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Abstract. The UML has been widely accepted as a standard for mod-
eling software systems and is supported by a great number of CASE
tools. However, UML tools often provide only little support for vali-
dating models early during the design stage. Also, there is generally no
substantial support for constraints written in the Object Constraint Lan-
guage (OCL). We present an approach for the validation of UML models
and OCL constraints that is based on animation. The USE tool (UML-
based Specification Environment) supports developers in this process. It
has an animator for simulating UML models and an OCL interpreter for
constraint checking. Snapshots of a running system can be created, in-
spected, and checked for conformance with the model. As a special case
study, we have applied the tool to parts of the UML 1.3 metamodel and
its well-formedness rules. The tool enabled a thorough and systematic
check of the OCL well-formedness rules in the UML standard.

1 Introduction

The Unified Modeling Language (UML) [9] has been widely accepted as a stan-
dard for modeling software systems. A great number of CASE tools exists which
facilitate drawing and documentation of UML diagrams. Many of the tools also
offer automatic code generation and reverse engineering of existing software sys-
tems. However, often there is only little support for validating models during
the design stage. Also, there is generally no substantial support for constraints
written in the Object Constraint Language (OCL) [8,13]. While it seems fea-
sible to translate constraints into program code as part of the code generation
process, we argue that a model and its constraints should be validated before
coding starts. Mistakes in the design can thus be detected very early, and they
can easily be corrected in time.

In this paper, we present an approach for the validation of UML models
and OCL constraints that is based on animation. We have built a tool called
USE (UML-based Specification Environment) for supporting developers in this
process. The main components of this tool are an animator for simulating UML
models and an OCL interpreter for constraint checking. A UML model is taken
as a description of a system. System states are snapshots of a running system.
They can be manipulated, inspected, and checked for conformance with the



model. The tool implements and continues ideas and results from our previous
work on formalizing the OCL and introducing a metamodel for OCL [11,12].

Our validation tool can be generally applied to models from any domain. As
a special case, we have applied it to parts of the UML 1.3 metamodel and its
well-formedness rules. This is the first time (at least to our knowledge) that a
tool enabled a thorough and systematic check of the OCL well-formedness rules
in the UML standard. This also opens up a number of other useful applications.
For example, the well-formedness of arbitrary models with respect to the UML
standard can be automatically checked by validating them as instances of the
UML metamodel.

There are currently only a few tools available which are specifically designed
for analyzing UML models and OCL constraints. Probably, this is mostly due to
the lack of a precise semantics of UML and OCL. A well-defined semantics is a
prerequisite for building tools offering sophisticated analysis features. Work on
precise semantics has been carried out in, e.g., [3, 11]. The following summarizes
some work related to tools for checking UML designs. Alcoa is a tool for analyzing
object models [5]. It does not use OCL but has its own input language, Alloy,
which is based on Z. RTUML [7] focuses on real-time modeling aspects and
offers a methodology for mechanized verification of design properties with PVS.
An OCL compiler and code generator combined with an OCL runtime library
implemented in Java has recently been developed at the Dresden University [4].
A beta release of a commercial tool offering animation of UML models and OCL
support is ModelRun by BoldSoft [1].

The rest of this paper is structured as follows. In Sect.2 we describe our
approach to validating UML and OCL. Section 3 gives an overview of the USE
architecture. A case study is used in Sect.4 to demonstrate the key features of
our tool with respect to the validation process. In Sect. 5, we report on applying
the USE tool to the Core package of the UML metamodel. We close with a
summary and draw some conclusions for future work.

2 The USE Approach to Validation

The goal of model validation is to achieve a good design before implementation
starts. There are many different approaches to validation: simulation, rapid pro-
totyping, etc. In this context, we consider validation by generating snapshots
as prototypical instances of a model and comparing them against the specified
model. This approach requires very little effort from developers since models can
be directly used as input for validation. Moreover, snapshots provide immedi-
ate feedback and can be visualized using the standard notation of UML object
diagrams — a notation most developers are familiar with.

