
iContract { The JavaTM Design by ContractTM Tool

Reto Kramer

kramer@acm.org

Cambridge Technology Partners

Abstract

Until today, the explicit speci�cation of "software contracts" by means of class in-
variants and method pre- and post-conditions was only available to Ei�el developers.
iContract is the �rst tool that provides the same thorough support for Java.

iContract is a freely available source-code pre-processor that instruments source-
code with checks for class invariants as well as pre- and post-conditions that may
be associated with methods in classes and interfaces. Special comment tags (@pre,
@post, @invariant) are interpreted by iContract and converted into assertion check
code that is inserted into the source-code. iContract supports universal and existen-
tial quanti�ers in contract expressions. Contracts are propagated via all 4 Java type
extension mechanisms (class extension, innerclasses, interface implementation and
interface extension).

Due to the non-mandatory nature of the comment tags, source code that con-
tains design by contract annotations remains fully compatible with Java and can
thus be processed with standard Java compilers, enabling a risk-free adoption of the
technique in your organisation.

1: Introduction

In Ei�el [1] and the latest UML [2] there is native support for design by contract
in which the interfaces among classes are viewed as contracts that specify bene�ts
and obligations of both the client and the supplier. Obligations of clients are spec-
i�ed as preconditions of methods whereas the promises of the supplier are speci�ed
as postconditions which are guaranteed to hold provided that the preconditions
are not violated. Class and interface invariants specify general object consistency
properties.

Design by contract is a simple way to: (i) reduce test e�ort due to the separation
of contract checks from regular application logic, (ii) save debugging e�ort due to
the improved observability, where failure occurs close to the faults and (iii) ensure
up-to-date and unambiguous documentation of interfaces.

Section 2 presents a simple annotated example class and the check code that
iContract produces. Section 3 presents the code instrumentation rules for single,
isolated classes whereas section 4 considers implications of Java class extension,
interface implementation and interface extension mechanisms. Section 5 describes
the current prototype implementation. Section 6 summarises related work, while
section 7 and 8 outline directions for future work and conclude.

2: Simple example

To use iContract, Java sourcecode is annotated with three novel comment para-
graph tags:

� @invariant, to specify class- and interface-invariants

� @pre, to specify preconditions on methods of classes and interfaces

� @post, to specify postconditions on methods of classes and interfaces

The tool is run as a preprocessor over a set of annotated sourcecode �les. iCon-
tract instruments the methods in annotated �les with assertion check code that
enforces the speci�ed pre-, postconditions and invariants. In the background it
builds up a repository of contract related information about the classes, interfaces
and methods. This information is used to support subcontracting which propagates
pre-, postconditions and invariants along class-extension, interface-implementation,
multiple interface-extension and innerclass relations.

The instrumented �les are compiled instead of the originals, resulting in the same
classes, interfaces and methods except that the pre-, postconditions and invariants
are being enforced by means of automatically generated speci�cation checks.

Despite being annotated with pre-, postconditions and invariants, the original
�les remain fully compliant to \standard" Java at all times due the annotations
being a part of the (optional) comment paragraphs. This is an essential feature
enabling organisations to adopt iContract in a risk-free manner.

The example interface Person contains method annotations with pre- and
postconditions specifying an explicit contract between the implementers of interface
Person and their clients that call the methods setAge(int) and getAge(). To
clients, the interface method setAge(int) speci�es the obligation that the age
must be greater than zero. In return the bene�t o�ered to clients of the interface
Person is that they are promised to receive an age greater than zero, when calling
getAge().

FILE: Person.java FILE: Employee.java

1: interface Person { 1: class Employee implements Person {
2: 2:
3: /** 3: protected int age_;
4: * @post return > 0 4:
5: */ 5: public int getAge() {
6: int getAge(); 6: return age_;
7: 7: };
8: /** 8:
9: * @pre age > 0 9: public void setAge(int age) {
10: */ 10: age_ = age;
11: void setAge(int age); 11: };
12: } 12: }

The class Employee implements the interface Person by maintaining an in-
stance variable to store the age of an Employee. The pre- and postconditions need
not to be repeated in the implementation because iContract maintains contracts
across class hierarchies as well as interface implementation and extension relations.

