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A New Look at Formal Methods for

Software Construction

by

Reiner Hähnle

This chapter sets the stage. We take stock of formal methods for software con-
struction and sketch a path along which formal methods can be brought into
mainstream applications. In addition, we provide an overview of the material
covered in this book, so that the reader may make optimal use of it.

1.1 What KeY Is

The KeY system1 was conceived because, after having worked in logic and
theorem proving for many years, we became convinced that a different kind
of tool than the existing range of editors and theorem provers is necessary to
push formal methods further into industrial applications. We know that not
everyone agrees that formal methods have a place in the software industry,
but recent success stories, such as the SDV project at Microsoft [Ball et al.,
2004], are indicators that formal methods can become mainstream provided
that they are appropriately packaged and marketed. We think that formal
methods are robust and powerful enough for applications, but they need to
become (much!) more accessible.

With this in mind, the KeY system was not designed merely as a theo-
rem prover for verification of object-oriented (OO) software, but as a formal
methods tool that integrates design, implementation, formal specification and
formal verification as seamlessly as possible. The intention is to provide a
platform that allows close collaboration of conventional and formal software
development methods.

This sounds as if KeY were a silver bullet. So let us be very clear that we
do not think that formal specification and verification of complex systems is a
task that can be done automatically or by people who are completely unskilled
in formal methods. This is as improbable as automatized programming of
complex systems. Everyone accepts that specialists are needed to write, say,

1 www.key-project.org
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reliable and efficient systems software. If complex software is to be formally
specified and verified, it should be clear that some serious work by specialists
is called for. But if formal methods specialists are still required for complex
tasks, what is gained by KeY then? In a nutshell, the intention is to lower
the cost of formal methods to an acceptable level from where it is clear that
formal methods actually will save cost in the end. In the following, we map
out the basic principles of such a conception of formal methods in software
construction.

Easy Things Made Easy

KeY provides interfaces and tools that enable non-specialists in formal meth-
ods to use and understand formal artifacts to a certain extent. For example,
we provide idioms and patterns that can be simply instantiated to create
formal specifications. This is comparable to using a visual editor in order to
create a JAVA GUI instead of having to master the Swing framework. Devel-
opers can also run standard checks, such as the consistency of existing formal
specifications by menu selection from their usual case tool. Such provisions
push the boundary beyond which a formal methods specialist is required. It
also provides a learning path to formal methods for interested developers.

Integration of Informal and Formal Notation

From the view of the non-expert user, KeY appears not as a stand-alone tool,
but as a plugin to a familiar case tool (at the moment Borland Together
and the Eclipse IDE are supported). Translation of specifications written in
UML’s Object Constraint Language (OCL) and the Java Modeling Language
(JML) into logic, as well as synthesis of various proof obligations is completely
automatic, as is, to a large extent, proof search. In addition, KeY features a
syntax-directed editor for OCL that can render OCL expressions in several
natural languages while they are being edited. It is even possible to translate
OCL expressions automatically into English and German (stylistically perhaps
not optimal, but certainly readable). This means that KeY provides a common
tool and conceptual base for developers and formal methods specialists. The
architecture and interface characteristics of KeY are depicted in Fig. 1.1.

Teaching Formal Methods for Software Construction

We think that it is necessary to change the way formal methods are taught.
Many of us used to teach traditional courses in logic, theorem proving, formal
languages, formal specification, etc. Ten years ago, in a typical Computer Sci-
ence programme at a European university you could find a wide variety of such
courses with at least logic or formal systems courses being compulsory. While
such courses are still taught in theoretical specializations, compulsory logic/-
formal specification courses have mostly been scrapped. In the post-Bologna
bachelor programmes there will be little room for foundational courses. Even
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Fig. 1.1. Architecture and interface of the KeY system

if this were not so, we think that it would be time to look at software con-
struction not as an afterthought in formal methods courses, but as the starting
point and main driver for the curriculum. The goal of such a formal meth-
ods for software engineering course is not only to teach formal specification
and verification in the context of OO software development, but also exactly
those topics in logic, semantics, formal specification, theorem proving that are
necessary for a deepened understanding. Such a presentation of this material
would necessarily be less systematic and complete than if it were taught in
a traditional manner, but we think this is far outweighed by a number of
advantages:

• It is notoriously difficult to motivate students (in particular those in-
terested in software development) to theoretical studies, which are often
perceived as useless. The tight integration of formal methods into software
development provides a strong and direct motivation.

• Many students find it easier to grasp theoretical concepts when these are
explained and motivated with natural examples.

