
CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 5
Part 2

Copyright 2001-21, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys Constraints

• Signatures and fields resp. define
classes (of atoms) and relations between them

• Alloy models can be refined further by adding formulas expressing
additional constraints over those classes and relations

• Several operators are available to express both logical and relational
constraints

1

Logical Operators
The usual logical operators are available, often in two forms:

• not _ ! _ (Boolean) negation
• _ and _ _ && _ conjunction
• _ or _ _ || _ disjunction
• _ implies _ _ => _ implication
• else _ alternative
• _ iff _ _ <=> _ equivalence

2

Quantifiers

Alloy includes a rich collection of quantifiers

all x: S | F states that F holds for every x in S

some x: S | F states that F holds for some x in S

no x: S | F states that F holds for no x in S

lone x: S | F states that F holds for at most one x in S

one x: S | F states that F holds for exactly one x in S

3

Quantifiers

Alloy includes a rich collection of quantifiers

all x: S | F (e.g., all m : Man | m in Person)

some x: S | F (e.g., some p : Person | p in Man)

no x: S | F (e.g., no p : Person | m in Man & Woman)

lone x: S | F (e.g., lone m : Man | m in Matt.children)

one x: S | F (e.g., one m : Woman | m in Matt.children)

4

Everything is a Relation in Alloy

• There are no scalars
– We never speak directly about elements (or tuples) of relations
– Instead, we can use singleton unary relations:

one sig Matt extends Man {}

• Quantified variables always denote singletons:
all x : S | … x …

x = {t} for some element t of S

5

Predefined Set Constants
There are three predefined set constants in Alloy:
• none : empty set
• univ : universal set of all atoms
• ident : identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)}
Woman = {(W0),(W1)}

the constants have the values
none = {}
univ = {(M0),(M1),(M2),(W0),(W1)}
ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}

6

Set Operators and Predicates

_ + _ union
_ & _ intersection
_ - _ difference
_ in _ subset
_ = _ equality
_ != _ disequality

Example. Matt is a married man:
Matt in (Married & Man)

7

operators

predicates

Relational Operators

_ -> _ arrow (cross product)
~ _ transpose
_ . _ dot join
[] box join
^ _ transitive closure
* _ reflexive-transitive closure
_ <: _ domain restriction
_ :> _ image restriction
_ ++ _ override

8

Arrow Product
p -> q
• p and q are two relations
• p -> q is the relation you get by taking every combination of a tuple from p and

a tuple from q and concatenating them (same as flat cross product)

Examples
Name = {(N0),(N1)}
Addr = {(D0),(D1)}
Book = {(B0)}

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}
Book -> Name -> Addr = {(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

9

Transpose
~ p

take the mirror image of the relation p,
i.e., reverse the order of atoms in each tuple

Example
• p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}
• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the
children relation?

~children

10

Relational Composition (Join)
p.q
• p and q are two relations that are not both unary
• p.q is the relation you get by taking

every combination of a tuple from p and a tuple from q and
adding their join, if it exists

11

How to join tuples?

• What is the join of theses two tuples?
(a1,...,am) and (b1,...,bn)

– If am !"b1 then the join is undefined
– If am = b1 then it is: (a1,...,am-1,b2,...,bn)

Example
– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What about (a).(a)?
t1.t2 is not defined if t1 and t2 are both unary tuples

12

Not defined !

Examples
• to maps a message to the name(s) it should be sent to
• address maps names to addresses

to = {(M0,N0),(M0,N2)
(M1,N2),(M2,N3)}

address = {(N0,D0),
(N0,D1),(N1,D1),(N2,D3)}

to.address maps a message to the address(es) it
should be sent to

to.address = {(M0,D0),
(M0,D1),(M0,D3),(M1,D3)}

13

M2M1M0

N3N2N1N0

D3D1D0

to
address
to.address

Exercise
What’s the result of these join applications?

1. {(a,b)}.{(c)}
2. {(a)}.{(a,b)}
3. {(a,b)}.{(b)}
4. {(a)}.{(a,b,c)}
5. {(a,b,c)}.{(c,e),(c,d),(b,c)}
6. {(a,b)}.{(a,b,c)}
7. {(a,b,c,d)}.{(d,e,f),(d,a)}
8. {(a)}.{(b)}

14

Exercises
• Given a relation addr of arity 4 that contains the tuple b->n->a->t when book b

maps name n to address a at time t, and given a specific book B and a time T:
– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),(B0,N1,D2,T0),(B0,N1,D2,T1),

(B1,N2,D3,T0), (B1,N2,D4,T1)
}

– T = {(T1)} B = {(B0)}

The expression B.addr.T is the name-address mapping of book B at time T.
What is the value of B.addr.T ?

• When p is a binary relation and q is a ternary relation, what is the arity of the
relation p.q ?

• Join is not associative (i.e., (p.q).r and p.(q.r) are not always equivalent),
why ?

15

Example: Family Structure
abstract sig Person {

children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {
spouse: one Married

}
16

Example: Family Structure

• How would you use join to find Matt’s children or
grandchildren ?

– Matt.children // Matt’s children
– Matt.children.children // Matt’s grandchildren

• What if we want to find Matt’s descendants?

17

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { spouse: one Married }

Example: Family Structure

Every married man (woman) has a wife (husband)

One’s spouse can’t be one’s sibling

18

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Example: Family Structure

Every married man (woman) has a wife (husband)

all p : Married |
(p in Man => p.spouse in Woman)
and
(p in Woman => p.spouse in Man)

One’s spouse can’t be one’s sibling

no p : Married |
p.spouse in p.siblings

19

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Box Join
p[q]

– Semantically identical to dot join, but takes its arguments in different order

p[q] ≡ q.p

Example. Matt’s children or grandchildren?