To instrument the class Employee such that the pre- and postconditions will
be checked and enforced at runtime, iContract instruments the sourcecode with
assertion statements.

class Employee implements Person {

protected int age_;

public int getAge() {
//#*#--
int __return_value_holder_;
/* return age_; */
__return_value_holder_ = age_;
if (!(__return_value_holder_ > 0))

throw new RuntimeException ("Employee.java:5: error: postcondition "+
"violated (Person.getAge()): "+
"(/*return*/ age_) > 0");

return __return_value_holder_;
//--#*#
};

public void setAge(int age) {
//#*#--
boolean __pre_passed = false; // true if pre-cond passed.
// checking Person.setAge(int age)
if (! __pre_passed) {
if (age > 0) __pre_passed = true; // Person.setAge(int age)
}
if (!__pre_passed) {

throw new RuntimeException ("Employee.java:9: error: precondition "+
"violated (Employee.setAge(int age)): "+
"(/*Person.setAge(int age)*/ (age > 0)) "

); }
//--#*#

age_ = age;
};

}

The following main code-section would result in a precondition violation, which
leads to a RuntimeException being thrown:

...
public static void main(String argv[]) {

Employee e = new Employee();
e.setAge(0); // violates precondition !

}

% java Employee
java.lang.RuntimeException: Employee.java:5: error: precondition violated
(Employee.setAge(int age)): (/*Person.setAge(int age)*/ (age > 0))

at Employee.setAge(Employee_I.java:39)
at Employee.main(Employee_I.java:5)

The error in the main causes the Person.setAge(int) precondition contract
(age > 0) to be violated. This contract is propagated from the interface Person

via the interface implementation relation to the class Employee. The error loca-
tion indicated (Employee.java:5:) is the location of the contract violation in the
original (non-instrumented) version of the class Employee.

3: Contracts on single classes

This section considers the instrumentation of invariant, pre- and postcondition
check code for an isolated class only. It assumes that the class neither extends
another class nor implements any interfaces. The implications of innerclasses, class
extensions, interface implementation and interface extension will be considered in
section 4.

Classes, interfaces and methods therein can be annotated with pre-, postcondi-
tions and invariants. Classes and interfaces are collectively referred to as types.

The @invariant tag applies to types, whereas the @pre and @post tags apply to
methods in types. Multiple tags are interpreted as conjunctions. Tags may span
multiple lines to enable the layout of large expressions.

3.1: Object lifecycle

During their lifecycle, objects generally undergo the three phases: (i) construc-
tion, (ii) operation and eventually (iii) destruction.

Construction of an object requires the preconditions of the particular constructor
to hold. Upon successful construction the class invariants and postconditions must
be established . Should the constructor fail due to an exception being thrown, the
class invariants and the postconditions do not have to hold. They are thus not
enforced in case of exceptional constructor exit.

Operation of an object must be split into two cases: (i) public, package and
protected method calls being received (all referred to as \public") and (ii) private
method calls. In both cases the preconditions of a method must hold, whereas
only in the former case the invariants must hold as well. Invariants must not be
enforced for private methods because they already were enforced upon reception
of the \public" method that was preceding the private. In fact it is desirable
to allow a sequence of private methods to violate class invariants temporarily as
long as the invariants are established before the exit of the \public" method that
triggered the chain of private calls. Should the method fail due to an exception being
thrown, the class invariants must still hold (n.b. unlike constructors), whereas the
postconditions do not have to hold and thus are not enforced in case of exceptional
method exit.

