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Preface

This report is a delivery to The Danish Government’s railway authority, Trafik-
styrelsen, as a part of the Public Sector Consultancy service offered by the
Technical University of Denmark.

The purpose of the report is to give the reader an insight into the state-
of-the-art of formal methods. The reader is assumed to have some knowledge
about software development, but not on formal methods.

The background for the railway authorities’ interest in formal methods is
the fact that during the next decade a total renewal of the Danish signalling
infrastructure is going to take place. Central parts of the new systems will be
software components that must fulfill strong safety requirements: in order to
get the software certified at the highest Safety Integrity Levels of the Euro-
pean CENELEC standards for railway applications, the software providers are
expected to use formal methods.

Acknowledgements I would like to thank Kirsten Mark Hansen, Banedan-
mark, and Henrik Brogaard for useful comments to a draft of this document.
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1 Introduction

Software is being used more and more in almost all aspects of daily life, e.g. in
transportation, finance, health care, government, and telecommunications, and
the reliability of such software is critical for us, especially when failures may
lead to catastrophes where people die or values/money are lost. For instance,
when we go by train, it is vital for us that the software controlling the trains is
correct such that e.g. train collisions are avoided. As another example, when we
use a home banking system to make a bank transaction over the internet, it is
vital for us that the software controlling this is correct and secure such that the
transaction is executed as we have specified and nobody is able to misuse the
data we are sending e.g. to get unintended access to our bank account. Such
kind of software is rather complex and it is not an easy task to make it correct.
Experience from software development projects also shows that software is often
full of bugs leading to delays, cost overrun, usability problems etc. A famous
example is the Ariane 5 rocket explosion in 1996 that was due to a software bug
(a data conversion of a too large number). To help overcoming such problems, it
has been suggested to use formal methods in the development of critical systems.

This report provides a general introduction to the state-of-the-art of formal
methods for the development of safety-critical systems. It defines what is meant
by the term “formal methods” and describes what formal methods can be used
for. Examples of industrial applications are also given.

2 Formal methods

What are formal methods: In software engineering, formal methods are
mathematically based techniques and tools for the synthesis (i.e. development)
and analysis of software systems. Formal methods can be applied at various
points through the software development cycle. Formal methods can also be
used in reverse engineering to model and analyse existing systems. This doc-
ument will focus on formal methods for the specification of functional require-
ments and design, and for validation/verification which are the most common
forms of use of formal methods.

Why using formal methods: The use of formal methods is motivated by the
expectation that, as in other engineering disciplines1, performing appropriate
mathematical modelling and analysis can contribute to the correctness of the
resulting product. However, it should be noted that the use of formal methods
does not miraculously guarantee correctness, but can be used to increase the
level of correctness. Using formal methods in the specification and design phases
implies not only that more flaws are found, but also that they are found already
in these earlier phases rather than in the testing or maintenance phases. This is

1For instance, before building a bridge, constructional engineers will create a mathematical
model in order to analyse whether the bridge will be safe (will not crash) when exposed to
weather and traffics.
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also an important factor as the cost of repairing flaws is much higher in the later
phases than in the earlier phases, cf. e.g. the investigation reported in [LRRA98].

Where are formal methods used: Formal methods are usually only used
in the development of safety, business, and mission critical software where the
cost of faults is high. In section 5 examples of industrial applications will be
given.

Different levels of formal methods: Using formal methods does not neces-
sarily mean that one should make everything formal. The use of formal methods
can be more or less elaborate. The use can be classified at three levels according
to how formal the specification and verification activities are:

1. formal specification

2. formal specification and semi-formal verification

3. formal specification and formal verification

The choice of which level to use in the development of an application should
be decided based on how critical the application is and the available resources
(time, money, people having the right skills etc.) One may also choose to use
different levels for different components to be developed. For instance one could
decide to make a formal specification of the whole system, but only to use formal
verification for one critical function. Some standards require the use of formal
methods at such specific levels, see section 7.

3 Formal specification

This section first defines what is meant by the term “formal specification” and
it describes characteristics and advantages of formal specification. Then exam-
ples of important specification styles and specification languages are given, and
finally some small formal specification examples are given.

3.1 The notion of formal specification

What is a specification: A specification is a description of a product (either
to be build or existing). Specifications are used in many different engineering
disciplines including software engineering. In software engineering the products
that are specified are software. Associated with the notion of a specification,
there is the notion of what it means for a product to satisfy (fulfill/meet/conform
to/be compliant with) its specification.
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What is a formal specification: A most common practice in software de-
velopment is to use informal specifications, i.e. specifications written in natural
language or using some diagrams or pseudo code. A complement2 to informal
specification is formal specification. A specification is said to be formal if it is
expressed in a formal notation or a formal specification language, i.e. a language
that has a precise syntax (e.g. given by a BNF grammar) and for which every
sentence in the language has a unique mathematical meaning. The underlying
mathematical concepts are often simple, e.g. being based on mathematical logic
and set theory.

