
CS:5810 Formal Methods in Software Engineering

Reasoning About Programs in Dafny

Copyright 2020-21, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of Iowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Is this program fragment correct?

x = 0;
y = a;
while (y > 0) {

x = x + b;
y = y − 1;

}

Recall: A program can only be said to be correct with respect to a
specification

Program Correctness

Correctness

Is this program fragment correct with respect to the following
specification?

“Given integers a and b, the program produces in x the product of a
and b”

x = 0;
y = a;
while (y > 0) {

x = x + b;
y = y − 1;

}

Correctness

Is this program fragment correct with respect to the following
specification?

“Given positive integers a and b, the program produces in x the
product of a and b”

x = 0;
y = a;
while (y > 0) {

x = x + b;
y = y − 1;

}

Specification of example program:
“Given positive integers a and b, the program produces in x the product
of a and b”

requires a and b to be positive integers
ensures x is the product of a and b

Precondition: caller needs to
ensure this to get a
meaningful result

Postcondition: callee
guarantees this when
precondition is met

Design by Contract

Timsort

§ Timsort is a sorting algorithm developed for Python by Tim Peters in
2002.

§ It uses a combination of merge sort and insertion sort.

§ It was designed to perform well on real-world data (with runs of
descending values, and of non-descending values).

§ Ported to Java 1.7 (java.util.Collections.sort and
java.util.Arrays.sort) in 2011.

§ Default sorting algorithm for Android SDK, Oracle’s JDK and Open
JDK.

Timsort bug
Bug in Timsort discovered in 2015.

leads to

Stijn de Gouw
CWI, The Netherlands

Formal verification

To formally verify a program you need

– A formal (i.e., mathematical) specification

– A formal proof

– Automated tools (Timsort found using the KeY tool)

– Expertise

Learning about specification and proof sharpens thinking

Formal verification

Some program verification tools

• KeY, OpenJML – Java
• VCC, Verifast, Smack – C
• Spec# – C#
• Stainless, Sireum – Scala

• Why3 – WhyML
• Dafny – Dafny

Formal verification

Krakatoa – Java Frama-C – C SPARK – Ada

Why3

Dafny

C# Javascript Go . . .

Educational objectives

Learn how to

• specify precisely what a program is supposed to do

• verify that a program behaves as specified

• derive a program that behaves as specified

• use the Dafny programming language and verifier for that

Introduction to Dafny
method Triple(x: int) returns (r: int)

ensures r == 3 * x
{

var y := 2 * x;
r := x + y;

}

The caller should not be able to see a method’s body,
only its specification

The specification describes the method’s behavior,
abstracting from the details of the method’s body

Introduction to Dafny
method Triple(x: int) returns (r: int)

ensures r == 3 * x
{

var y := Double(x);
r := x + y;

}

method Double(x: int) returns (r: int)
ensures r == 2 * x

Introduction to Dafny
method Triple(x: int) returns (r: int)

requires x >= 0
ensures r == 3 * x

{
var y := Double(x);
r := x + y;

}

method Double(x: int) returns (r: int)
requires x >= 0
ensures r == 2 * x

Introduction to Dafny
method Triple(x: int) returns (r: int)

ensures r == 3 * x
{

if x >= 0 {
var y := Double(x); r := x + y;

} else {
var y := Double(-x); r := x - y;

}
}

method Double(x: int) returns (r: int)
requires x >= 0
ensures r == 2 * x

Logic in Dafny
true false
!A “not A”
A && B “A and B”
A || B “A or B”

A ==> B “A implies B” or “A only if B”
A <==> B “A if and only if B”

Precedence order: ! && || ==> <==>

forall x :: A “for all x, A is true”
exists x :: A “there exists an x such that A is true"

Program state
method MyMethod(x: int) returns (y: int)

requires x >= 10
ensures y >= 25

{
var a := x + 3;
var b := 12;
y := a + b;

}

The program variables x, y, a, and b, collectively constitute
the method’s state

Note: not all program variables are in scope the whole time

Floyd logic
method MyMethod(x: int) returns (y: int)

requires x >= 10
ensures y >= 25

{
// here, we know x >= 10
var a := x + 3;
// here, a == x+3 && x >= 10
var b := 12;
// here, a == x+3 && x >= 10 && b == 12
y := a + b;
// here, a == x+3 && x >= 10 && b == 12 &&
// y == a + b

}

Floyd logic
method MyMethod(x: int) returns (y: int)

requires x >= 10
ensures y >= 25

{
// here, we know x >= 10
var a := x + 3;
// here, a == x+3 && x >= 10
var b := 12;
// here, a == x+3 && x >= 10 && b == 12
y := a + b;
// here, a == x+3 && x >= 10 && b == 12 &&
// y == a + b

} Last constructed condition implies
the required postcondition

Floyd logic
method MyMethod(x: int) returns (y: int)

requires x >= 10
ensures y >= 25

{
// here, we want x + 3 + 12 >= 25
var a := x + 3;
// here, we want a + 12 >= 25
var b := 12;
// here, we want a + b >= 25
y := a + b;
// here, we want y >= 25

}

Floyd logic
method MyMethod(x: int) returns (y: int)

requires x >= 10
ensures y >= 25

{
// here, we want x + 3 + 12 >= 25
var a := x + 3;
// here, we want a + 12 >= 25
var b := 12;
// here, we want a + b >= 25
y := a + b;
// here, we want y >= 25

}

Last calculated
condition is implied
by the stated
precondition

Exercise 1
Consider a method with the type signature below which returns in s to
the sum of x and y and in m the maximum of x and y:

method MaxSum(x: int, y: int) returns (s: int, m: int)

Write the postcondition specification for this method

Exercise 2

Consider a method that attempts to reconstruct the arguments x and y
from the return values of MaxSum in Exercise 1. In other words,
consider a method with the following type signature and same
postcondition as the method of Exercise 1:

method ReconstructFromMaxSum(s: int, m: int)
returns (x: int, y: int)

This method cannot be implemented. Write an appropriate
precondition for the method that allows you to implement it.