• We often encountered students who, even after taking several foundational
courses, perceived, for example, logic and programming language seman-
tics as completely different topics and failed to see their close connections.
Compartmentalization is increased by presentations based on traditional
notations developed in separate fields. It is important to point out sim-
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ilarities and identical concepts. Most of all, it is important to relate to
concepts from programming languages, because this is what students of
computer science or software engineering are most familiar with. To take a
trivial example, students often find it easier to grasp universal quantifica-
tion when the analogies to for-loops are pointed out, including declaration
of index variables, scoping, binding, hiding, etc.

• A course that teaches base knowledge in logic, specification, and semantics
under the umbrella of high-quality software construction is much easier
to integrate into an educational programme than dedicated foundational
courses. The latter tend to be optional and are taken only by a small
minority of interested students. We see a great danger, in particular with
respect to bachelor programmes, that students are completely deprived of
foundations. We believe that an attractively packaged course with founda-
tional material tailored to the requirements of software engineering could
be a solution.

A course along the lines just sketched is taught by the author of this chapter
at Chalmers University since 2004.2 Many chapters in this book are suitable
as background material for (advanced) courses related to logic, specification,
and verification (see also the following section).

Towards Formal Verification as a Debugging Tool

Formal verification is unlikely to be a fully automatic procedure in the fore-
seeable future. This is true even for less demanding tasks than full functional
verification of concrete source code: the availability of so-called push button
tools notwithstanding, verification remains a highly interactive process. The
main problem, of course, is that most of the time the specification or the
implementation (or both) are buggy. Hence, proof attempts are doomed to
fail. In software verification, it is also often necessary to strengthen induction
hypotheses or invariants before they can be proven. In either case, the source
of a failed proof must be located and patched. Then the proof must be retried,
etc. This means that it must be possible to inspect a partial or stuck proof and
make sense of it. This process has strong similarities to debugging. Therefore,
it is important to equip the user interface of a prover with similar capabilities
than that of a debugger.

While the debugger view has not quite been realized yet for the KeY prover,
which also can be used stand-alone without any CASE tool (see Fig. 1.1),
the system offers a wide variety of visual aids and controls. These range from
highlighting of active parts in proofs and proof nodes, drag’n’drop application
of rules, tool tips with explanations of logical rules to execution control with
local computations, breakpoints, etc. Automatic reuse of failed proofs and
correctness management of open goals and lemmas round off the picture.

2 The course web site is http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form.
The LATEX sources of slides, labs, exercises and exams are available on request.
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In order to increase automation, a number of predefined search strategies
are available. There is a back end to SMT-LIB syntax3 for proving near propo-
sitional proof goals with external decision procedures. A back end to TPTP
syntax4 is under construction.

Nevertheless, it is in this area, where the book gives only a snapshot of
the current capabilities. Ongoing research that is hoped to boost interactive
proof construction dramatically, includes proof visualization [Baum, 2006] and
automatic search for finite counter examples [Rümmer, 2005].

Industrially Relevant Languages

In our opinion it is essential to support an industrially relevant programming
language as the verification target. We have chosen JAVA CARD source code
[Sun, b] because of its importance for security-critical applications. We re-
frained from using a home-spun sublanguage of JAVA, because it is unrealistic
to assume that applications are written in it. It would have been simpler to
create support for JVM bytecode, but while it is easier to build a verification
system for byte code than for source code, it becomes more difficult to verify
byte code, because it contains much less information. Besides, neither JAVA

CARD nor native code compilers produce JVM bytecode.
The KeY prover and calculus support the full JAVA CARD 2.1 language.

This includes all object-oriented features, atomic transactions, JAVA integer
types, abrupt termination (local jumps and exceptions) and even a formal
specification (in OCL) of the essential parts of the JAVA CARD API. In ad-
dition, some JAVA features that are not part of JAVA CARD are supported as
well: multi-dimensional arrays, JAVA class initialization semantics, char and
String types. In short, if you have a sequential JAVA program without dy-
namic class loading and floating point types, then it is (in principle) possible
to verify it with KeY.

On the front end, we support the OMG standard Object Constraint Lan-
guage (OCL) [Warmer and Kleppe, 2003] for specification as well as the Java
Modeling Language (JML) [Leavens et al., 2006], which is increasingly used
in industrial contexts [Burdy et al., 2005].

The KeY systemis written in JAVA and runs on all usual architectures. The
same is true for the Borland Together and Eclipse CASE tools. Everything,
with the exception of Borland Together, is freely available, open software.