The result of validating a model can lead to several consequences with respect
to the design. First, if there are reasonable snapshots that do not fulfill the
constraints, this may indicate that the constraints are too strong or the model is
not adequate in general. Therefore, the design must be revisited, e.g., by relaxing
the constraints to include these cases. On the other hand, constraints may be too



weak, therefore allowing undesirable system states. In this case, the constraints
must be changed to be more restrictive. Still, one has to be careful about the fact
that a situation in which undesirable snapshots are detected during validation
and desired snapshots pass all constraints does not allow a general statement
about the correctness of a specification in a formal sense. It only says that the
model is correct with respect to the analyzed system states. However, some
advantages of validation in contrast to a formal verification are the possibility to
validate non-formal requirements, and that it can easily be applied by average
modelers without training in formal methods.

The diagram in Fig.1 illustrates the basic use cases for validating a model
with USE. First, a model specification can be checked by the validation system.
The check specification use case includes a syntax, type and semantic check.
The syntax check verifies a specification against the grammar of the specifica-
tion language which is basically a superset of the OCL grammar defined in [8,
13] extended with language constructs for defining the structure of a model. The
type check makes sure that every OCL expression can be correctly typed. Fi-
nally, a semantic check verifies a number of context-sensitive conditions. Among
these conditions are the well-formedness rules defined as part of the UML Se-
mantics [10]. An example for such a well-formedness rule is the requirement that
a generalization hierarchy must not contain cycles.

When a specification has passed all checks, a developer may start producing
and changing system states. A system state can be changed by issuing commands
for creating and destroying objects, inserting and removing links between ob-
jects, and setting attribute values of objects. The developer can check a system
state at any time. A system state check includes two phases. First, all model-
inherent constraints must be verified. A model-inherent constraint is a constraint
which is inherent to the semantics of all UML models. For example, the set of
links between objects is verified against the multiplicity specifications of the
association ends. The number of objects participating in an association must
conform to the multiplicities defined at the association ends. Second, if the de-
veloper has defined explicit OCL constraints, all the constraint expressions are
evaluated. If any of the constraints is false or has an undefined result, the system
state is considered illegal.

The inspect system state use case describes facilities for getting information
about a system state. This is very important for helping a user to understand
the effects of commands resulting in system state changes. Furthermore, when
a constraint fails and a system state is found to be invalid, the developer has to
find the reason for the failure. Inspecting a system state involves the inspection
of individual objects, their attribute values and links. Another powerful way
for inspection is the use of OCL as a query language. For example, consider a
model where each object of class A must have at least one link to an object
of class B, i.e., the association end at class B has multiplicity 1..*. If this
multiplicity constraint is violated in some system state, the objects of class A
which do not have a link to a B object can easily be found by the expression
A.allInstances->select(a | a.b->size = 0).
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Fig. 1. Use case diagram showing basic functionality of USE

3 Architecture of USE

A high-level overview of the USE architecture is given in Fig. 2. We distinguish
between a Description Layer at the top, and an Interaction Layer below. The
description layer is responsible for processing a model specification. The main
component is a Parser for reading Specifications in USE syntax and generating
an abstract syntax representation of a model. A USE specification defines the
structural building blocks of a model like classes and associations. Furthermore,
OCL expressions may be used to define constraints and operations without side-
effects.

The output of the parser is an abstract representation of a specification con-
taining a Model and OCL expressions. The representation of the model is done
with a subset of the Core package of the UML metamodel [10, p.2-13]. The
subset excludes all model elements which are not required during the analysis
and early design phase of the software development process. For example, model
elements like Permission, Component, and Node seem to be more adequately
applied in extended design and implementation models. The abstract represen-
tation of OCL expressions closely follows the OCL metamodel we have presented
in [12].
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Fig. 2. Overview of the USE architecture

The Interaction Layer provides access to the dynamic behavior and static
properties of a model. The main task of the Animator component is the instan-
tiation and manipulation of System States. A system state is a snapshot of the
specified system at a particular point in time. The system state contains a set of
objects and a set of association links connecting objects. As a system evolves, a
sequence of system states is produced. Each system state must be well-formed,
i.e., it must conform to the model’s structural description, and it must fulfill all
OCL constraints. Furthermore, a transition from one system state to the next
must conform to the dynamic behavior specification. Specifying and checking
state transitions is not yet available in USE.

