", "x", TypI,
Prim("+", Var "x", CstI 1), TypI,
Call(Var "f", CstI 12));;

TypF (TypI, TypI)

Type checking by recursive function
• Using a type environment [(“x”, TypI)]:
let rec typ (e : tyexpr) (env : typ env) : typ =

match e with
| CstI i -> TypI
| CstB b -> TypB
| Var x -> lookup env x
| Prim(op, e1, e2) ->
let t1 = typ e1 env
let t2 = typ e2 env
in match (op, t1, t2) with

| ("*", TypI, TypI) -> TypI
| ("+", TypI, TypI) -> TypI
| ("-", TypI, TypI) -> TypI
| ("=", TypI, TypI) -> TypB
| ("<", TypI, TypI) -> TypB
| ("&&", TypB, TypB) -> TypB
| _ -> failwith "unknown primitive, or type error"

| ...

13

Type checking, part 2
• Checking let x=eRhs in letBody end
• Checking if e1 then e2 else e3
let rec typ (e : tyexpr) (env : typ env) : typ =

match e with
| Let(x, xE, b) ->
let xT = typ xE env in
typ b ((x, xT) :: env)

| If(e1, e2, e3) ->
match typ e1 env with
| TypB -> let t2 = typ e2 env in

let t3 = typ e3 env in
if t2 = t3 then t2
else failwith "If: branch types differ"

| _ -> failwith "If: condition not boolean"
| ...

Type checking, part 3
• Checking let f x = fB in letB end
• Checking f eA

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with
| ...
| Letfun(f, x, xT, fB, bT, letB) ->
let fT = TypF(xT, bT) in
let fBE = (x, xT) :: (f, fT) :: env in
let letBE = (f, fT) :: env in
if typ fB fBE = rT then typ letB letBE
else failwith "Letfun: wrong return type in function"

| Call(Var f, eA) ->
match lookup env f with
| TypF(xT, bT) ->
if typ eA env = xT then bT
else failwith "Call: wrong argument type"

| _ -> failwith "Call: unknown function"
| Call(_, _) -> failwith "Call: illegal function in call"

15

Type checking versus evaluation
• The type checker typ and the interpreter
eval have similar structure

• Type checking can be thought of as abstract
interpretation of the program

• We calculate “TypI + TypI gives TypI”
instead of “Int 3 + Int 5 gives Int 8”

• One major difference:
– Type checking a function call f(e) does not require

type checking the function’s body again
– Interpreting a function call f(e) does require

interpreting the function’s body
• Type checking always terminates

Type checking by logical rules

How to read a type rule

• IF
– in environment ρ, expression e1 has type int, and
– in environment ρ, expression e2 has type int

• THEN
– in environment ρ, expression e1<e2 has type bool

Premises

Conclusion

Judgement: In
environment ρ,
expression e2
has type int

Environment
(rho)

18

Joint exercise: How read these?

An integer constant
has type int

19

Combining type rules to trees
• Stacking type rules on top of each other
• One rule’s conclusion is another’s premise
• Checking let x=1 in x<2 end : bool

in some environment ρ:

• The typ function implements the rules, from
conclusion to premise!

20

Joint exercises: Invent type rules
• For e1 && e2 (logical and)
• For e1 :: e2 (list cons operator)
• For match e with [] -> e1 | x::xr -> e2

21

Dynamically or statically typed
• Dynamically typed:

– Types are checked during evaluation (micro-ML,
Postscript, JavaScript, Python, Ruby, Scheme, …)

• Statically typed:
– Types are checked before evaluation (our typed

fun. language, F#, most of Java and C#)

if true then 11 else 22+false

if (true) {return 11} else {return 22+false}

true ? 11 : (22 + false)

OK, gives 11

Compile-time
type error

Compile-time
type error

22

Dynamic typing in Java/C# arrays
• For a Java/C# array whose element type is a

reference type, all assignments are type-
checked at runtime
void M(Object[] a, Object x) {
a[0] = x;

}
Type check needed

at run-time

• Why is that necessary?

String[] s = new String[1];
M(s, new Object());
String s0 = s[0];