1.2 About this Book

This book is mainly written for two kinds of readers: first, as explained in the
previous section, it can serve as a textbook in an advanced formal-methods
course. All, but the most basic, required mathematical notions are contained

3 http://combination.cs.uiowa.edu/smtlib/
4 http://www.cs.miami.edu/~tptp/
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and explained. Chapters 2 and 3 are self-contained discussions of first-order
and program logics and calculi tailored to the needs of formal analysis of
OO software. This means, for example, that meta-logical results such as in-
completeness are only fleetingly discussed, as far as necessary to explain the
limitations of first-order program logics. Among the many calculi available
for automated reasoning we concentrate on sequent calculi, because they are
most widely used in deductive software verification. On the other hand, we
introduce a richly typed first-order logic including essential notions for pro-
gram analysis such as rigid/flexible terms, none of which is treated in logic
textbooks.

We assume that readers of this book are familiar with object-oriented
design and software development, including UML class diagrams and the
programming language JAVA. As mentioned above, no special mathematical
knowledge is required, with the exception of basic set theory and proposi-
tional logic. Naturally, we do not deny that a certain mathematical maturity
is helpful to obtain a deepened understanding of the material in Part I.

Although the book is about a specific tool, the KeY tool, much of the mate-
rial can be read independently and is transferable to other contexts. The book
becomes more KeY-specific towards the end, more precisely, Parts I and II are
fairly independent of KeY while Parts III and IV contain specific solutions and
case studies. As a consequence, in a course on software development with for-
mal methods, one might stick to the first two parts plus Chapter 11. In the
book we proceed in a bottom-up style to avoid dangling definitions, but in
the context of a course the material might well be presented top-down (as it
is, in fact, done in the course mentioned above). Chapter 10 is an informal
introduction to the main features of the KeY tool and can be recommended
as an entry point.

The second kind of reader is any kind of computer professional (developer,
researcher, etc.) who is interested in formal methods for software development
or in KeY in particular. There is no need to read the book sequentially or
in any particular order. The chapters can be read fairly independently (but
following some dependencies is unavoidable, if a full grasp on technical details
is desired). Those who are familiar with formal techniques would only skim
Chapter 2, but will find Chapter 3 still interesting. If you are mainly interested
in usage and capabilities, Chapter 10 plus some of the case studies are a good
start.

Finally, two things that this book is not : it is not a reference manual for
the KeY system. Even though many features are explained and discussed, for
the sake of readability we did not strive for completeness. Some parts of the
manual are available online at the KeY website, for example, a browsable list
of all calculus rules. This book is also not simply a collection of papers. All
chapters were specifically written for this book and not just culled from a
technical report. We aimed at self-containedness, many examples and not too
terse explanations. For this we sacrifice some of the technical details. Wherever
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technical explanations have been abridged or simplified, we give pointers to
the full treatments in papers and theses.

In the remainder of this chapter, we explain some of the problems that
must be solved during formal specification and verification of object-oriented
software. The idea is to give the reader a better idea of what is covered in
various parts of the book. It will also help not to loose sight of the big picture.

1.3 The Case for Formalization

For the following considerations we use a small example. We stress that the size
of this example is not indicative for the problems that can be modelled with
the KeY system. Realistic case studies are discussed in Chapters 14 and 15.

Assume that we are given the following informal specification for develop-
ing a simple electronic paycard application:

“The function of a paycard is to let its owner pay bills or withdraw
money from terminals authorized by the card provider.

A paycard contains information about its current balance. The
balance must not be negative and must not exceed a given limit. The
limit of a paycard cannot be changed, although different cards can
have different limits.

Each paycard provides a charge operation that updates the balance
according to the amount involved in a transaction.”

This specification seems quite precise, but even in a small example like this,
unclear issues appear immediately. For example, it is not specified what hap-
pens when the charge operation is called with an amount that would exceed
the card limit. One of the main advantages of formalization is to exhibit such
imprecision.

Imprecise specifications can lead to serious problems that are detected
(too) late, when it is expensive to fix them. In the example, without a clear
guideline, an implementor might write a charge method that simply does noth-
ing when the amount to be charged exceeds the card limit. Such an implemen-
tation gives no feedback when something went wrong during the operation.
Probably, the application needs to be redesigned. (In JAVA CARD redesign-
ing an application can be problematic, because additional features, such as a
counter for unsuccessful charge operations, might not fit into memory.)

