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Micro-ML: A small functional language

• First-order: A value cannot be a function
• Dynamically typed, so this is OK:

if true then 1+2 else 1+false

• Eager, or call-by-value: In a call f(e) the 
argument e is evaluated before f is called

• Example Micro-ML programs (an F# subset):

5+7

let f x = x + 7 in f 2 end

let fac x = if x=0 then 1 else x * fac(x - 1)
in fac 10 end



Abstract syntax of Micro-ML
type expr = 
| CstI of int
| CstB of bool
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr
| If of expr * expr * expr
| Letfun of string * string * expr * expr
| Call of expr * expr

(f, x, fBody, letBody)

Letfun ("f", "x", Prim ("+", Var "x", CstI 7),
Call (Var "f", CstI 2))

let f x = x + 7 in f 2 end



Runtime values, function closures

• Run-time values: integers and functions
type value = 
| Int of int
| Closure of string * string * expr * value env

let y = 11
in let f x = x + y

in let y = 22 in f 3 end 
end

end

Should always 
have value 11

• Closure: a package of a function’s body and its 
declaration environment

• A name should refer to a statically enclosing binding:

(f, x, x+y, [(y,11)])
Evaluate as 

3 + y



Interpretation of Micro-ML
• Constants, variables, primitives, let, if: as for expressions
• Letfun: Create function closure and bind f to it
• Function call f(e): 

– Look up f, it must be a closure
– Evaluate e 
– Create environment and evaluate the function’s body

let rec eval (e : expr) (env : value env) : int =
match e with 
| Letfun (f, x, e1, e2) -> 

let env2 = (f, Closure(f, x, e1, env)) :: env in
eval e2 env2

| ...
| Call (Var f, e) -> 

let c = lookup env f in
match c with
| Closure (f, x, b, fenv) ->

let v = Int (eval e env) in
let envf = (x, v) :: (f, c) :: fenv in
eval b envf

| _ -> failwith "eval Call: not a function"

Evaluate fBody in 
declaration environment



Evaluation by logical rules
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In environment ρ, 
expression x 

evaluates to v



Evaluation by logical rules:
Function declaration and call

• Compare these with the eval interpreter:

• Also, note recursive evaluation of f's body
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Dynamic scope (instead of static)
• With static scope, a variable refers to the 

lexically, or statically, most recent binding 
• With dynamic scope, a variable refers to 

the dynamically most recent binding:
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let y = 11
in let f x = x + y

in let y = 22 in f 3 end 
end

end Evaluate as 
3 + y
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A dynamic scope variant of Micro-ML
• Very minimal change in interpreter:

• fDeclEnv is ignored; function is just (f, x, fBody)
• Good and bad:

– simple to implement (no closures needed)
– makes type checking difficult
– makes efficient implementation difficult

• Used in macro languages, and Lisp, Perl, Clojure

let rec eval (e : expr) (env : value env) : int =
...
| Call(Var f, eArg) -> 
let fClosure = lookup env f
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
let xVal = Int(eval eArg env)
let fBodyEnv = (x, xVal) :: (f, fClosure) :: env
in eval fBody fBodyEnv

Evaluate fBody 
in call 

environment
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Lexer and parser for Micro-ML
• Lexer:

– Nested comments, as in F#, Standard ML

• Parser:
– To parse applications  e1 e2 e3  correctly, 

distinguish atomic expressions from others

• Problem: f(x-1) parses as f(x(-1))
• Solution: 

– FunLex.fsl: make CSTINT just [0-9]+ without sign
– FunPar.fsy: add rule  Expr := MINUS Expr

1 + (* 33 (* was 44 *) *) 22
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An explicitly typed fun. language

type tyexpr = 
| CstI of int
| CstB of bool
| Var of string
| Let of string * tyexpr * tyexpr
| Prim of string * tyexpr * tyexpr
| If of tyexpr * tyexpr * tyexpr
| Letfun of string * string * typ * tyexpr * typ * tyexpr
| Call of tyexpr * tyexpr

type typ =
| TypI
| TypB
| TypF of typ * typ

(f, x, xT, b, bT, letb)

let f (x : int) : int = x+1
in f 12 end

Letfun("f", "x", TypI, 
Prim("+", Var "x", CstI 1), TypI,
Call(Var "f", CstI 12));;