What are formal specifications used for: Formal specifications are, just
as informal specifications, used in the analysis and design phases of the software
development cycle to record requirements and design decisions, respectively.
They can be used as contracts or communication media between customer and
developers, and between developers. Besides being used as a base for design and
implementation, formal specifications can also be used as a base for generating
test cases, for simulation and for formal analysis of the described products in
order to predict their behaviour before they are implemented.

Why using formal specifications: The following subsections will further
characterize formal specifications as

• being abstract (and subject to refinement),

• being precise, and

• allowing for formal (mathematical) analysis

and explain the major advantages of that.

3.1.1 Abstraction and refinement

Specifications are characterized by being abstract in the sense that they omit
details that are not relevant for their purpose. For instance, architects use
floor plans, as the one shown in Figure 1, as specifications of buildings. The
floor plan is an abstraction of a building – for instance it omits details about
the building materials. Similarly, in software engineering, specifications omit
implementation details about the software they describe. How much is omitted
depends on where in the software development cycle the specification is used:
generally more is omitted in the earlier phases.

In the requirement analysis phase of the software development cycle a (re-
quirement) specification is created. This specification should give a description
of the requirements to the software system to be implemented. A good require-
ments specification describes what the software system should fulfil (in the form

2It should be stressed that formal specification should not replace informal specification,
but complement it. Section 3.1.2 will elaborate on that and also explain how the process of
making a formal specification helps improving the informal specification.
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Figure 1: Architects use drawings as specification of buildings.

of some desired properties), and not how it should accomplish that. It should
concentrate on essential details and defer complicated implementation details to
later phases. An example of an (informal) requirement specification of a sorting
function sort could be:

The sorting function sort should take a sequence of numbers as input
and return an ordered sequence of the same numbers.

This specification tells what the result of the sorting should be, but it does not
tell how sort should sort the numbers. (Later, in example 2, a corresponding
formal specification will be shown.)

As a consequence of abstraction, a specification may have several possible
implementations, i.e. there may be several products that satisfy (i.e. meet or con-
form to) the specification. For instance, in the architect example, a floor plan
may be implemented by several buildings differing with respect to the choice
of building materials, as also illustrated in Figure 1. Similarly, for the software
example above, the specification of the sorting function has many possible im-
plementations using different sorting algorithms (e.g. quick-sort and insertion
sort).

Often, during development of complex products, successively refined speci-
fications are constructed by introducing new aspects and limiting choices. For
instance, in the architect example, a floor plan that only specifies the place-
ment of walls, windows and door openings, may be refined into a more detailed
floor plan also showing the layers in the walls and the placement of electrical
installations, and it may be accompanied by additional drawings showing other
construction details and a description of building materials. Similarly, in soft-
ware engineering, stepwise refinement is used. Starting from the requirement
specification (that formalizes the informal requirements), at each step one con-
structs a more detailed (less abstract/more concrete) description of the system
and verifies it against the specification constructed in the previous step. Typ-
ically the last specification is a design specification that is so concrete that it
is easy to translate it into a programming language. Many formal specification
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languages have code generators that can automatically do the translation into
selected programming languages. The stepwise refinement process is illustrated
in Figure 2. The arrow named improve will be explained in section 3.1.2.

informal
requirements

specification1

formalize

specification

specification

translate

refine

refine

implementation

...

n

2

improve

Figure 2: Stepwise refinement of specifications.

3.1.2 Precision

Often specifications are expressed in natural language, as in the example of the
sorting function in section 3.1.1, or using some diagrams. However, such infor-
mal specifications have the disadvantage that they may be ambiguous, and/or
(unintentional) incomplete. For instance, in the sorting example, it is not clear
whether the numbers should be ordered with the smallest number first or last.
If a formal specification had been used instead, the specifier would have been
enforced to make a decision on that and express it in the specification. Gener-
ally, the use of mathematics in formal specifications has the advantage that it
enforces the specifier to think deeply about the problem, remembering all possible
cases. Furthermore, it has the advantage that the resulting formal specifications
are unambiguous as they have a unique mathematical meaning, and hence they
are not open to different interpretations. While formal specifications have these
advantages of being precise, informal specifications have the advantage of being
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more intuitive. Therefore, it is recommended to combine informal specifica-
tion with formal specification, obtaining the best of each. In the requirement
specification phase this is typically done by first capturing and formulating the
requirements informally, and then formalizing the informal requirements. Ex-
perience also shows that this formalization process often leads to the discovery
of ambiguities, incompleteness and inconsistencies in the informal requirements.
After the discovery of such problems, they should be resolved so that the formal
specification can be made and the informal description of requirements should
be changed accordingly as illustrated by the dotted arrow named improve in
Figure 2. As a consequence also the informal requirements become more precise.

3.1.3 Formal (mathematical) analysis

In contrast to informal specifications, formal specifications can be mathemat-
ically analysed as they are mathematically based. Hence, one can use math-
ematics to prove properties of a formal specification in order to validate the
specification and one can verify refinements of specifications.