In Fig. 1.2, a very simple UML class diagram with a first design based
on the specification above is given. Partly it reflects the above requirements
by stipulating instance attributes balance and limit, of which the latter is
designated as immutable (indicated by the property {frozen}). But what about
the other requirements, for example the legal values of balance being between
zero and the value of limit? Of course, one could design a wrapper class that
provides a type for the legal values, but this has a number of disadvantages:
first, a premature decision on how to implement the balance attribute is taken:
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for example, if the implementation language is C++, one would probably use
a scalar type instead. Second, wrapper classes for primitive datatypes lead to
clumsy and inefficient code. Third, one needs different wrappers for different
limit values, which leads to various rather complex implementation options.
Fourth, it does not ensure that illegal values of the balance do not occur but,
at best, that a runtime error or exception occurs once this happens.

PayCard

limit:Integer {frozen}
balance:Integer

charge(amount:Integer)

Fig. 1.2. Simple PayCard class diagram

The brief discussion above reflects the fact that purely programming-
language-based mechanisms such as type systems cannot ensure all kinds of
runtime requirements. The same holds, of course, for design languages (like
UML) that are even less expressive than programming languages. In order
to specify and guarantee runtime requirements the following ingredients are
needed (see also Fig. 1.3):

1. A formal specification language that is expressive enough to capture the
requirements a design stipulates on an implementation, for example, that
it is an invariant of the PayCard class that the values of the balance at-
tribute are between zero and the value of limit.

2. A framework that allows to formally prove that a given implementation
satisfies its requirements. This involves a formalization of an execution
model of the programming language in which the verification targets are
written, in our case JAVA CARD.

The designers of UML became aware quite early of the need for a formal
specification language. It is a part of the UML since version 1.1 and is called
Object Constraint Language (OCL) [Warmer and Kleppe, 1999b, 2003]. OCL
allows to attach invariants to classes of UML diagrams and to specify op-
eration contracts in the form of pre- and postcondition pairs. Being part of
the UML, OCL is standardized by the OMG5. The consequent visibility of
OCL (⇒ Sect. 5.2) and its integration into the world of OO software develop-
ment motivated us to support it as one of the formal specification languages in
the KeY tool. Back to our example, the requirement on the admissible values
of balance can be expressed as an OCL invariant:

5 Object Management Group, www.omg.org
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OCL (1.1)

context PayCard

inv withinLimit : balance >= 0 and balance <= limit

OCL

In order to prove that a given implementation of the class PayCard (and possi-
bly other classes) respects this invariant, however, a lot more work is necessary.
First of all, if we prove something, there must be some underlying notion of
what is a valid statement. In formal logic, as well as in the theory of program-
ming languages, validity is defined in terms of a formal semantics: a mapping
between expressions of a formal language and a suitable mathematical model
of the underlying domain. In our setting, OCL expressions over a given UML
class diagram D are mapped into an algebra that models objects and object
diagrams. As a consequence one can precisely say, for example, that a given
object diagram satisfies a given Boolean OCL expression.

Real
World

Abstraction

Formal
Execution

Model

Formal
Requirements
Specification

Fig. 1.3. The most important ingredients of formalization

Unfortunately, semantic notions do not lend themselves directly to mech-
anized proofs, the reason being that semantic domains typically contain in-
finitely many entities (e.g., all instances of a class). In automated theorem
proving, therefore, one reasons over syntactic expressions that represent the
semantics adequately. This leads to the notion of a calculus , a set of rewrite
rules that specify how syntactic expressions are to be manipulated in order
to be derivable. The idea is to design a calculus that is sound with respect to
its semantics, that is, all derivable expressions are supposed to be valid. For
example, one could conceive of a proof rule that reduces derivability of the in-
variant withinLimit above to derivability of the two invariants balance >= 0

and balance <= limit:
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context C inv: I1 context C inv: I2

context C inv: I1 and I2

Such a syntactic proof rule captures a property of an infinite number of se-
mantic entities: it is valid when C is replaced by any concrete class name and
I1 and I2 by any concrete Boolean OCL constraints in any UML diagram.

Although possible, there are good arguments against building such a cal-
culus directly for OCL:

• It is difficult and expensive to develop a theorem prover for a given formal
language. OCL is a big language compared to logic languages (such as
first-order logic) and, in contrast to them, proof search in OCL is not well
understood. Moreover, OCL is frequently revised.

• OCL was not designed with proof support in mind, and like UML it is
independent of the implementation language. It does not know about con-
crete implementations of datatypes such as the integers. Before version 2.0,
there was no way to specify initial states of classes. OCL is also not in-
tended to express complex proof obligations that involve several invariants
(see below).