– children[Matt] ≡ Matt.children
– children.children[Matt] ≡ (children.children)[Matt]

≡ Matt.(children.children)
– children[children[Matt]] ≡ children[Matt.children]

≡ (Matt.children).children
20

Transitive Closure
^ r
– Intuitively, the transitive closure of a relation r : S -> S is what you get when

you keep navigating through r until you can’t go any farther

– Formally, ^r is the smallest transitive relation of type S -> S that contains r
^r = r + r.r + r.r.r + …

21

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7)

r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7) ^r
(S0,S2)
(S0,S3)
(S1,S3)

Example: Family Structure
• What if we want to find Matt’s ancestors or descendants ?

• How would you express the constraint
“No person can be their own ancestor ”

22

Example: Family Structure
• What if we want to find Matt’s ancestors or descendants ?

– Matt.^children // Matt’s descendants
– Matt.^(~children) // Matt’s ancestors
– ^(children).Matt // also Matt’s ancestors

• How would you express the constraint
“No person can be their own ancestor ”

no p : Person | p in p.^(~children)

23

Domain and Image Restrictions
The restriction operators are used to filter relations to a given domain or
image

If s is a set and r is a relation then
• s <: r contains tuples of r starting with an element in s
• r :> s contains tuples of r ending with an element in s

Example
Man = {(M0),(M1),(M2),(M3)} Woman = {(W0),(W1)}

children = {(M0,M1),(M0,M2),(M3,W0),(W1,M1)}

// father-child
Man <: children = {(M0,M1),(M0,M2),(M3,W0)}
// parent-son
children :> Man = {(M0,M1),(M0,M2),(W1,M1)}

24

Reflexive-transitive closure
*r ≡ ^r + iden :> S for r : S -> S

25

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S5)

r *r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S5)
(S0,S2)
(S0,S3)
(S1,S3)
(S0,S0)
(S1,S1)
(S2,S2)
(S3,S3)
(S4,S4)
(S5,S5)

^r

iden :> S

*r is the smallest reflexive and transitive relation of type S -> S that contains r

S = { S0, …, S5 }

Override
p ++ q
– p and q are two relations of arity two or more
– the result is like the union between p and q except that tuples of q can replace

tuples of p:
any tuple in p that matches a tuple in q starting with the same element is
dropped

– p ++ q ≡ p – (domain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}
– newAddr = {(N1,D4),(N3,D3)}
– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}

26

Operator Precedence
~ * ^
.
[]
<: :>
->
&
++
#
+ -
no some lone one set // multiplicities
= != in !in
! not
&& and
=> implies else
<=> iff
|| or
let all no some lone one // binders

27

Low

High

relations

formulas

Parsing Conventions

• All binary operators associate to the left, except for implication
which associates to the right
Ex. a & b & c is parsed as (a & b) & c

p => q => r is parsed as p => (q => r)

• In an implication, an else-clause is associated with its closest then-clause
Ex. p => q => r else s is parsed as p => (q => r else s)

Note: The scope of a quantifier extends as far as possible to the right
Ex. all x : A | p & q => r is parsed as all x : A | (p & q => r)

28

Example: Family Structure
How would you express the constraint
“No person can have more than one father and mother ”?

29

Example: Family Structure
How would you express the constraint

“No person can have more than one father and mother ”?

all p: Person |
((lone (children.p & Man)) and
(lone (children.p & Woman)))

Equivalently:

all p: Person |
((lone (Man <: children).p) and
(lone (Woman <: children).p))

30

Example: Family Structure
How would you express the constraint

“No person can have more than one father and mother ”?

all p: Person |
lone children.p & Man and
lone children.p & Woman

Equivalently:

all p: Person |
lone (Man <: children).p and
lone (Woman <: children).p

31

Set Comprehension
{ x : S | F }
– the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people
that have the same parents as Matt?

(assuming Person has a parents field)

32

Set Comprehension
{ x : S | F }
– the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people
that have the same parents as Matt?

{ q: Person | q.parents = Matt.parents }

(assuming Person has a parents field)

33

Example: Family Structure
How would you express the constraint
“A person P’s siblings are those people, other than P, with the same
parents as P”

34

Example: Family Structure
How would you express the constraint
“A person P’s siblings are those people, other than P, with the same
parents as P”

all p: Person |
p.siblings = { q: Person | p.parents = q.parents } - p

35

Let
You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

36

Let
You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

all p: Married |
let q = p.spouse |

(p in Man => q in Woman) and
(p in Woman => q in Man)

37

Let
You can factor expressions out:

let x = e { A1 … An }

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

all p: Married |
let q = p.spouse {

p in Man => q in Woman
p in Woman => q in Man

}

38

Exercise

39

Write facts stating the following:

1. Two married people have the same children

2. Siblings have the same father and the same mother

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Exercise

40

Write facts stating the following:

1. Two married people have the same children

all p: Married | p.children = p.spouse.children

2. Siblings have the same father and the same mother

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Exercise

41

Write facts stating the following:

1. Two married people have the same children

2. Siblings have the same father and the same mother

all p: Person | all q: p.siblings {
children.p & Man = children.(p.siblings) & Man
children.p & Woman = children.(p.siblings) & Woman

}

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Acknowledgements

42

The family structure example is based on an example by
Daniel Jackson distributed with the Alloy Analyzer