The Interpreter component is responsible for evaluating OCL expressions.
An expression may be part of a constraint restricting the set of possible system
states. In order to validate a system state, the animator component delegates
the task of evaluating all constraints to the interpreter. The interpreter is also
used for querying a system state. A user may query a system state by issuing
expressions that help inspecting the set of currently existing objects and their
properties.

The Model and OCL branches in Fig. 2 are tightly related to each other. For
example, a model depends on OCL since operations of classes defined in a model
may use OCL expressions in their bodies. A dependency in the other direction
exists because the context of OCL constraints is given by model elements. How-
ever, it is in general possible to define models which do not use OCL at all, or
there may be OCL expressions which do not require a user model. For example,
the realization of various general purpose algorithms with OCL (like sorting,



determining the transitive closure of a relation [6], etc.) is an interesting task on
its own and can be done without the need for any particular model.

Animator and interpreter closely work together. The animator asks the inter-
preter for evaluating OCL expressions. On the other hand, the Interpreter needs
information about the current system state, e.g., when evaluating an expression
which refers to the attribute value of an object.

4 Example Case Study

In this section, we will demonstrate the validation of a UML model by means of
a small case study. We will start with presenting a class diagram of a company
model together with a few constraints. The model will then be specified in the
textual USE notation. This specification serves as input to the validation tool. In
an interactive session, a sequence of system states will be produced by creating
objects and links between them. Finally, we will check a system state against
the specification and show how the tool supports exploring the system state and
helps in finding the reason for a constraint violation.

Figure 3 shows a UML class diagram of our example model. Employees have
name and salary attributes and work in departments. A department controls
projects on which any number of employees can work. Both department and
projects have attributes specifying the available budget.

Employee Department
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salary : Integer location : String
budget : Integer
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Fig. 3. Class diagram of example model

The result of translating the class diagram into the textual USE notation is
shown in Fig. 4. The specification contains definitions for each of the classes and
associations. The definition of a class includes its attributes, an association de-
fines references to the participating classes for each association end. Multiplicity
ranges are specified in brackets. Not used in this example but also supported
by the USE language are UML features like generalization, operations, different
association types, role names, etc.



model Company

class Employee
attributes
name : String;
salary : Integer;
end

class Department
attributes
name : String;
location : String;
budget : Integer;
end

association WorksIn between
Employee[*];
Department[1..*];

end

association WorksOn between
Employee[*];
Project[*];

end

association Controls between
Department[1];
Project[*];

end

class Project
attributes
name : String;
budget : Integer;
end

Fig. 4. USE specification of the example model

In order to make the example more interesting, we add some constraints
which cannot be expressed graphically with the class diagram. The following
five conditions have to be satisfied by a system implementing the given model.

[1] The salary and budget attributes are always positive.

[2] A department has at least as many employees as projects.

[3] An employee working on more projects than another employee gets
a higher salary.

[4] The budget of a project must not exceed the budget of the controlling
department.

[5] Employees working on a project must work in the controlling depart-
ment.

For each of these constraints we have specified OCL expressions that are used
as invariants on the classes. We continue the specification begun in Fig. 4 with a
section defining the set of constraints shown in Fig.5. Each invariant is named
for allowing an easy reference to the list above. Note that constraint [1] actually
maps to three OCL invariants (ila, ilb, ilc) since it states a condition on each
of the three classes.

We can run the USE tool with the specification and start with an empty
system state where no objects and no association links exist. As a next step, we
are going to populate the system with objects and link them together. There are
three kinds of commands which allow us to modify a system state: (1) creating
and destroying objects, (2) changing attribute values, and (3) inserting and



constraints

context Department
inv ila: self.budget >= 0
inv i2: self.employee—size >= self.project—size

context Employee
inv ilb: self.salary >= 0
inv i3: Employee.allInstances—forAll(el, e2 |
el.project—size > e2.project—size implies el.salary > e2.salary)

context Project
inv ilc: self.budget >= 0
inv i4: self. budget <= self.department.budget
inv i5: self.department.employee—includesAll(self.employee)

Fig. 5. USE specification of OCL constraints

deleting association links. Figure 6 shows a screenshot of USE visualizing a
system state after several objects and links have been created.
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Fig. 6. USE screenshot



On the left side, the user interface provides a tree view of the classes, asso-
ciations, and constraints in the model. The pane below shows the definition of
the currently selected component (the invariant Project: :i4). The pane on the
right contains several different views of the current system state. These views are
automatically updated as the system changes. A user can choose from a number
of different available views each focusing on a special aspect of a system state. In
this example, there are views showing an object diagram, a list of class invariants
with their results, and two views displaying the number of objects and links.

