
The University of Iowa Fall 2021

CS:5810

Formal Methods in Software Engineering

Course Overview

Copyright 2021, Cesare Tinelli

These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their

current form or modified form without the express written permission of one of the copyright holders



2/9

STAFF

Instructor: Prof. Cesare Tinelli

TA: Robert Lorch



3/9

COURSE INFO AND MATERIAL

All information, including the syllabus, available at:
http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall21

Textbook (draft): Program Proofs by Rustan Leino, 2020

Class notes and additional reading material to be posted on
the website

Recorded lectures on UICapture

Announcements and discussions on Piazza

Submissions and grades on ICON

Check the course website and the Piazza website regularly!

http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall21


4/9

COURSE DESIGN GOALS

1. Learn about formal methods (FM) in software engineering

2. Understand how formal methods (FM) help produce
high-quality software

3. Learn about formal modeling and specification languages

4. Write and understand formal requirement specifications

5. Learn about main approaches in formal software verification

6. Know which formal methods to use and when

7. Use automated and interactive tools to verify models and
code



5/9

COURSE TOPICS

Software Specification
High-level design
System-level design (Model-based Development)
Code-level design

Main Software Validation Techniques
Model Checking:
often automatic, abstract
Deductive Verification:
typically semi-automatic, precise (source code level)
Abstract Interpretation:
automatic, correct, incomplete, terminating



6/9

COURSE ORGANIZATION

Course organized by level of specification

Emphasis on tool-based specification and validation
methods

A number of graded and ungraded exercises,
in class and at home

Hands-on homework where you specify, design, and verify

For each main topic
• An introductory homework assignment
• A team mini-project

1 midterm, 1 final exam

More details on the syllabus and the website



7/9

PART I: HIGH-LEVEL DESIGN

Language: Alloy
Lightweight modeling language for software design
Amenable to a fully automatic analysis
Aimed at expressing complex structural constraints and
behavior in a software system
Intuitive structural modeling tool based on relational logic
Automatic analyzer based on SAT solving technology

Learning Outcomes
Design and model software systems in the Alloy language
Check models and their properties with the Alloy Analyzer
Understand what can and cannot be expressed in Alloy



7/9

PART I: HIGH-LEVEL DESIGN

Language: Alloy
Lightweight modeling language for software design
Amenable to a fully automatic analysis
Aimed at expressing complex structural constraints and
behavior in a software system
Intuitive structural modeling tool based on relational logic
Automatic analyzer based on SAT solving technology

Learning Outcomes
Design and model software systems in the Alloy language
Check models and their properties with the Alloy Analyzer
Understand what can and cannot be expressed in Alloy



8/9

PART II: MODEL-BASED DEVELOPMENT

Language: Lustre
Executable specification language for synchronous reactive
systems
Designed for efficient compilation and formal verification
Used in safety-critical applications industry
Automatic analysis with tools based on model-checking
techniques

Learning Outcomes:
Write system and property specifications in Lustre
Perform simulations and verifications of Lustre models
Understand what can and cannot be expressed in Lustre



8/9

PART II: MODEL-BASED DEVELOPMENT

Language: Lustre
Executable specification language for synchronous reactive
systems
Designed for efficient compilation and formal verification
Used in safety-critical applications industry
Automatic analysis with tools based on model-checking
techniques

Learning Outcomes:
Write system and property specifications in Lustre
Perform simulations and verifications of Lustre models
Understand what can and cannot be expressed in Lustre



9/9

PART III: CODE-LEVEL SPECIFICATION

Language: Dafny
Programming language with specification constructs
Specifications embedded in source code as formal contracts
Tool support with sophisticated verification engines
Automated analysis based on theorem proving techniques

Learning Outcomes:
Write formal specifications and contracts in Dafny
Verify functional properties of Dafny programs with
automated tools
Understand what can and cannot be expressed in Dafny



9/9

PART III: CODE-LEVEL SPECIFICATION

Language: Dafny
Programming language with specification constructs
Specifications embedded in source code as formal contracts
Tool support with sophisticated verification engines
Automated analysis based on theorem proving techniques

Learning Outcomes:
Write formal specifications and contracts in Dafny
Verify functional properties of Dafny programs with
automated tools
Understand what can and cannot be expressed in Dafny