TypF (TypI, TypI)



Type checking by recursive function
• Using a type environment [(“x”, TypI)]:
let rec typ (e : tyexpr) (env : typ env) : typ =

match e with
| CstI i -> TypI
| CstB b -> TypB
| Var x  -> lookup env x 
| Prim(op, e1, e2) -> 
let t1 = typ e1 env
let t2 = typ e2 env
in match (op, t1, t2) with

| ("*", TypI, TypI) -> TypI
| ("+", TypI, TypI) -> TypI
| ("-", TypI, TypI) -> TypI
| ("=", TypI, TypI) -> TypB
| ("<", TypI, TypI) -> TypB
| ("&&", TypB, TypB) -> TypB
| _   -> failwith "unknown primitive, or type error"

| ...
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Type checking, part 2
• Checking  let x=eRhs in letBody end
• Checking  if e1 then e2 else e3
let rec typ (e : tyexpr) (env : typ env) : typ =

match e with
| Let(x, xE, b) -> 
let xT = typ xE env in
typ b ((x, xT) :: env)

| If(e1, e2, e3) -> 
match typ e1 env with
| TypB -> let t2 = typ e2 env in

let t3 = typ e3 env in
if t2 = t3 then t2
else failwith "If: branch types differ"

| _    -> failwith "If: condition not boolean"
| ...



Type checking, part 3
• Checking  let f x = fB in letB end
• Checking  f eA

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with
| ...
| Letfun(f, x, xT, fB, bT, letB) -> 
let fT = TypF(xT, bT) in
let fBE = (x, xT) :: (f, fT) :: env in
let letBE = (f, fT) :: env in
if typ fB fBE = rT then typ letB letBE
else failwith "Letfun: wrong return type in function"

| Call(Var f, eA) -> 
match lookup env f with
| TypF(xT, bT) ->
if typ eA env = xT then bT
else failwith "Call: wrong argument type"

| _ -> failwith "Call: unknown function"
| Call(_, _) -> failwith "Call: illegal function in call"
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Type checking versus evaluation
• The type checker typ and the interpreter 
eval have similar structure

• Type checking can be thought of as abstract 
interpretation of the program

• We calculate “TypI + TypI gives TypI” 
instead of “Int 3 + Int 5 gives Int 8”

• One major difference: 
– Type checking a function call f(e) does not require 

type checking the function’s body again
– Interpreting a function call f(e) does require 

interpreting the function’s body
• Type checking always terminates



Type checking by logical rules



How to read a type rule

• IF
– in environment ρ, expression e1 has type int, and
– in environment ρ, expression e2 has type int

• THEN
– in environment ρ, expression e1<e2 has type bool

Premises

Conclusion

Judgement: In 
environment ρ, 
expression e2
has type int

Environment 
(rho)



18

Joint exercise: How read these?

An integer constant 
has type int
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Combining type rules to trees
• Stacking type rules on top of each other
• One rule’s conclusion is another’s premise
• Checking  let x=1 in x<2 end : bool

in some environment ρ:

• The typ function implements the rules, from 
conclusion to premise!
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Joint exercises: Invent type rules
• For e1 && e2 (logical and)
• For e1 :: e2 (list cons operator)
• For match e with [] -> e1 | x::xr -> e2
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Dynamically or statically typed
• Dynamically typed:

– Types are checked during evaluation (micro-ML, 
Postscript, JavaScript, Python, Ruby, Scheme, …)

• Statically typed:
– Types are checked before evaluation (our typed 

fun. language, F#, most of Java and C#)

if true then 11 else 22+false

if (true) {return 11} else {return 22+false}

true ? 11 : (22 + false)

OK, gives 11

Compile-time 
type error

Compile-time 
type error
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Dynamic typing in Java/C# arrays
• For a Java/C# array whose element type is a 

reference type, all assignments are type-
checked at runtime
void M(Object[] a, Object x) {
a[0] = x;

}
Type check needed 

at run-time

• Why is that necessary?

String[] s = new String[1];
M(s, new Object());
String s0 = s[0];