The destruction of an object neither requires any prerequisites and invariants
to hold, nor does it establish any postconditions and invariants (after all there is
no object left to associate them with). Thus iContract will not instrument the
finalize() method with invariant checks.

3.2: Contract-expressions and scope

The string following the @pre, @post and @invariant tag must be of the form:

<Contract-Expression> [#<ExceptionClassName>]

where <Contract-Expression> must evaluate to a boolean. The name
#<ExceptionClassName> denotes an optional class that will be used to construct
the exception that will be thrown in case the <Contract-Expression> evaluates to
false. If the exception class in not mentioned, RuntimeException will be thrown.

/**
* @pre i >= 0 #ArrayIndexOutOfBoundsException
* @pre i < this.SIZE #ArrayIndexOutOfBoundsException
*/

String getEntry(int i) throws ArrayIndexOutOfBoundsException {
// do the work here ..., no need to check index bounds manually

}

Within the same type T (class or interface), multiple invariants, pre- and post-
conditions (e.g. premT

1
is (i>=0), premT

2
is (i<this.SIZE)) are conjuncted to form

a single aggregated expression (e.g. premT is (i>=0 && i<this.SIZE)) which will
be used to instrument the method m with appropriate check code:

premT =
^

j

pre
mT

j (1)

postmT =
^

j

post
mT

j (2)

invariantmT =
^

j

invariantTj (3)

If a class, interface, method or constructor is not annotated with invariants, pre-
or postconditions, then the respective condition is assumed to (trivially) hold.

3.2.1: Contract-expressions

Contract-Expressions may be any Java expression that evaluates to a boolean.
iContract complements the Java operators with the following additional ones:

� forall (8), supports universal-quanti�cation over a set of elements.
The syntax is:

forall <Class> <var> in <Enum> | <Expr_var>

where <Class> is the type of the bound variable <var>. <Enum> is an expres-
sion that must evaluate to an instance of java.util.Enumeration (containing
elements of type <Class>1). <Expr_var> denotes a contract-expression which
may contain references to the bound variable <var>.
The forall expression evaluates to true, i� 8var 2 EnumjExprvar. Where
Exprvar denotes expression Expr evaluated using the value of var.

� exists (9), supports existential-quanti�cation over a set of elements.
The syntax is similar to the universal quanti�er:

exists <Class> <var> in <Enum> | <Expr_var>

The exists expression evaluates to true, i� 9var 2 EnumjExprvar. Where
Exprvar denotes expression Expr evaluated using the value of var.

� implies (!), C implies I is translated into the equivalent of \if C then
check I". C and I must be Contract-Expressions.

The following examples illustrate the power of contract-expressions supported by
iContract:

Example invariant: uses nested quanti�cation expressions to specify \sanity"
checks for a class representing an Employer. An Employer employs a number of
Employees, each of which can be employed by a number of di�erent Employers

at the same time. The aim of the invariant speci�cation is to express the re-
quirement that all instances of class Employee must appear on the employment
lists of their respective Employers. The example assumes that the instance vari-
able Employer.employees_ is of type java.util.Vector and that the method
Employee.getEmployers() returns an instance of type java.util.Enumeration:

/**Each employee must be on the employment-list of all it's employers
*
* @invariant employees_ != null
* implies
* forall Employee e in employees_.elements() |
* exists Employer c in e.getEmployers() |
* c == this
*/

class Employer {
protected Vector employees_; // of Employee
...

}

1The access to the elements will be casted: (<Class>)(<Enum>.nextElement())

3.2.2: Scope of variables in contract-expressions

Class invariants can access class- and instance-variables as well as methods of
their associated class. Interface invariants do have the same scope as class invariants
except that they can not access any instance variables.

Preconditions have access to all items that are in the scope of their associated
method. Postconditions do have the same scope as preconditions except: (i) \return
value" { in addition to the precondition scope, postcondition expression can access
a pseudo-variable called return which denotes the result value of the method. (ii)
\entry-value" { they have access to the values that expressions had at the start of
the method. The syntax is compliant to UML/OCL [2] where the context-modi�er
@pre (previous) is appended to an expression in order to refer to its value at the
entry of a method.