Verification is the act of investigating whether a product (e.g. a software
module) is correct, i.e. satisfies (conforms to) its specification. When stepwise
refinement of specifications is used in software development as shown in Fig-
ure 2, verification is also done stepwise: in each step one verifies that the new
specification satisfies the previous specification. When the specifications are
formal, it has the advantage that it is possible to mathematically define what
it means for a specification to satisfy another specification3, and having defined
that, it is possible to use mathematics to verify satisfaction in the refinement
steps. When mathematics is used in the verification process, it is called formal
verification. The step from the last specification to the implementation can only
be formally verified, if the programming language used for the implementation
has been given a formal meaning, but this is only the case for some program-
ming languages such as Ada, and therefore the implementation step (that is
often performed by a code generator tool) is usually only informally verified.
However, often the last specification is so close to the implementation, that it
it is easy to be confident about the informal verification.

Verification is only concerned with the correctness of a product with right
to its specification. Another question is whether the specification correctly de-
scribes the problem to be solved. Validation is the act of investigating the
latter. Formal specifications can be validated formally by stating some prop-
erties (in the form of some mathematical statements) that are expected to be
consequences of the specification, and then using mathematics to prove that.
Formal specifications can also be validated by testing when the specifications
are executable.

In section 4 techniques for formal verification and validation will be ex-
plained.

3The definition of satisfaction depends on the formal specification language used. Satisfac-
tion basically means that all properties of the previous specification should be consequences
of (the properties of) the refined specification.
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3.2 Formal specification languages

Many formal specification languages exist. Like for programming languages,
there exist different specification languages that are suited for specifying differ-
ent kinds of systems (e.g. sequential programs or reactive, concurrent systems),
and they provide different styles (e.g. model-oriented or property-oriented) for
doing this.

3.2.1 Mathematical foundations of formal specification languages

Each formal specification language has its own underlying mathematical logical
framework consisting of a notion of (software) models, a notion of sentences
(also called statements or formulas) that can be used to express properties
about such models and a notion of what it means for a model to satisfy a
sentence. The models are mathematical abstractions of programs or systems.
Often mathematical structures such as numbers, sets and lists are used to rep-
resent data structures, and mathematical functions are used to represent pro-
cedures/methods/functions in programs, while so-called transition systems are
used to represent reactive systems (for an example of a transition system model,
see example 3 in section 4.2.2).

A specification can be a syntactic presentation of a model in which case it
is said to be model-oriented or it can be a syntactic presentation of collection
of sentences (and it then stands for all models that satisfy all the sentences) in
which case it is said to be property-oriented.

The framework usually also provides proof rules for how to construct proofs
for a sentence to be a consequence of other sentences or for a model to satisfy
a sentence.

3.2.2 Examples of formal specification languages

This section lists examples of notable specification languages that are all charac-
terized by having associated development methods and comprehensive computer-
based tool support.

Notable examples of model-oriented specification languages include: B [Abr96],
Z [WD96], VDM [Jon90, FL09], and VDM++ [FLM+05].

Notable examples of property-oriented specification languages include: CASL
[MHST08, CoF04, BM04], Maude [CDE+07], CafeOBJ [DF98], and temporal
logic languages.

For the specification of concurrent systems there is a class of languages called
process algebras. The most famous examples of these are CSP [Hoa85] and
CCS [Mil80]. Since their invention many specialized process algebras have been
invented.

Some languages include several styles. A notable example of this is the
RAISE Specification Language, RSL, [GHH+92, GHH+95, GH08] that includes
and integrates model-oriented specification, property-oriented specification, and
process algebra.
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3.3 Small specification examples

This section contains some small examples of formal specifications. It can be
skipped by readers not interested in technical details. For the convenience of
the reader, appendix A contains an explanation of the mathematical logical
operators used in the examples.

Example 1 Consider a railway station having entry signals S1 and S2 for two
conflicting routes. It is a requirement that the two signals must never show a
go aspect at the same time. A formal specification of this property can be given
by the following logical formula:

always(¬(S1 ∧ S2))

where S1 and S2 are Boolean variables that represent the state of the signals
such that they are true when the signals show a go aspect and false otherwise.
The formula says that it should always (i.e. for all (reachable) states) hold that
it is not the case that S1 and S2 are true (i.e. that the signals are green) at the
same time.

Example 2 Below is shown an example of a formal specification of a sorting
function sort that sorts a list l of n integers l(1), ..., l(n). (Here a list is used
as a mathematical abstraction that can later be realized by a data structure
such as an array in a programming language).

sort(l : Int∗) = l′ : Int∗

pre length(l) > 0

post isSorted(l′) ∧ isPermutation(l′,l)

where

• lenght(l) is a standard function giving the number of elements in a list
l

• isSorted(l′) =
(∀ i ∈ Int : 1 ≤ i ≤ length(l′) − 1 ⇒ l′(i) ≤ l′(i+1))

• isPermutation(l′,l) = (∀ e ∈ Int : count(e, l) = count(e, l′))

• count(e, l) is a function giving the number of times an integer e occurs
in a list l (can also be formally defined)