The highlighted constraint Project: :i4 in the class invariant view has the
result false indicating that the system state does not conform to the specification.
The plain information that an invariant has been violated is usually not very
helpful in finding the reason for the problem. The invariant from the example is
quite short (see Fig.5), and we can infer from the specification that there must
be at least one project with a budget exceeding the budget of its controlling
department. We could proceed by inspecting all projects until we find one vio-
lating the constraint. For larger systems, this quickly becomes a laborious task.
Our tool therefore offers special support for analyzing OCL expressions.

The details of evaluating an OCL expression can be examined by means of
an evaluation browser which provides a tree view of the evaluation process. Fig-
ure 7 displays such a browser for the failing invariant. The root node shows
the complete OCL expression defined as the body of the invariant (actually, the
original expression is first expanded into a self-contained expression which does
not require a context). Child nodes represent sub-expressions which are part of
their parent node’s expression. Evaluating the forAll expression requires the
evaluation of the source collection (Project.allInstances) and the argument
expression (self .budget <= self.department.budget). By looking at the cur-
rent binding of self, we can conclude that it is the budget of the “research”
project which invalidates the whole invariant.

Evaluation browser

_4 Praoject. allinstances-=farAllizelf ; Project | (self. budget <= zelf department.hudget]) = falze

# Project.allinstances = Set{@research @teaching}
B 4 (self budget <= self department budget) = false

B _4 self budget = 12000

@ self = @research
B 4 self department. budget = 10000
B 4§ self depatment = @cs
& self = @research

Close

Fig. 7. OCL evaluation browser



5 Validating the UML Metamodel

The USE validation tool can be generally applied to models from any domain. As
a special case, we have applied it to the Core package of the UML 1.3 metamodel
and its well-formedness rules. The tool enabled a systematic check of the OCL
well-formedness rules in the UML standard. This section describes the procedure
for checking the metamodel and some results.

In the first step, we had to translate the class diagrams defining the UML
Core ([10, Sect. 2.5.2]) into the textual USE notation. Next, all well-formedness
rules as well as additional operations in Sect.2.5.3 of [10] were added. Some
minor syntactical changes required by the USE syntax were necessary following
these rules:

1. If an association does not have a name, add one.

2. Append an underscore to identifiers which are reserved keywords in USE
(e.g., association).

3. Append a pair of parentheses ’()’ to calls of additional (user-defined) oper-
ations when they have no arguments.

4. Replace all implicit occurrences of collect by an explicit invocation.

5. Replace all implicit occurrences of collection flattening by using a predefined
operation flatten.

6. Replace occurrences of Boolean enumeration types with the OCL type
Boolean.

The final specification! has 31 classes and 24 associations. There are 43 well-
formedness rules and 28 additional operations resulting in a total of 71 OCL
expressions. The expressions in the UML document had a number of errors
which could quickly be located by analyzing the error messages signaled by the
USE parser. Some errors could easily be corrected, others indicated more serious
problems with the constraints. We classified the problems into the following
categories (with increasing severity) and give an example for each category. A
class name together with a number in brackets refers to the respective well-
formedness rule in [10].

E1: Syntax errors
— Example: wrong spelling of keywords and standard operation names
(Association[3], AssociationEnd[1])
E2: Minor inconsistencies
— Example: there is no operation max defined on Multiplicity
(AssociationEnd[2])
E3: Type checking errors
— Example: union of sets with incompatible element types
(Classifier[4], Classifier[5])
— Example: implicit collect expression returns a bag not a set
(ModelElement: : supplier())

! Available at http://wuw.db.informatik.uni-bremen.de/ mr



E4: General problems
— Example: the operation contents() in class Namespace has syntax er-
rors and an identical description as allContents (). It remains unclear
how these operations should look like.