/**Append an element to the argument
*
* @post list.size() == list.size()@pre + 1;
*/

void append(Vector list, Object o);

If the type of an \entry-value" implements interface Cloneable (e.g. is a
container, such as Vector), or is of type String, the value of <expr>@pre is a
shallow copy of <expr>. Otherwise they are identical.

Invariants, pre- and postconditions have access to bound variables of quanti�ca-
tion expression (e.g. the bound variable <var> in forall <Class> <var> ...).

If invariant-, pre- and postcondition expressions refer to instance variables, those
variables must not be private, unless the class is �nal.

3.2.3: Discussion

In this section a summary of code instrumentation is presented. Issues that arise
from these rules are illustrated with examples and solutions are suggested.

Generally preconditions are enforced when methods are entered whereas post-
conditions are enforced when methods return. Invariants are enforced at the entry
of methods and at both, the normal return and exceptional termination of methods.
Exceptions to these rules are summarised in table 1.

Method Constructor
public, package, protected private

entry
p

| |
invariant exit

p
|

p

exception
p

| |
entry

p p p

precondition exit n/a n/a n/a
exception n/a n/a n/a

entry n/a n/a n/a
postcondition exit

p p
(
p
)

exception | | |

Table 1. Instrumentation Rules for Invariants, Pre- and Postconditions

Two rules are not captured in table 1:

� The destruction of objects is neither subject to any invariants nor to pre- and
postconditions. Therefore the finalize() method is not instrumented for
any of these.

� static method are not instrumented for invariant checks (public static methods
are instrumented for pre- and postcondition checks though).

The naive approach to instrumentation contains the potential for recursive, non-
terminating calls among invariant checks as illustrated in the following example:

1: /**Example that demonstrates the automatic avoidance of
2: * recursive, non-terminating invariant checks
3: *
4: * @invariant forall Employee employee
5: * in this.getEmployees().elements() |
6: * employee.getEmployer() == this
7: */
8: class Employer {
9:
10: public static void main(String arv[]) {
11: Employer company = new Employer();
12: Employee george = new Employee();
13: company.add(george);
14: }
15:
16: protected Vector employees_ = new Vector();
17:
18: Enumeration getEmployees() {
19: return employees_.elements();
20: }
21:
22: void add(Employee employee) {
23: employee.setEmployer(this);
24: employees_.addElement(employee);
25: }
26: }
27: ...

The invariant on line 4 will be checked at the entry of method
Employer.add(Employee), de�ned on line 22 (called by main on line 13). To per-
form the check the invariant itself calls getEmployees()which { at its entry, checks
the invariant ... { at this point the application is trapped in a non-terminating re-
cursion that will overow the stack.

To automatically avoid non-terminating recursion, iContract instruments check-
code such that it keeps track of the call-chain at runtime in order to prevent recursive
non-terminating checks. The mechanism is thread-safe.

As an example, the generated code that guards against recursive invariant checks
at method entries is shown below. iContract generates a runtime bookkeeping table
for each object that needs to obey an invariant (Hashtable icl). The table
tracks the call-chain on a per thread basis, incrementing the recursion depth if a
non-private method is entered. The recursion depth is decremented if the method
is exit either via normal return or exceptional exit (code not shown here). Only if
the recursion depth is 0, the invariant is evaluated. This mechanism

� guards against the non-terminating recursion problem

� ensures that for nested \public" calls (public, package, protected) to the same
object (within the same thread) the invariant is not re-evaluation until the
exit of the initial top level method

� prevents the evaluation of invariants, if \public" methods are called from
within private ones (on the same object, in the same thread)