As a consequence, we take a “compilation” approach: OCL expressions are
translated (⇒ Sect. 5.2) into formulae of first-order logic (FOL). OCL com-
pilation circumvents the difficulties outlined above. It also makes KeY inde-
pendent from OCL as the sole specification language: recently, JML emerged
as a popular specification language used in many formal methods projects
dealing with JAVA and JAVA CARD [Burdy et al., 2005]. Replacing the OCL
to FOL compiler with a JML front end enables the use of KeY with JML (⇒
Sect. 5.3).

A further major advantage of translating OCL and JML into FOL is that
we do not need to define a dedicated formal semantics for these specification
languages. Their semantics is implicitly defined by the translation into FOL,
the latter having a standard semantics that is widely agreed upon. The trans-
lation approach works only if it is natural to represent a specification language
by FOL. Admittedly, this is not the case for “vanilla” FOL as encountered in
logic textbooks. Object types, undefined expressions, and predefined opera-
tors need to be added to the syntax, semantics, and calculus of FOL in order
to allow a natural and adequate translation. None of these extensions to FOL
is new, but surprisingly no tutorial treatment of this material accessible to
non-specialists is available. This justifies Chapter 2 in this book, where we give
a self-contained treatment of a FOL tailored to the analysis of object-oriented
designs.

1.4 Creating Formal Requirements

Our aim is to develop a formal specification alongside the design. Those re-
quirements that cannot be captured diagrammatically must be formalized
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either in OCL or in JML and are connected with the design in the form of
class invariants or operation contracts. Technically, formal specifications are
written as structured comments in Javadoc style and precede the declaration
of the context element they relate to. For example, constraint (1.1) appears
in the file PayCard.java as follows:

JAVA

/**

* @invariants

* balance >= 0 and balance < limit

*/

public class PayCard { ... }

JAVA

But before proving that programs fulfill requirements, it is necessary to for-
malize requirements in the first place. So far, we only know that we can use
OCL or JML, but formal requirements specification turns out to be not at all
an easy task.

Real

World

Formal

Model

wrong assumptions
(eg, zero delay)

missing requirements
(eg, stack overflow)

misunderstood problem
(eg, wrong integer model)

a

Fig. 1.4. Sources of specification errors

When we formalize any real phenomena, we necessarily have to abstract
from the real world (see Fig. 1.3). Many times, this abstraction is the source of
errors when specifying requirements. This may involve undue simplifications,
missing or misunderstood (and, hence, erroneously modelled) requirements
(see Fig. 1.4). Formalization, as we have seen and will see more below, can
detect such errors, but it introduces also additional problems: one needs to
master a specification language, but this is not enough—just like software,
specifications should be well-crafted. Badly written formal specifications are
at least as difficult to understand and debug as badly written programs. In
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addition, formal specifications must be well structured and it must be possible
to render them in natural language, otherwise informal and formal specifica-
tions are in constant need of synchronization. As a consequence, besides the
two capabilities of expressing formal requirements and proving them, it is
important to add a third one:

3. Support authoring of formal requirements by providing libraries with id-
ioms and patterns, editors, integration with CASE tools, automatic trans-
lation to natural language.

We do not claim to have solved all this, but we address the problems and give
partial solutions.

To take a very simple example, imposing upper and lower bounds on a
variable with scalar datatype is a very common and typical class invariant,
see (1.1). In the KeY system, we call this a specification idiom. The KeY
extension of Borland Together offers a facility to use a number of specification
idioms without the need to know OCL: by filling in forms. More generally,
there is an extensible library of design patterns, each of which comes with
a number of generic OCL constraints that capture some of the requirements
associated with each pattern [Andersson, 2005]. In the hand of an OCL expert
this becomes even a flexible extension mechanism for OCL. In Chapter 6 this
is discussed further.

In an extensive case study it was shown that at least 25% of the for-
mal specifications could be obtained from standard idioms and very few
application-specific patterns [Bubel and Hähnle, 2005]. Although helpful, this
leaves a considerable part of the formalization to be crafted by hand (a similar
situation arises in coding, where code generators and templates do not go all
the way).

There is some further support in obtaining specifications that can be given.
When writing specifications it is useful to keep in mind that there are two
important factors driving them:

• Structural properties of the design—for example, the class hierarchy.
• Functional requirements—typically, the state update and returned result

that effects from calling a method.