In the first line an interface for the function is given. From that one can see
that sort takes an integer list l as argument and gives (returns) a new integer
list l′. (Int is the symbol used for the set of all integers, Int∗ is the set of
all lists containing integers, and l : Int∗ means l belongs to the set Int∗.)
No function body is given for the function. Instead a so-called pre condition
after the keyword pre and two so-called post conditions after the keyword post
are given. The pre condition states under which circumstances it is legal to
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apply the function, and the post conditions state some properties that should
be fulfilled after the function has been applied (legally). The pre condition in
this example states that it is only legal to apply sort to a list l that is not
empty (otherwise it is not meaning-full to sort the list). The post condition
states that after the the sort function has been applied to a list l, the new list
l′ will be sorted in a numerical ascending order, i.e. it will hold that for any
two consecutive indices i and i+1 of the list, l′(i) will be less than or equal
to l′(i+1). It also states that the new list l′ is a permutation of l, i.e. for any
integer e it holds that the number of times e occurs in l is the same as the
number of times e occurs in l′.

There exist many algorithms satisfying this specification. One of them is the
following insertion sort algorithm:

sort(l : Int∗) =
variable i, j, newValue : Int
begin
for i := 2 to length(l) do
begin

newValue = l(i);

j := i;

while ((j > 1) ∧ (l(j−1) > newValue)) do
begin

l(j) := l(j−1);

j := j−1;

end;
l(j) := newValue;

end;
return l;

end

It should be possible to prove (or dis-prove) that the list returned by this
algorithm actually satisfies the requirements stated by the post condition when
applied to a list l that satisfies the pre condition. However, it is out of the scope
of this document to show such a proof. Instead, section 4.1 discusses general
issues concerning possible ways of making proofs.

4 Formal verification

Traditionally, software validation and verification has been done by techniques
such as code inspection and testing. Although these are useful techniques to
find bugs, they may not find all of them. For testing large systems this is due to
the fact that the number of possible system executions is usually so large that
it is only feasible to test a small amount of them.

When formal specifications are used in the specification and design phases,
it is possible to use formal verification techniques.

The advantages of formal verification are two-fold:
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• they consider all possible situations, and

• bugs can be found before the system is implemented, i.e. earlier than by
implementation testing.

A disadvantage is that the verification is performed on the specifications of the
system and not on the system it-self4. Therefore, formal verification is usually
seen as a supplement to testing and not as an alternative.

There are two major state-of-the-art approaches to formal verification: the-
orem proving and model checking. These will be described and compared in the
following sections.

4.1 Theorem proving

Theorem proving has its roots in mathematical logic and means the act of con-
structing a mathematical proof (a convincing mathematical argument) for a
mathematical statement to be true. If the act results in a proof, the statement
is known to be true and is said to be a theorem. If a proof is not found, one can’t
conclude that the statement is false. It might be the case that the statement is
false, but it could also be the case that the statement is actually true, but the
person or proof system used to search for a proof was not wise/powerful enough
to find a proof.

Mathematical proofs can be classified as follows according to their rigour:

• Semi-formal proofs: Semi-formal5 proofs are written using a mixture of
mathematical formulas and natural language, appealing to the intuition
of the reader, in the style most often used in math books. You have
probably seen such proofs during your school time, e.g. of Pythagoras’
theorem relating the lengths of the sides a, b and c of a right-angled
triangle. Provided that there are no flaws in a semi-formal proof, it should
in principle be possible to convert it into a formal proof.

• Formal proofs: Formal proofs are not using natural language, but are
expressed in a symbolic language (called a proof language) having a precise
syntax. A proof of a mathematical statement in some mathematical logic
consists of a sequence of argumentation steps. An argumentation step
consists of some premises (i.e. statements that are known to be true) and
a conclusion (a new statement) that can be drawn from the premises.
(The mathematical logic provides a number of (proof) rules for how one
can draw conclusions from premises.) The conclusion of one step can be
used as a premise in the following step(s). Eventually this leads to a
conclusion which is the statement that should be proved.

4This is normally the case, but it is also possible in some special cases to perform verification
directly on the code.

5What in this document is called semi-formal proofs, are by some mathematical logicians
called informal proofs. However, I prefer to call them semi-formal as they are mathematically
based.
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If the two approaches should be compared, it is much easier and faster
to make semi-formal proofs than formal proofs as the semi-formal proofs are
essential just sketches of some formal proofs. However, as semi-formal proofs
are sketches and natural language is used, there is the risk that they contain
flaws. The process of making formal proofs may be computer aided (as explained
in section 4.1.1) limiting the risk of flaws even more and making the process
faster and easier than if the formal proof should have been constructed by
hand, but still the process of making a computer aided formal proof is often
time-consuming and requires experience.

4.1.1 Computer based tools

The process of constructing formal proofs can be aided by computer based tools
(= computer programs):

• Proof checkers are programs that automatically can check whether a pos-
tulated proof is actually a correct proof of a given theorem. This is the
simplest form of tool and relatively easy to make.