/**
* @invariant age_ > 0
*/
public class Employee implements Person {
//#*#---
private java.util.Hashtable __icl_ = new java.util.Hashtable();
private synchronized void __inv_check_at_entry__Employee(

Thread thread, String loc) {
if (!__icl_.containsKey(thread)) { // recursion depth 0

__icl_.put(thread, new Integer(1));
__check_invariant____Employee(loc); // evaluates the invariant

}
else // inc recursion depth

__icl_.put(thread, new Integer(
((Integer)__icl_.get(thread)).intValue()+1));

}
//#*#---

4: Contracts on class hierarchies

Previously only single types were considered. This section explores implications
of the four hierarchical type relations available in Java. Class extension, interface
implementation, interface extension and innerclasses are collectively referred to as
\type extension".

iContract analyses type extensions in order to support the \type substitution
principle" which says that the formal method parameter of type T may be substi-
tuted with actual parameters of type T or any type-extension (interface or class). In
order to preserve the semantics of the type T (and its methods) in its descendants,
the invariants on type T as well as pre- and postconditions on methods of type T
must be propagated to all descendants of the type.

The actual means of propagation of invariants, pre- and postconditions varies:

� invariants are conjuncted across type extensions because the subtypes must
also comply to all the invariants of their supertypes

� postconditions are conjuncted across type extensions because rede�ned meth-
ods in subtypes must o�er at least the same service to their clients as the su-
pertype method de�nition did (only then the types are substitutable). They
may add additional promises (which impose further constraints) about the
properties of their side e�ects or results though. Those additional properties
must imply the supertype postconditions to ensure that they are preserved
by the service extension. Conjuncting the postconditions of method m of
supertype V (postmV) with the postconditions of method m of subtype W

(postmW) guarantees this implication because: postmV ^ postmW ! postmV

� preconditions are disjuncted across type extensions because rede�ned meth-
ods in subtypes must accept at least the same input arguments from their
clients as the supertype method de�nition did (only then the types are sub-
stitutable). They may accept additional input, that would be rejected by
the supertype methods though (under no circumstances however may they
restrict the accepted input beyond the supertype restrictions because this
would violate the type substitution principle). Disjunction of the precondi-
tions of method m of supertype V (premV) with the preconditions of method
m of subtype W (premW) guarantees this because if the precondition of the
supertype holds, it implies that it still holds in the subtypes conjuncted pre-
condition: premV ! premV _ premW

To capture the type extension aspects of invariant, pre- and postcondition in-
strumentation formally, the following terms are introduced (see eq. 1, eq. 2 and eq.
3):

The total invariant that is instrumented for a method m of type T is denoted
invariantm

�

T (T � is the supertype closure set which includes type T and all its
predecessor classes and interfaces). The total preconditions of method m in type T
is denoted prem

�

T and the total postcondition is denoted postm
�

T .

In summary the totals are de�ned as:

prem
�

T =
^

t2T�

premt
eq:1
=
_

t2T�

^

i2t

premt

i (4)

postm
�

T =
^

t2T�

postmt
eq:2
=
^

t2T�

^

i2t

post
mt

i (5)

invariantm
�

T =
^

t2T�

invariantmt
eq:3
=
^

t2T�

^

i2t

invariantti (6)

4.1: Di�erences among mechanisms of type extension

The instrumentation code generation handles all four type extension mechanisms
in a uniform way (class extension, interface implementation, interface extension and
innerclasses).

The only special case is the delegation of subclass constructors to constructors of
their superclasses (super()). If such a super()-delegation is used in constructor,
Java compilers enforce the super() statement to be the �rst in the body. This forces
iContract to insert the precondition check only after the super() call, whereas
in methods the precondition- and invariant-check are the very �rst things to be
executed.

