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Alloys Constraints

• Signatures and fields resp. define 
classes (of atoms) and relations between them

• Alloy models can be refined further by adding formulas expressing 
additional constraints over those classes and relations

• Several operators are available to express both logical and relational
constraints
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Logical Operators
The usual logical operators are available, often in two forms:

• not _ ! _ (Boolean) negation
• _ and _ _ && _ conjunction
• _ or _ _ || _ disjunction
• _ implies _ _ => _ implication
• else _ alternative
• _ iff _ _ <=> _ equivalence
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Quantifiers

Alloy includes a rich collection of quantifiers

all x: S | F states that F holds for every x in S

some x: S | F states that F holds for some x in S

no x: S | F states that F holds for no x in S

lone x: S | F states that F holds for at most one x in S

one x: S | F states that F holds for exactly one x in S
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Quantifiers

Alloy includes a rich collection of quantifiers

all x: S | F (e.g., all m : Man | m in Person)

some x: S | F (e.g., some p : Person | p in Man) 

no x: S | F (e.g., no p : Person | m in Man & Woman)

lone x: S | F (e.g., lone m : Man | m in Matt.children) 

one x: S | F (e.g., one m : Woman | m in Matt.children)
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Everything is a Relation in Alloy

• There are no scalars 
– We never speak directly about elements (or  tuples) of relations
– Instead, we can use singleton unary relations:

one sig Matt extends Man {}

• Quantified variables always denote singletons:
all x : S | … x …

x = {t} for some element t of S
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Predefined Set Constants
There are three predefined set constants in Alloy:
• none :  empty set
• univ :  universal set of all atoms
• ident :  identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)}
Woman = {(W0),(W1)}

the constants have the values
none = {}
univ = {(M0),(M1),(M2),(W0),(W1)}
ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}
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Set Operators and Predicates

_ + _ union
_ & _ intersection
_ - _ difference
_ in _ subset
_ = _ equality
_ != _ disequality

Example. Matt is a married man:
Matt in (Married & Man)
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Relational Operators

_ -> _ arrow (cross product)
~ _ transpose
_ . _ dot join
_[_] box join 
^ _ transitive closure
* _ reflexive-transitive closure
_ <: _ domain restriction
_ :> _ image restriction
_ ++ _ override
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Arrow Product
p -> q
• p and q are two relations
• p -> q is the relation you get by taking every combination of a tuple from p and 

a tuple from q and concatenating them (same as flat cross product)

Examples
Name = {(N0),(N1)}
Addr = {(D0),(D1)}
Book = {(B0)}

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}
Book -> Name -> Addr = {(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}
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Transpose
~ p

take the mirror image of the relation p,
i.e., reverse the order of atoms in each tuple

Example
• p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}
• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the 
children relation?

~children
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Relational Composition (Join)
p.q
• p and q are two relations that are not both unary
• p.q is the relation you get by taking 

every combination of a tuple from p and a tuple from q and 
adding their join, if it exists
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How to join tuples?

• What is the join of theses two tuples?
(a1,...,am) and (b1,...,bn)

– If am !"b1 then the join is undefined
– If am = b1 then it is: (a1,...,am-1,b2,...,bn)

Example
– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What about (a).(a)?  
t1.t2 is not defined if t1 and t2 are both unary tuples
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Examples
• to maps a message to the name(s) it should be sent to
• address maps names to addresses

to = {(M0,N0),(M0,N2)
(M1,N2),(M2,N3)}

address = {(N0,D0),
(N0,D1),(N1,D1),(N2,D3)}

to.address maps a message to the address(es) it 
should be sent to

to.address = {(M0,D0),
(M0,D1),(M0,D3),(M1,D3)}
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Exercise
What’s the result of these join applications?

1. {(a,b)}.{(c)}
2. {(a)}.{(a,b)}
3. {(a,b)}.{(b)}
4. {(a)}.{(a,b,c)}
5. {(a,b,c)}.{(c,e),(c,d),(b,c)}
6. {(a,b)}.{(a,b,c)}
7. {(a,b,c,d)}.{(d,e,f),(d,a)}
8. {(a)}.{(b)}
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Exercises
• Given a relation addr of arity 4 that contains the tuple b->n->a->t when book b

maps name n to address a at time t, and given a specific book B and a time T:
– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),(B0,N1,D2,T0),(B0,N1,D2,T1),

(B1,N2,D3,T0), (B1,N2,D4,T1)
}

– T = {(T1)}         B = {(B0)}

The expression B.addr.T is the name-address mapping of book B at time T. 
What is the value of B.addr.T ?

• When p is a binary relation and q is a ternary relation, what is the arity of the 
relation p.q ? 

• Join is not associative (i.e., (p.q).r and p.(q.r) are not always equivalent), 
why ? 
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Example: Family Structure
abstract sig Person {

children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {
spouse: one Married 

}
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Example: Family Structure

• How would you use join to find Matt’s children or 
grandchildren ?

– Matt.children // Matt’s children
– Matt.children.children // Matt’s grandchildren

• What if we want to find Matt’s descendants?
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { spouse: one Married }



Example: Family Structure

Every married man (woman) has a wife (husband)

One’s spouse can’t be one’s sibling
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Example: Family Structure

Every married man (woman) has a wife (husband)

all p : Married |
(p in Man => p.spouse in Woman) 
and
(p in Woman => p.spouse in Man)

One’s spouse can’t be one’s sibling

no p : Married | 
p.spouse in p.siblings
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Box Join
p[q]

– Semantically identical to dot join, but takes its arguments in different order

p[q] ≡ q.p

Example. Matt’s children or grandchildren?