The latter is well-known from the design-by-contract methodology [Meyer,
1992], an approximation to full verification. Design-by-contract can be seen
as an efficient and elegant alternative (to, for example, dynamic typing) to
check requirements at runtime, but it does not prove that the requirements
actually hold. Still, the contract metaphor is very useful when specifying the
functionality of a method. In our context we often call the pre- and postcon-
ditions of a method its contract.

One limitation of contracts is that they emphasize the (method-)local view
and do not give a clue as to whether a program achieves its purpose as a whole.
Such “global” properties are difficult to define and prove and one needs to
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know the implementation of all methods. But already the structure of an
OO design (that is, its associations and inheritance relation) gives important
information on whether contracts and invariants are sufficient.

The two most important OO techniques for implementation by reuse are
inheritance and delegation. They have strong consequences for the properties
of an implementation and, therefore, need to be reflected in the formal speci-
fication. For inheritance, often Liskov’s principle [Liskov and Guttag, 2000] is
stipulated: it must be possible to replace an object of a class with an object
declared in any of its subclasses without breaking the program. From a spec-
ification point of view, this means, for example, that invariants of subclasses
must be implied by invariants of super classes.

Delegation is perhaps even more important and mostly preferable to in-
heritance [Gamma et al., 1995], but the consequences for formal specifica-
tion are rarely made explicit. Assume, for example, that we want a method
checkPIN(PIN:int):boolean in our PayCard class. Typically, this method would
be implemented elsewhere, say, in class PIN, but in order to minimize the
dependencies between PayCard and PIN (and to allow decoration) one might
want to implement a delegator method checkPIN(PIN:int):boolean in PayCard.
At this point, it is advisable to copy the contract from the implementing to
the delegating method.

In summary, Liskov’s principle applied to subclassing and delegation yields
an important completion of a formal specification that is driven by structural
design properties. In KeY it is even possible to prove that a given specification
fulfills various aspects of Liskov’s principle, see also the following section.

In the end, it is, of course, unavoidable to author a certain amount of formal
specifications in OCL or JML by hand. This means that one has to master
one of these languages. For a deeper understanding, it is even advisable to
know the principles of the translation of OCL and JML into first-order logic.
This, together with a concise introduction to the main syntactic elements of
these languages, is the content of Chapter 5.

A major problem with formal specification is that formal and informal
specifications tend to drift apart over time, because it is very tedious to keep
them in sync. On the other hand, it is not sufficient to maintain merely a for-
mal specification, because it cannot easily be communicated to managers or
customers. The KeY tool addresses this problem with a feature for translation
of OCL into natural language based on the Grammatical Framework [Ranta,
2004]. Example (1.1) is rendered in (stylistically suboptimal, but readily un-
derstandable) English as follows:

“For the class PayCard the following invariant holds:
the balance is at least 0 and the balance is less than the limit.”

The translation tool, which also features a multi-lingual, syntax-directed edi-
tor for OCL, is explained in Chapter 7.
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1.5 Proof Obligations

The invariants and contracts present in a design give no immediate clue of
what one actually wants to verify. There is a wide range of possible proof
obligations that can be constructed from invariants, contracts, method imple-
mentations, class initializers, and the class hierarchy as building blocks.

In the previous section, we mentioned already Liskov’s principle as one
possible property that one might wish to ensure for a given design and formal
specification. In the KeY system, for such and other lightweight design valida-
tion properties, corresponding proof obligations expressed in the KeY program
logic can be synthesized automatically from context sensitive menus available
in the KeY plugins. Other lightweight properties include invariant consistency,
precondition disjointness, contract consistency, and strong operation contracts.
They are all formally defined and explained in detail in Chapter 8. Let us give
an example for the last one. Given the following contract for a charge method
of class PayCard:

OCL

context PayCard::charge(amount: Integer)

post : balance = balance@pre + amount

OCL

It is desirable to ensure that after any returned method call, the invariant of
its class is restored provided that it held before the call, here (1.1) (see p. 9).
This is an essential part of any strategy to ensure that all class invariants hold
at all times. We call this property strong operation contract.

The KeY prover fails to show this and it is in fact easy to see that the
property does not hold, because the sum of balance and amount may well
be greater than limit. This gives early feedback on the insufficiency of this
particular contract (assuming we want to keep the invariant). Note that we do
not need to prove at this time whether the contract is actually respected by
charge. This can be postponed. In fact, the implementation of charge may
well be unknown yet.