This still preserves the semantics of preconditions because constructor overriding
is not possible as each class has unique constructor names (because they are equal to
the class name). Therefore there is no need to concern \type extension" implications
for preconditions in constructors, as there is a unique mapping from constructor to
its type (which is not true for methods that were overridden in multiple classes).
Formally, in eq. 4 the superclass closure T � contains a single element { the class of
the constructor { and therefore the disjunction operator can be omitted.

5: Implementation

The tool iContract is a freely available Java prototype implementation of the
instrumentation techniques described in the previous sections. It pre-processes Java
sourcecode (�g. 1). Special care was taken to ensure that the instrumented code
is still easy to read. Intentionally the tool was not made to operate on bytecodes
(.class level) because it was desirable that invariants, pre- and postconditions are
subject to the same compile-time optimisations as the rest of the code.

Figure 1 gives an overview of the interaction among the major �les and tools
involved in using iContract.

� The goal is to transform sourcecode to executable Java applications (dashed
arrow).

� Some of the code shall be instrumented while some of it must not su�er from
any performance loss due to check code and thus is not instrumented

� Code that shall not be instrumented is compiled as usual (e.g. using javac)

� Code that shall be instrumented must be pre-processed with iContract. This
creates two items:

{ an instrumented sourcecode �le (e.g. C_I.java) that contains assertion-
checks in methods

{ an internal repository (e.g. __REP_C.class) of invariant, pre- and post-
condition information on the classes encountered in the input �le. This

repository is subsequently accessed in order to propagate contracts along
type extension relations.

Figure 1. Interaction among iContract Components

5.1: Performance tuning

In order to let developers tune the performance of their applications, check code
instrumentation must be con�gurable such that performance critical parts do not
su�er from unacceptable overhead due to the check code evaluation. Invoking iCon-
tract with:

% java iContract.Tool -mpre,post,inv C.java > C_instr.java

creates an instrumented sourcecode �le C_instr.java and an internal reposi-
tory �le __REP_C.java as well as its compiled version __REP_C.class. Methods in
the sourcecode �le are instrumented for invariants, pre- and postcondition checks.
This however is con�gurable to allow performance tuning (e.g. -mpre only instru-
ments precondition checks). iContract is invoked on a single �le and thus allows
instrumentation con�guration down to the class level such that performance critical
classes can be instrumented less extensively than non-critical parts of the system.

5.2: Binary contract repositories

Despite operating on sourcecode the tool is suitable to component vendors that
refrain from distributing the sourcecode with their products. There are two levels
of contract support: (i) vendors deliver a non-instrumented and an instrumented

version of the library, and/or (ii) vendors even deliver the \invariant, pre- and post-
condition contracts" with their components by including the compiled repository
�les (e.g. REP <classname>.class) into their products (�g. 1).

If component vendors would adopt option (ii), user's would then copy the repos-
itory �les to the same location as the component code itself. If extension of frame-
works or components (e.g. implementation of interfaces) is required, iContract picks
up the vendor repositories based on the class and package names such that the in-
variants, pre- and postconditions that the vendor product requires and provides will
be enforced in user de�ned extensions.

5.3: Multithreaded applications

iContract changes the \structure" of the code by adding invariant check meth-
ods to classes (if the users requested it using option -minv). These methods are
synchronized such that local variables (e.g the bound variables introduced by
quanti�cation expressions) are protected against concurrent access.

Users must review their concurrency handling, if quanti�ers (exists and forall)
are used in pre- or postconditions and if references to return or \entry-values" occur
in postconditions. All these contract-expression features introduce automatically
generated temporary variables to the scope of the methods. Those are subject
to race conditions if not protected appropriately. Unfortunately iContract has no
knowledge of the context in which it is being used and thus can not automate this
reasoning.

5.4: Discussion

iContract is a prototype version which has helped to uncover a number of issues
in providing design by contract to Java developers:

� In extreme cases contract expressions may have to be propagated to classes
from four di�erent types sources: class extension, interface implementation,
interface extension and via innerclasses.

� If absent, default constructors (which check the class invariants) are added to
classes explicitly.

