
Case Study: Hotel Lock System

Copyright 2007-20 Laurence Pilard, and Cesare Tinelli.
Produced by Cesare Tinelli from notes originally written by Laurence Pilard at the University of Iowa. These notes are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are
prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holder.

CS:5810
Formal Methods in

Software Engineering

Acknowledgments

These notes are based on an Alloy
example in the following book:

[Jack06] Daniel Jackson. Software abstractions –
Logic, Language, and Analysis. The MIT press,
2006.

2CS:5810 -- Formal Methods in Software Engineering Fall 2020

The Task

• Model in Alloy the disposable card key
system used in most hotels for locking and
unlocking guest rooms

• The system uses recordable locks, which
prevent previous guests from entering a
room once its has been re-assigned

• We will model both static and dynamic
aspects of the system

3CS:5810 -- Formal Methods in Software Engineering Fall 2020

Problem Description [Jack06]
“[…] the hotel issues a new key to the next
occupant, which recodes the lock, so that
previous keys will no longer work.

The lock is a simple, stand-alone unit […]
with a memory holding the current key
combination.

A hardware device […] [within the lock]
generates a sequence of pseudorandom
numbers.”

4CS:5810 -- Formal Methods in Software Engineering Fall 2020

Problem Description [Jack06]
“The lock is opened either by the current
key combination, or by its successor;

if a key with the successor is inserted, the
successor is made to be the current
combination, so that the old combination
will no longer be accepted.

This scheme requires no communication
between the front desk and the door lock.”

5CS:5810 -- Formal Methods in Software Engineering Fall 2020

Problem Description [Jack06]
“By synchronizing the front desk and the
door locks initially, and by using the same
pseudorandom generator,

the front desk can keep its records of the
current combinations in step with the doors
themselves.”

6CS:5810 -- Formal Methods in Software Engineering Fall 2020

Signatures and Fields

7

Signatures: Key, Room, Guest, FrontDesk

n Key refers to the key combination stored in the
magnetic strip of the card

n FrontDesk stores at any time a mapping
n between each room and its most recent key

combination (if any), and
n between each room and its current guest

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Signatures and Fields

8

n Room refers to the room lock

n Each room (lock) has
n an associated set of possible keys, and
n exactly one current key at a time

n Each key belongs to at most one room

n Each guest has zero or more keys at any time

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Signatures and Fields
module hotel
open util/ordering [Time] as TO
open util/ordering [Key] as KO

}

9CS:5810 -- Formal Methods in Software Engineering Fall 2020

Signatures and Fields
module hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}

sig Guest {
var keys: set Key

}

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

}

10CS:5810 -- Formal Methods in Software Engineering Fall 2020

Room Constraint

• Each key belongs to at most one room

fact {

all k: Key | lone keys.k

}

11CS:5810 -- Formal Methods in Software Engineering Fall 2020

New Key Generation

Given a key k and a set ks of keys,
nextKey returns the smallest key (in the key ordering)
in ks that follows k

fun nextKey [k: Key, ks: set Key]: set Key

{

KO/min [KO/nexts[k] & ks]

}

12CS:5810 -- Formal Methods in Software Engineering Fall 2020

Initial State
module examples/hotel

open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}

sig Guest {
var keys: set Key

}

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

}

13

No constraints

No rooms are occupied

the record of each room’s key
at the front desk is
synchronized with the current
combination of the lock itself

No guests have keys

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Initial State
pred init [] {

-- no guests have keys
no Guest.keys

-- the roster at the front desk shows
-- no room as occupied
no FrontDesk.occupant

-- the record of each room’s key at the
-- front desk is synchronized with the
-- current combination of the lock itself

all r: Room |
r.(FrontDesk.lastKey) = r.currentKey

}

14CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Guest Entry
pred entry [g: Guest, r: Room, k: Key]
• Preconditions:

– The key used to open the lock is one of the keys the guest is
holding

• Pre and Post Conditions:
– The key on the card

• either matches the lock’s current key, and the lock remains
unchanged (not a new guest), or

• matches its successor, and the lock is advanced (new guest)

• Frame conditions:
– no changes to the state of other rooms, or to the set of keys

held by guests, or to the records at the front desk

15CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Guest Entry
pred entry[g:Guest, r:Room, k:Key] {
-- the key used to open the lock is one of
-- the keys the guest is holding
k in g.keys
-- pre and post conditions
let ck = r.currentKey |

-- not a new guest
(k = ck and ck' = ck) or
-- new guest
(k = nextKey[ck, r.keys] and ck' = k)

-- frame conditions
noFrontDeskChange
noRoomChangeExcept[r]
noGuestChangeExcept[none]

}
16CS:5810 -- Formal Methods in Software Engineering Fall 2020

Frame Condition Predicates
pred noFrontDeskChange []
{

FrontDesk.lastKey' = FrontDesk.lastKey
FrontDesk.occupant' = FrontDesk.occupant

}

pred noRoomChangeExcept [rs: set Room]
{

all r: Room - rs |
r.currentKey' = r.currentKey

}

pred noGuestChangeExcept [gs: set Guest]
{

all g: Guest - gs | g.keys' = g.keys
}

17CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Check-out
pred checkout [g: Guest]