The results from analyzing the OCL expressions are summarized in Table 1.
We found that there were errors in 39 out of 71 expressions. Some expressions
contained two or more errors belonging to different categories. Approximately,
every second erroneous expression had errors of category E1 which could be fixed
without much effort. The other errors generally required more work and detailed
knowledge of the metamodel.

Table 1. Results from analyzing OCL expressions in the UML Core

Classes Associations Invariants Operations Errors E1 E2 E3 E4
Count 31 24 43 28 39 20 7 13 5

It is not very surprising that a tool-based mechanical check of OCL expres-
sions greatly helps in finding frequently occurring errors such as spelling mis-
takes. The fact that OCL provides strong typing also helps in getting complex
expressions right. Another general observation that we have made is related to
the style of the OCL syntax. In some cases, a single notation is used for many
different things. This makes it sometimes quite difficult to understand an ex-
pression and requires a lot of context knowledge. From a human’s point of view
this complicated the task of reading, understanding and checking OCL expres-
sions. Consider, for example, the definition of the operation allParents in class
GeneralizableElement:

allParents : Set(GeneralizableElement);
allParents = self.parent->union(self.parent.allParents)

The syntax of the expression self.parent is the same for referring to an
attribute, an operation, or a role name of an associated class. Furthermore,
parent.allParents may again be an attribute reference, an operation call, or
a navigation by role name. Additionally, it may be an implicit collect expression
written in shorthand notation. To find out which case is actually present, one
has to look at the attributes, the operations and associations of all the refer-
enced classes. However, this is still not enough since all these features might be
defined in superclasses so that the generalization hierarchy also has to be taken
into account. We therefore “re-engineered” most expressions to an explicit form
making the intended meaning much clearer. The example from above was aug-
mented with an explicit collect, a flattening operation, and a conversion of the
result to a set which is required by the declaration.

allParents = self.parent()->union(
self.parent()->collect(g | g.allParents())->flatten)->asSet



We found the USE tool to be very beneficial for understanding and analyzing
the well-formedness rules of the UML metamodel. A number of errors in the
OCL expressions could be quickly located and corrected. For future work, we
plan to extend the analysis to the complete UML metamodel including all of its
well-formedness rules and making it available in USE. This might not only be
useful for improving the state of the standard but also implies another very nice
application: in principle, any UML model can then be checked for conformance
to the UML standard. A model conforms to the UML standard if it can be
represented as an instance of the UML metamodel. The general idea is to (1)
import a UML model (preferably in XMI representation), (2) traverse the model
and execute a sequence of USE commands for instantiating the model elements
as objects of the UML metamodel, and (3) check all constraints on the resulting
snapshot. All these steps can be done mechanically. If the last step fails, the
model is not conform to the UML standard.

6 Conclusion

In this paper, we have presented a tool-based approach to validating UML models
and OCL constraints. The ideas presented here have been implemented in the
USE tool. The functionality of USE has been shown by means of use cases and
a small example case study. We have also applied the tool for checking a part
of the UML metamodel which makes extensive use of OCL constraints. As a
result we could identify a number of errors in the standard document. Using
the metamodel as a specification of arbitrary UML models, the tool enables a
mechanical check for conformance of these models with the standard.

The OCL parser and interpreter that is part of USE implements most of
the core features of OCL like expression syntax, strong type checking, and eval-
uation of expressions. We have implemented almost all of the more than 100
standard operations on predefined OCL types. Features we are currently work-
ing on include the syntax of path expressions and qualifiers, type checking of
empty collection literals, and syntax and semantics of pre- and postconditions.
For validating postconditions it might also be desirable to have some kind of an
action language to specify side effects of operations.

There are several possible future extensions which would fit within the USE
framework. First, it would be nice if the animation could be automated to some
extent by deriving test cases from the model. Another extension could apply
the validation techniques of USE to implementations of a model. Program code
could be generated which mirrors the state of a system at runtime. The state
traces can be observed and analyzed in parallel with USE. With this approach
there is no need for transforming OCL expressions into program code since the
interpretation of expressions is already part of USE. Also very useful would
be an analysis of OCL constraints with respect to properties like consistency.
However, there is currently no clear definition of what it means for a set of
OCL constraints to be consistent. A discussion of this can be found in the OCL
Semantics FAQ [2].
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