The contract can be patched either by adding a precondition or by weak-
ening the postcondition. If we go for the former, the result looks like this:

OCL (1.2)

context PayCard::charge(amount: Integer)

pre : balance + amount < limit and amount >=0

post : balance = balance@pre + amount

OCL

Unfortunately, this is not sufficient to establish the strong operation contract
property either. The problem is that the attribute limit might have been
changed by charge (there is no problem for the argument amount which is
immutable according to OCL semantics). One way to proceed is to strengthen
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the postcondition with an expression such as limit=limit@pre. This becomes
tedious in the presence of many attributes. Even worse, charge could have
destroyed the invariants of other classes involving any public attribute in the
whole system. The problem to succinctly express what has not been modified
by an action is known as the frame problem in Artificial Intelligence [Shoham,
1986]. To get a handle on it, it is much more efficient to say what has been
modified and to assume everything else is not. In JML a list of locations that
are assignable by a method can be specified. OCL lacks this feature, but can
easily be extended. The complete example including an assignable clause is:

OCL

context PayCard::charge(amount: Integer)

assignable : balance

pre : balance + amount < limit and amount >=0

post : balance = balance@pre + amount

OCL

With this information a proof obligation can be synthesized that establishes
the strong operation contract property. The key point is that the assignable
clause ensures that limit is unchanged and this is enough to establish invari-
ant (1.1). Part of the information contained in assignable clauses can some-
times be derived automatically, for example, the {frozen} property in the class
diagram Fig. 1.2 suggests to leave out the location limit from the locations
modifiable by charge. Of course, the validity of the assignable clause of a
method must be proven for a given implementation.

Even though assignable clauses make proofs much simpler, it is still a prob-
lem that all class invariants in a system can be potentially affected by any
method of any class. There is much ongoing research to alleviate this prob-
lem, for example, program slicing, containment, type-based approaches, etc.
Common to all approaches is the idea that suitable statically checkable infor-
mation about which methods affect which classes can be used to soundly omit
most invariants from a proof. Such kind of analyses are indispensable for mod-
ular verification, because practically all proof obligations make it necessary
to include all existing invariants in order to be sound. Modular verification is
discussed in Chapter 8.

1.6 Proving Correctness of Programs

Design and coding should be different activities during software construction.
In formal verification, this is reflected by the fact that we generate quite
different proof obligations for source code verification as compared to design
validation in the previous section. The most standard proof obligation is total
correctness of a method implementation with respect to its contract. Consider
the following implementation of the charge method:



16 1 Formal Methods for Software Construction

JAVA

public void charge(int amount) {

if (this.balance + amount >= this.limit) {

this.unsuccessfulOperations++;

} else {

this.balance = this.balance + amount;

}

}

JAVA

Total correctness with respect to contract (1.2) means: if charge is called in
any state satisfying the precondition, then charge terminates normally (that
is, without throwing an exception) and in its final state the postcondition
holds. The assignable clause is not part of this proof obligation, but creates a
proof obligation of its own.

Note that the first branch of the conditional does not compromise correct-
ness, because the precondition ensures that this branch is never taken. This
shows that both pre- and postconditions of contracts are essential to specify
method correctness.

Correctness cannot be expressed in specification languages such as OCL
or JML, because it is necessary to logically relate specification expressions
and source code in non-trivial ways in order to produce proof obligations.
For example, most notions of a proof obligation for total correctness would
encompass not merely the preconditions of the contract, but also the class
invariant (in fact, all class invariants). Clearly, first-order logic is not sufficient
to express correctness either—a dedicated program logic is necessary.

The best-known program logic is Hoare logic [Hoare, 1969]. In KeY we
use an extension of Hoare logic called dynamic logic [Harel et al., 2000a]. The
main difference is that dynamic logic is syntactically closed under all propo-
sitional and first-order operators. The advantage is increased expressiveness:
one can express not merely program correctness, but also security properties
[Mostowski, 2005], correctness of program transformations, or the validity of
assignable clauses. Other verification approaches [Paulson, 1994, Boyer, M.
Broy and M. Pizka] encode program syntax and semantics in higher-order
logic, but this creates considerable overhead, in particular during interactive
proving. Dynamic logic, like Hoare logic, works directly on the source code.