– children[Matt] ≡ Matt.children
– children.children[Matt] ≡ (children.children)[Matt]

≡ Matt.(children.children)
– children[children[Matt]] ≡ children[Matt.children]

≡ (Matt.children).children
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Transitive Closure
^ r
– Intuitively, the transitive closure of a relation r : S -> S is what you get when 

you keep navigating through r until you can’t go any farther 

– Formally, ^r is the smallest transitive relation of type S -> S that contains r
^r = r + r.r + r.r.r + …
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(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7)

r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7) ^r
(S0,S2)
(S0,S3)
(S1,S3)



Example: Family Structure
• What if we want to find Matt’s ancestors or descendants ?

• How would you express the constraint 
“No person can be their own ancestor ”

22



Example: Family Structure
• What if we want to find Matt’s ancestors or descendants ?

– Matt.^children // Matt’s descendants
– Matt.^(~children) // Matt’s ancestors
– ^(children).Matt // also Matt’s ancestors

• How would you express the constraint 
“No person can be their own ancestor ”

no p : Person | p in p.^(~children)
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Domain and Image Restrictions
The restriction operators are used to filter relations to a given domain or 
image

If s is a set and r is a relation then
• s <: r contains tuples of r starting with an element in s
• r :> s contains tuples of r ending with an element in s

Example
Man = {(M0),(M1),(M2),(M3)}           Woman = {(W0),(W1)}

children = {(M0,M1),(M0,M2),(M3,W0),(W1,M1)}

// father-child
Man <: children = {(M0,M1),(M0,M2),(M3,W0)}   
// parent-son
children :> Man = {(M0,M1),(M0,M2),(W1,M1)}
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Reflexive-transitive closure
*r ≡ ^r + iden :> S     for r : S -> S
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(S0,S1)
(S1,S2)
(S2,S3)
(S4,S5)

r *r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S5)
(S0,S2)
(S0,S3)
(S1,S3)
(S0,S0)
(S1,S1)
(S2,S2)
(S3,S3)
(S4,S4)
(S5,S5)

^r

iden :> S

*r is the smallest reflexive and transitive relation of type S -> S that contains r

S = { S0, …, S5 }



Override
p ++ q
– p and q are two relations of arity two or more
– the result is like the union between p and q except that tuples of q can replace 

tuples of p:
any tuple in p that matches a tuple in q starting with the same element is 
dropped

– p ++ q ≡ p – (domain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}
– newAddr = {(N1,D4),(N3,D3)}
– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}
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Operator Precedence
~  *  ^
.
[ ]
<:  :>
->
&
++
#
+  -
no  some  lone  one  set // multiplicities
=  !=  in !in
!  not
&&  and
=> implies  else
<=>  iff
||  or
let  all  no  some  lone  one // binders
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Parsing Conventions

• All binary operators associate to the left, except for implication
which associates to the right
Ex. a & b & c is parsed as (a & b) & c 

p => q => r is parsed as p => (q => r)

• In an implication, an else-clause is associated with its closest then-clause
Ex. p => q => r else s is parsed as p => (q => r else s)

Note: The scope of a quantifier extends as far as possible to the right
Ex. all x : A | p & q => r  is parsed as all x : A | (p & q => r) 
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Example: Family Structure
How would you express the constraint 
“No person can have more than one father and mother ”?
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Example: Family Structure
How would you express the constraint 

“No person can have more than one father and mother ”?

all p: Person | 
((lone (children.p & Man)) and
(lone (children.p & Woman)))

Equivalently:

all p: Person | 
((lone (Man <: children).p) and
(lone (Woman <: children).p))
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Example: Family Structure
How would you express the constraint 

“No person can have more than one father and mother ”?

all p: Person | 
lone children.p & Man and
lone children.p & Woman

Equivalently:

all p: Person | 
lone (Man <: children).p and
lone (Woman <: children).p
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Set Comprehension
{ x : S | F }
– the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people 
that have the same parents as Matt?

(assuming Person has a  parents field) 
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Set Comprehension
{ x : S | F }
– the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people 
that have the same parents as Matt?

{ q: Person | q.parents = Matt.parents }

(assuming Person has a  parents field) 
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Example: Family Structure
How would you express the constraint 
“A person P’s siblings are those people, other than P, with the same 
parents as P”
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Example: Family Structure
How would you express the constraint 
“A person P’s siblings are those people, other than P, with the same 
parents as P”

all p: Person | 
p.siblings = { q: Person | p.parents = q.parents } - p
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Let 
You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)
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Let 
You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

all p: Married |
let q = p.spouse | 

(p in Man => q in Woman) and
(p in Woman => q in Man)
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Let 
You can factor expressions out:

let x = e { A1 … An }

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

all p: Married |
let q = p.spouse { 

p in Man => q in Woman
p in Woman => q in Man

}
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Exercise
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Write facts stating the following:

1. Two married people have the same children

2. Siblings have the same father and the same mother

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Exercise
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Write facts stating the following:

1. Two married people have the same children

all p: Married | p.children = p.spouse.children

2. Siblings have the same father and the same mother

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Exercise
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Write facts stating the following:

1. Two married people have the same children

2. Siblings have the same father and the same mother

all p: Person | all q: p.siblings {
children.p & Man = children.(p.siblings) & Man
children.p & Woman = children.(p.siblings) & Woman

}

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
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