• Interactive theorem provers are programs that can be used to interactively
construct a correct proof. This is the most common form of tool.

• Automated theorem provers are programs that (almost) automatically search
for a proof of a given theorem. Such tools are most difficult to create as
it is generally computationally hard to find a proof.

Examples of some notable proof checkers are MetaMath [Met] and Mizar [Miz].
Examples of some notable interactive theorem provers are the PVS [PVS], Is-
abelle/HOL [Isa], ACL2 [ACL] and Coq [Coq]. Examples of some notable au-
tomated theorem provers are Prover9 [Pro] and SPASS [SPA].

4.2 Model checking

Model checking [CGP99, BK08] is an automated approach to verify that a model
of a (usually concurrent, reactive) finite state system satisfies a formal specifi-
cation of requirements to the system. In this approach the models describe how
the state of the system may evolve over time6, and the requirements are some
constraints on how the state of the system is allowed to evolve over time. Tools
that automatically perform model checking are called model checkers.

4.2.1 The process of applying model checking

The process of applying model checking is shown in Figure 3. Given a system
that should be verified to meet some given informal requirements (some desired
properties of the system), the first step is to create a model of the system and
to formalize the requirements obtaining a formal specification of these (called

6Note, for concurrent, reactive systems, there are usually many different ways in which the
state may evolve over time.
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Figure 3: The process of model checking.

a property specification in the model checking community). The next step is
to use a model checker to check whether the model actually satisfies the prop-
erty specification. The model checker decides this by exhaustively exploring all
system states that can be reached according to the model and check that the
property specification holds for these. (The exhaustive exploration is possible
as only system models having a finite number of states are considered.) The
model checker returns information about whether the model satisfied the prop-
erty specification or not. In the latter case it will provide a counterexample, i.e.
a description of a run of the system (model) that leads to a state for which a
the property specification is not meet.

4.2.2 Models

In the model checking approach, a system model describes how the state of
the system may change over time. It is typically expressed in terms of so-
called finite-state automata (also called finite state machines) that describe the
(potential) possible states, the initial state, and the possible state transitions.
The models are abstractions that omit details irrelevant for checking the desired
properties.

Example 3 The following is an example of a model of a traffic light that
turns the red, the yellow, and the green lights on and off in a specific order,
as shown in Figure 4. The model is represented in the RSL-SAL specification
language [PG07]:
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init

warn_green

warn_red

turn_green

turn_red

Figure 4: States and state transitions of a traffic light.

transition system [ TrafficLightModel ]
local

red : Bool := true,
yellow : Bool := false,
green : Bool := false

in
[ warning green ]

red ∧ ∼yellow ∧ ∼green −→ yellow′ = true
⌈⌉⌊⌋
[ turn green ]

red ∧ yellow ∧ ∼green −→
red′ = false ∧ yellow′ = false ∧ green′ = true

⌈⌉⌊⌋
[ warning red ]

∼red ∧ ∼yellow ∧ green −→ yellow′ = true
⌈⌉⌊⌋
[ turn red ]

∼red ∧ yellow ∧ green −→
red′ = true ∧ yellow′ = false ∧ green′ = false

end

In this specification three Boolean variables, red, yellow, and green, are
declared. They are, in the following way, used to represent the state of the traffic
light: They are true when the red, yellow, and green lights are on, respectively,
and false otherwise. There are potentially 8 states of the system, corresponding
to the 8 possible combinations of values of the 3 variables. The variables are
initialized to true, false, and false, respectively. This means that the initial
state is the one where the red lamp is on and the yellow and the green lamps are
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off. There are four transition rules (separated by ⌈⌉⌊⌋ symbols) describing possible
changes of the state. The first rule, called [warning green] expresses that when
the red light is on and the yellow and green lights are off, it is possible that the
yellow light will be turned on. There are three more rules that in a similar
way express possible state transitions. In general a transition rule is of the
form precondition −→ postcondition, where precondition and postcondition are
logical conditions on the states (i.e. on values of the variables). In postcondition

primed versions of the variables are used. For states where precondition is true,
a transition into a state where postcondition is true may happen. Variables not
mentioned in postcondition are assumed not to be changed. For instance, in
[warning green] the values of the variables read and green are not changed
by the transition.

4.2.3 Property specifications

The property specification is typically expressed in some so-called temporal logic
language that can be used to express constraints on how the state of a system
may evolve over time. Temporal logics are essentially extensions of traditional
propositional logic7 (where the logical formulas contain variables, and logical
operators like ∼, ∨, ∧, and ⇒) with operators that refer to the behavior over
time. One can for instance use these logics to express

• safety properties that express that a system never reaches a bad state (e.g.
where two trains collide),

• lifeness/progress properties that express that a system will eventually
reach a desired state (e.g. one in which a signal shows a go aspect)

The most commonly used temporal logics are Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL). For a description of these, see e.g. [CGP99].

Figure 5: Unsafe states of a traffic light.