• Preconditions:
– the guest occupies one or more rooms

• Postconditions:
– the guest’s rooms become available

• Frame conditions:
– Nothing changes but the occupant relation

18CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Check-out
one sig FrontDesk {

lastKey: Room -> lone Key,
occupant: Room -> Guest

}

pred checkout [g: Guest]
{

let occ = FrontDesk.occupant | {
-- the guest occupies one or more rooms
some occ.g
-- the guest’s rooms become available
occ.' = occ – (Room -> g)

}
-- frame condition
FrontDesk.lastKey' = FrontDesk.lastKey
noRoomChangeExcept[none]
noGuestChangeExcept[none]

}

19CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Check-in
pred checkin [g: Guest, r: Room, k: Key]

• Preconditions:
– the room is available
– the input key is the successor of the last key in the

sequence associated to the room
• Postconditions:
– the guest holds the input key and becomes the new

occupant of the room
– the input key becomes the room’s current key

• Frame conditions:
– Nothing changes but the occupant relation and the guest’s

relations

20CS:5810 -- Formal Methods in Software Engineering Fall 2020

Hotel Operations: Check-in
pred checkin [g: Guest, r: Room, k: Key] {

let occ = FrontDesk.occupant |

let lk = FrontDesk.lastKey | {
-- the room has no current occupant
no r.occ
-- the input key is the successor of the last key in
-- the sequence associated to the room
k = nextKey[r.lk, r.keys]
-- the guest becomes the new occupant of the room
occ.t = occ + (r -> g)
-- the guest holds the input key
g.keys' = g.keys + k
-- the input key becomes the room’s current key
lk' = lk ++ (r -> k)

}
noRoomChangeExcept
noGuestChangeExcept[g]

}

21CS:5810 -- Formal Methods in Software Engineering Fall 2020

Trace Generation

• The first time step satisfies the
initialization conditions

• Any pair of consecutive time steps are
related by
– an entry operation, or
– a check-in operation, or
– a check-out operation

22CS:5810 -- Formal Methods in Software Engineering Fall 2020

Trace Generation
fact Traces {

init

always

some g: Guest, r: Room, k: Key |

entry[g, r, k] or

checkin[g, r, k] or

checkout[g]

}

23CS:5810 -- Formal Methods in Software Engineering Fall 2020

Analysis
• Let’s check if unauthorized entries are possible:
– If a guest g enters room r at time t, and the front desk

records show r as occupied at that time, then g must be
a recorded occupant of r.

assert noBadEntry {
always all r: Room, g: Guest, k: Key |

let o = r.FrontDesk.occupant |
(entry[g, r, k] and some o) implies

g in o
}

24CS:5810 -- Formal Methods in Software Engineering Fall 2020

Analysis
check noBadEntry for 3
but 2 Room, 2 Guest, 5 Time

• It is enough to check for problem already with just 2
guests and 2 rooms

• Time’s scope must be at least 5 because at least 4
time steps are needed to execute each operation
once.

• There is a counter-example
(see file dynamic/hotel1-elec.als)

25CS:5810 -- Formal Methods in Software Engineering Fall 2020

T0: Initial State

Initially, the current key of Room is Key0, which is also reflected
in the front desk’s record

26CS:5810 -- Formal Methods in Software Engineering Fall 2020

T1: Checkin Operation

Guest1 checks in to Room and receives key Key1; the occupancy
roster at the front desk is updated accordingly; Key1 is recorded
as the last key assigned to Room

27CS:5810 -- Formal Methods in Software Engineering Fall 2020

T2: Checkout Operation

Guest1 checks out, and the occupancy roster is cleared

28CS:5810 -- Formal Methods in Software Engineering Fall 2020

T3: Checkin Operation

Guest0 checks in to Room and receives key Key2; the occupancy
roster at the front desk is updated accordingly; Key2 is recorder
as the last key assigned to Room

29CS:5810 -- Formal Methods in Software Engineering Fall 2020

T4: Enter Operation

Guest1 presents Key1 to the lock of Room, and is admitted

30CS:5810 -- Formal Methods in Software Engineering Fall 2020

Necessary Restriction
There must be no intervening operation between a
guest’s check-in and room entry.

pred noIntervening [] {
always

all g: Guest, r: Room, k: Key |
checkin[g, r, k] implies

after entry[g, r, k]
}

31CS:5810 -- Formal Methods in Software Engineering Fall 2020

Conditional Assertion
Make assertion under noIntervening assumption

assert noBadEntry {

noIntervening =>

always all r: Room, g: Guest, k: Key |
let o = r.FrontDesk.occupant |

(entry[g, r, k] and some o) implies
g in o

}

32CS:5810 -- Formal Methods in Software Engineering Fall 2020

Analysis

• We check once again:
check noBadEntry for 3

but 2 Room, 2 Guest, 5 Time

– No counter-example (see file dynamic/hotel2-
elec.als)

• For greater confidence, we increase the scope:
check noBadEntry for 5

but 3 Room, 3 Guest, 20 Time

– No counter-examples

33CS:5810 -- Formal Methods in Software Engineering Fall 2020