� Type inference capabilities are required to support \old-value"- and \return
value"-references in post-conditions (to enable storage of temporary values)
as well as universal and existential quanti�ers in invariants, pre- and post-
conditions (to enable proper casting).

� A rule had to be established that instance variables, referred to in contract
expressions, must not be private as this would prevent the evaluation of the
supertype contracts propagated into subtypes.

� Prevent the non-terminating recursive invariant check problem using a thread-
safe mechanism.

� Prevent public method invariants from being checked, if public methods are
called from private ones.

� A suitable mechanism to store the contract information of types outside their
source-code de�nition has been developed to allow the distribution of instru-
mented and extendable libraries without requiring the libraries source-code to
be distributed (binary contract repository).

6: Related work

The industrial availability of design by contract was pioneered by the ISE Ei�el
implementation which still is the only commercial OO language with full support
for invariant, pre- and postcondition instrumentation of class hierarchies [1].

The latest UML version 1.1 [2] de�nes a language suitable to specify invariants,
pre- and postconditions. Unlike Ei�el, UML supports quanti�cation operators. It
does however not address: (i) shallow-copies of \entry-values", (ii) the semantics
of contracts on type extension relations and (iii) the potential of recursive contract
checks.

7: Future work

iContract provides bene�ts to a wide range of system- and application-level de-
velopers. Further support for proposed Java capabilities such as \type parameter-
isation" (templates) [3], [4] is planned. Besides this extensions, four main areas of
future work have been identi�ed:

� integration of iContract support into common integrated development envi-
ronments (IDEs).

� use the javadoc template features [7] to automatically create up-to-date html
documentation of contract annotated Java sourcecode.

� extended support for speci�cation of collection properties, in compliance to
the UML Object Constraint Language [2].

� extensions towards support for speci�cation of temporal system properties [5],
[6] by introduction of temporal logic operators in contract-expressions of class
invariants.

8: Conclusions

This paper describes design by contract extensions of the Java programming
language and a prototype preprocessor implementation. Invariants, pre- and post-
conditions are speci�ed as part of the documentation comments. Three new tags
are introduced: @invariant, @pre and @post which are used to specify class- and
interface invariants as well as method pre- and postconditions. Despite these lan-
guage extensions, annotated programs remain fully compatible with Java compilers
and the javadoc tool.

The prototype implementation supports design by contract over class hierarchies
as well as interface-implementation, interface-extension and innerclass relations. In
line with UML/OCL [2], invariant, pre- and postcondition expressions may include
quanti�ed expressions and postconditions may refer to method return- and \en-
try" values. The use of tagged paragraphs facilitates contract documentation using
standard Java tools such as javadoc [7].

Developers can adopt design by contract using iContract as an incremental, risk-
free approach to explicitly and unambiguously specify the assumptions and promises
of their packages.

The prototype implementation is available free of charge through
http://www.promigos.ch/kramer.

References

[1] Meyer Bertrand.Object Oriented Software Construction . Prentice Hall, 2nd edition,
1997.

[2] Rational Software Corp. Uni�ed Modeling Language, Object Constraint Language
Speci�cation. available from http://www.rational.com/uml/, 1997.

[3] Odersky M., Wadler P. The Pizza Compiler. available from
http://www.math.luc.edu/pizza/, February 1997

[4] Agesen O., Freund S., Mitchell J. Adding Type Parameterization to the Java
Language. OOPSLA 1997.

[5] Nierstrasz O., Tsichritzis D., Eds. Object Oriented Software Composition. Prentice
Hall, 1995.

[6] Manna Z., Pnueli Amir. The Temporal Logic of Reactive and Concurrent Systems,
Speci�cation Springer Verlag, 1992.

[7] JavaSoft Inc. Javadoc Templates. JDK 1.2, Early Access. October 1997. available
from http://www.sun.com/products/jdk/1.2/docs/