Example 4 A desired (safety) property of the traffic light system in example 3
could be that it is never in one of the two bad states shown in Figure 5, where
both the red and the green lights are on at the same time. This informally
stated property can be formalized by the following assertion:

7Propositional logic is called “udsagnslogik” in Danish.
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TrafficLightModel ⊢ always ( ∼(red ∧ green) )

This assertion will now be explained. For each possible state the formula
∼(red ∧ green) is either true or false. For instance, for the initial state
the formula is true, as in that state red = true and green = false such
that ∼(red ∧ green) = ∼(true ∧ false) which is equivalent to true. The
assertion TrafficLightModel ⊢ always ( ∼(red ∧ green)) expresses that
∼(red ∧ green) is true in all states that can be reached from the initial state
of TrafficLightModel using the four transition rules in TrafficLightModel.
When applying the SAL model checker [SAL01] to check this assertion, it will
return with the information that the assertion is true.

4.2.4 Computer based tools

A model checker is a computer based tool that automatically performs model
checking. Many model checkers exist. Each of these uses a specific language for
expressing models and a specific language for expressing properties, and they are
implemented using specific model checking techniques/algorithms. Some tools
offer the user the choice between different kinds of model checking techniques.
Some notable examples of model checkers are SPIN [SPI], NuSMV [NuS], and
SAL [SAL01].

4.3 Model checking versus theorem proving

In this section the usability of model checking and theorem proving will be
compared.

Model checking has the advantage over theorem proving, that it is fully auto-
mated and thereby much easier and faster to use. However, model checking has
the disadvantage that it may not be feasible to use for checking large systems
due to the so-called state space explosion problem, where the number of states
needed to model the system exceeds the amount of available computer mem-
ory. Recent years many techniques have been invented in order to increase the
size of systems that can be model checked without problems, and thus state-of-
the-art model checkers can now handle state spaces of about 108 to 109 states,
cf. [BK08]. In contrast to theorem proving, model checking can’t be used for
checking generalizations such as generic/parametrized systems. As an example,
consider a generic railway control system that can be instantiated with appli-
cation data. Theorem proving can be used to prove correctness of the generic
software, i.e. it can be proved once-and-for-all that any instance of the system,
obtained by configuring the generic system with (correct) concrete application
data, is correct. This has for instance been done in [HP00, LVH00, GH03].
When using model checking it is not possible to do this, but one must check
correctness of each concrete system. This has for instance been done in [HPK09]
and [HBK10].

In summary, on one hand model checking is faster and easier to use than
theorem proving, and on the other hand theorem proving is applicable in some
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cases where model checking isn’t due to state space explosion or because the
system under consideration can’t be modelled as a finite state system model
used by model checkers. As a conclusion, a natural choice would be to use
model checking whenever this is possible, and theorem proving otherwise.

A current trend in research is to investigate how one can combine the best
of model checking with the best of theorem proving, see for instance [RSS95].

5 Examples of industrial usage

In [WLBF09] a survey of industrial use of formal methods in 62 projects showed
that the largest single application domain was transport (16%), followed by the
financial sector (12%). Below examples of industrial use of formal methods for
railways, avionics, and finance, will be given.

5.1 Railways

Formal methods have been applied to railway systems in many countries. Below,
first some famous examples of use in the French railway industry will be given,
and then examples of case studies made for Danish systems will be given.

5.1.1 RER line A in Paris

Application: In France the first industrial use of formal methods for railways
was for the SACEM system of RER Line A in Paris which has been in full
operation since 1989. The SACEM system is an automatic train protection
system that continuously controls the speed of all trains on the line. The system
permanently ensures the safety of 0.8 million passengers per day!

Development: SACEM was developed by GEC Alsthom Transport, MATRA
Transport (now Siemens Transportation Systems) and CSEE Transport (now
part of Ansaldo) for RAPT in cooperation with SNCF. The software was im-
plemented in the Modula 2 programming language. A combination of many
techniques, including formal methods, were used to validate the safety-related
software. Formal methods were used in the following way (cf. [GH90, HG93,
BDM98]):

1. A formal specification of the functional requirements were made in the B
language [Abr96].

2. Pre and post conditions and loop invariants were formulated for the pro-
cedures of the source code, and they were proved to hold.

3. It was manually verified that the pre and post conditions satisfied the
functional requirements.

All the safety principles were approved by a French national committee for
safety composed of members from different ministry and specialists in railways,
signalling, safety, and computer science.
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Achievements: The formal methods work helped to make the informal re-
quirement specifications more precise (12 differences between the informal spec-
ification and the implementation were found by the use of formal methods),
cf. [GH90].

The confidence achieved by the use of formal methods for the SACEM system
convinced RATP to demand the use of formal methods for the next tender
(metro line 14 described below).

Further reading: For more information, see [GH90, HG93].

5.1.2 Metro line 14 in Paris

Application: Another industrial use of formal methods in Paris was for the
automatic train operation system for metro line 14 (the first driverless metro
line in Paris) that has been in full operation since 1998.