The program logic of KeY is called JAVA CARD DL. It has been axiomatized
in a sequent calculus and it is relatively complete6 for any given JAVA CARD

program. The actual verification process in KeY can be envisaged as symbolic
execution of source code. Loops and recursion are handled by induction over

6 It is well-known that Turing-complete programming languages cannot be com-
pletely axiomatized by first-order program logics. As usual, we supply an in-
duction schema to approximate completeness. The axiomatization is relatively
complete to Peano arithmetic. The incompleteness phenomenon is irrelevant for
programs that occur in practice.
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data structures occurring in the verification target. Alternatively, partial cor-
rectness of loops can also be shown by a rule that uses invariants. Symbolic
execution plus induction as a verification paradigm was originally suggested
for informal usage by Burstall [1974]. The idea to use dynamic logic as a
basis for mechanization of symbolic execution was first realized in the Karls-
ruhe Interactive Verifier (KIV) tool [Heisel et al., 1987]. Symbolic execution
is extremely suitable for interactive verification, because proof progress corre-
sponds to program execution, which makes it easy to interpret intermediate
stages in a proof and failed proof attempts.

JAVA CARD is a complex language and this is reflected in the logic JAVA

CARD DL. Therefore, in Chapter 3 we break down JAVA CARD DL into several
modular components. The core component (⇒ Sect. 3.6) defines symbolic
execution rules for JAVA programs with bounded loops and without method
calls. Such programs always terminate and it is possible to execute them
symbolically in a fully automatic way. The result is the symbolic state update
reached after the program terminates (more precisely, a set of updates, each
corresponding to one or more execution branches). Updates are applied to
first-order postconditions essentially via syntactic substitution, resulting in
pure first-order verification conditions dealt with by the first-order rules (⇒
Chap. 2). Further components of the JAVA CARD DL calculus add independent
mechanisms for handling loops (⇒ Sect. 3.7) and method calls (⇒ Sect. 3.8).
It is essential for efficiency to simplify resulting state updates eagerly after
each symbolic execution step. Update simplification is contained in a sepearate
component (⇒ Sect. 3.9).

Full treatment of some JAVA features is so complex that particular chapters
have been devoted to them. For example, the charge method above is not
correct with respect to JAVA integer types, which are finite. How to handle
JAVA integer semantics correctly and efficiently is shown in Chapter 12. There
is also a dedicated chapter on data structure induction (⇒ Chap. 11).

JAVA CARD has two features that JAVA does not have:

• Persistent memory that resides in EEPROM, in addition to standard
transient memory residing in RAM.

• Atomic transactions brace a sequence of statements that are either exe-
cuted until completion or not executed at all. Transactions are crucial to
avoid inconsistent data in the case of interrupted computations caused by
card tear-out, power loss, communication failure, etc.

The combination of both features is surprisingly complex to model, because
the semantics of transactions treats the two kinds of memory differently. We
devote Chapter 9 to the logical modelling of JAVA CARD transactions.

As mentioned above, verification based on the JAVA CARD DL calculus
corresponds to symbolic program execution (plus induction). Its rules can,
therefore, be seen as an operational semantics for JAVA CARD. As long as nei-
ther unbounded loops nor recursion occurs, it is possible to execute programs
symbolically almost without search, even though the full calculus contains
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several hundred rules. In the case study in Chapter 14 proofs with several ten
thousand nodes are automatically constructed in a matter of minutes. At the
same time, the KeY prover is very flexible: for example, there is a rule set that
axiomatizes Gurevich Abstract State Machines [Nanchen et al., 2003], one for
a fragment of C [Gladisch, 2006], one for a object-oriented core language called
ODL [Platzer, 2004a], and one for simplification of OCL expressions [Giese
and Larsson, 2005]. Work on support for MISRA-C 20047 source code is in
progress.

It is interesting to look at the reasons how it is possible to create and main-
tain support for such a variety of imperative languages with relatively modest
effort. Many interactive theorem provers are implemented in a meta program-
ming language for rule and proof construction. The advantage is generality:
not only software verification but any kind of mathematics can be modelled;
in addition, not only rules can be described, but also the way how to prove
them. In contrast to this, the KeY rules must adhere to a very specific schema
language we call taclet [Beckert et al., 2004], which is tailored to the needs of
interactive verification. Taclets specify not only the logical content of a rule,
but also the context and pragmatics of its application. Since taclets have lim-
ited reflection capabilities, the set of primitive rules in JAVA CARD DL that
have to be considered as axiomatic is relatively large with over a hundred.
Correctness of these rules must be shown with external tools [Ahrendt et al.,
2005b, Trentelman, 2005]. But the advantages of taclets are enormous: they
can be efficiently compiled not only into the rule engine, but also into the
automation heuristics and into the GUI. In addition, it is a matter of hours to
master the taclet language. In many cases, new taclets can be verified within
KeY by reflection. In Chapter 4, the taclet concept as well as correctness of
taclets is discussed. An introduction into proof search and the GUI of the KeY
prover is found in Chapter 10.

7 http://www.misra-c2.com/