Development: Matra Transport International developed the system for RATP.
The B formal method was used to develop and validate safety-critical parts of
the automatic train protection system. The safety-critical parts concerned the
running and stopping of trains, and the opening and closing of the train doors
and platform doors.

The B method and its associated tool kit were industrialized by Matra Trans-
port, RAPT and Stéria Méditérrannée for the purpose of this development. As
part of this work a very careful preparation was done to define how the formal
method could be integrated into an existing organisation.

The formal development started by making an abstract model/specification
that formalized the informal requirements. This model was then refined into a
concrete design model that later was translated into the programming language
ADA. During the development safety properties and other proof obligations
were verified by automatic and interactive proof tools.

Achievements: Many errors were found during the proof activities. As a
result of the careful use of formal methods no bugs were found during the testing
of the system (neither during the functional validation on the host computer, the
integration validation on the target computer nor during the on-site testing) and
no bugs have been found since the line has been in operation8. The testing costs
were also reduced because no unit tests were needed. The formal development
was cost effective: in particular, the initial budgets were kept.

Further reading: For more information, see [BDM98, BBFM99].

8This was stated in [LSP07] which was published in 2007.
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5.1.3 Roissy Charles de Gaulle airport shuttle in Paris

Application: The B formal method was used to develop and validate safety-
critical parts of the Roissy Airport shuttle (a driverless light train) that has
been in full operation since 2007.

Development: Siemens Transportation Systems (formerly Matra Trans-
port) had the responsibility of the development of the system and subcontracted
the development of the safety-critical parts to ClearSy who used the B formal
method.

Achievements: Similar to those for metro line 14.

Further reading: For more information, see [BA05].

5.1.4 Railway systems in Denmark

The Technical University of Denmark has in collaboration with Kirsten Mark
Hansen from Banedanmark, made formal models and verification for a number
of case studies of existing interlocking systems in Denmark.

Applications: Three kinds of interlocking systems have been explored:

• Computer based interlocking systems for stations like Snoghøj and Taulov.

• Computer based interlocking systems for lines like Lang̊a-Stevnstrup.

• Relay interlocking systems for stations like Stenstrup.

Development: In all three cases the RAISE formal method [GHH+92,
GHH+95, GH08] was used to model the systems and verify safety properties
like no derailings or collisions of trains can happen.

In the first two cases the models were parametrized wrt. the network topology
of stations and lines, respectively, and the safety properties were verified once-
and-for-all to hold for any instance of these generic models, i.e. for any models
obtained by instantiating the generic models with a concrete network topology
of a station or line, respectively. The verification was done partly by making
semi-formal proofs by hand and partly by making formal proofs using the RAISE
interactive theorem prover.

For the relay interlocking systems, model checking was used for verifying
Stenstrup. In addition to the safety properties mentioned above, safety proper-
ties that could be derived from the train route tables and circuit diagrams were
verified too. All together 142 desired properties were verified automatically.

Achievements: In each of the three cases the verification showed that the
desired properties hold.
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Further reading: For more information on these case studies, see [LVH00],
[GH03] and [HBK10], respectively.

5.2 Avionics

Avionics is a major application area of formal methods. This is exemplified by
NASA9 which has about 40 researchers employed in four formal methods groups.
These researches evolve and use formal methods dedicated to the development
and validation of avionics software at NASA. Below an example of how NASA
is using formal methods will be given.

5.2.1 Remote Agent on NASA’s Deep Space 1 mission

Application: NASA used formal methods to verify a component of the Re-
mote Agent software. Remote Agent is the first artificial intelligence control
system to control a spacecraft without human supervision. It was one out of
twelve technologies that were tested by Deep Space 1, a spacecraft dedicated
to testing high risk technologies in deep space to lower the cost and risk to fu-
ture science-driven missions that use them for the first time. DeepSpace 1 was
launched in 1998.

Development and achievements: In 1997, before the launching of Deep
Space 1, a component of the Remote Agent software was verified by the model
checking approach using the SPIN[SPI] model checker. The verification work
detected five concurrency errors in the LISP code that the developers acknowl-
edged would not have been found during testing.

In 1999, after the launching of Deep Space 1, a deadlock occurred in another
component of the Remote Agent that had not been subject to the verification
in 1997. This error happened in space within 24 hours of operation, but had
not been discovered in over 300 hours of system level testing at NASA’s flight
system testbed. Formal methods researchers were then asked to model check
the problematic component to see whether they could find the reason for the
deadlock. In a short amount of time they found out that the error was the same
as one of the five errors that were found in 1997 in the first component.

Further reading: For more information, see [HLP+00].

5.3 Finance

Formal methods are relevant for financial applications that are business critical.
Below an example of how formal methods have been applied to software for
Mondex smart cards will be given.

9National Aeronautics and Space Administration is an Executive Branch agency of the
United States government, responsible for the nation’s civilian space program and aeronautics
and aerospace research.

23



5.3.1 Mondex smart cards

Application: Formal methods have been applied in the development of Mon-
dex, an electronic purse hosted on a smart card. Each card stores financial value
(equivalent to cash) as electronic information on a micro chip and provides op-
erations for making financial transactions with other cards via a communication
device.

Development: Mondex was developed in 1996 by a consortium led by
NatWest, a UK high-street bank. As it was crucial that the cards would be
secure, it was decided that Mondex should be certified to the UK standard for
high-assurance systems ITSEC, at its highest level, E6 (which is equivalent to
Common Criteria Level EAL7). This level requires formal methods to be ap-
plied. To satisfy this requirement the software house Logica, supported by the
University of Oxford, constructed formal models of the system and its abstract
security policy in the Z notation [WD96], accompanied by hand-written proofs
that the system design possessed the required security properties.

Achievements: The use of formal methods revealed a bug in the implemen-
tation of a secondary protocol, which was then fixed. In the system testing,
also required to achieve ITSEC level E6, no bugs were found in those parts that
had been subject to formal methods. As a result of the use of formal methods,
testing etc., in 1999 Mondex achieved the required certification at ITSEC level
E6 (and was actually the first product to achieve this.)

Further reading: For more information on this original work, see [WSC+08].
In 2006 eight international research groups used different languages and tools to
investigate the degree of automation that can now be achieved in the correctness
proofs. The results of six of these investigations can be found in [FAC08].

6 Cost-effectiveness

Several investigations on cost-effectiveness have been made during the years. A
general view is that using formal methods makes the resulting software more
correct, and that the costs tend to be increased early in the development life
cycle, but reduced later. Most recently, a survey [WLBF09] of the use of formal
methods in 62 industrial projects that had employed formal methods was made
based on questionnaires. This survey shows that the effect on development time,
cost, and quality of the resulting product was generally positive: Three times
as many reported a reduction in time, rather than an increase. Five times as
many reported a reduction in cost, rather than an increase. In 92% of the cases
the quality was improved.
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7 Formal methods in certification standards

Several standards for the industrial development of safety-critical software rec-
ommend or even require the use of formal methods for the highest software
safety integrity levels. Examples of such standards are: CENELEC EN50128
for railways, the Common Criteria and UK Level E6 for Information Technol-
ogy Security Evaluation, DO-178B Level A for avionics, and UK MoD software
Defence Standards 00-55 and 00-56 . Below, CENELEC EN 50128 for railways
will shortly be explored. For further reading on formal methods in certification
standards, see [Bow93].

7.1 CENELEC EN 50128

CENELEC EN 50128 is a European standard specifying procedures and tech-
nical requirements for the development of software for railway control and pro-
tection systems. The standard states which techniques are required, highly
recommended, recommended, not recommended, or even forbidden in the de-
velopment process in order to provide software which meets the demands for
safety integrity at five different levels.

For the two highest safety integrity levels, EN 50128 highly recommends to
use formal methods for:

• software requirements specification,

• software design,

• verification, and

• software validation.

8 Sources of information

8.1 Conferences

There are many conferences concerning formal methods and development of
safety critical systems. For the railway industry the following are especially
interesting:

• FORMS/FORMAT – The Symposium on Formal Methods for
Automation and Safety in Railway and Automotive Systems:
FORMS/FORMAT is a series of symposia that offer scientists facing for-
mal techniques, practitioners and managers, developers and consultants
of automotive and railway industries as well as traffic system operators
with interest in formal methods a platform for the exchange of scientific
experience and the transfer of practical description means, methods and
tools for complex automation systems. The next symposium will take
place 2nd-3rd of December 2010 in Braunschweig, for further information
see http://www.forms-2010.de/home.html.
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• SafeComp – The International Conference on Computer Safety,
Reliability and Security: SafeComp is an annual event covering the
state-of-the-art, experience and new trends in the areas of computer safety,
reliability and security regarding dependable application of computer sys-
tems. The conferences provide a platform for knowledge and technology
transfer between academia, industry and research institutions. The next
event will take place 14 - 17 September 2010 in Vienna, for further infor-
mation see http://www.ocg.at/safecomp2010/.

• Industry days of FM International Symposium on Formal Meth-
ods: The FM symposia on Formal Methods are held approximately every
18 months and include each an industry day dedicated to industrial expe-
rience with the application of Formal Methods. The next symposium will
take place 20-24 June 2011, for further information see http://www.fmeurope.org/?p=340.

8.2 Further reading

• Proceedings of the above mentioned conferences.

• Proceedings of the FMERail10 workshops 1998-1999.

• A survey of results and trends in using formal techniques for the develop-
ment of software for transportation systems, see [Bjø03].

• Survey and experience papers concerning formal methods in general: see
for instance [GCR93, CW96, WLBF09].

• Other references in the reference list of this document.

10FMERail was an ESPRIT project promoting the adoption of formal methods in the railway
domain. The approach of the project was to arrange a series of workshops to show how different
formal method technologies can be applied to railway problems.
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A Some operators of mathematical logic

This appendix gives a short reminder about logical operators for readers that
have once learnt about these.

The following table show symbols used for operators of classical mathemat-
ical (propositional) logic.

symbol math operator
∧ and
∨ or
⇒ implies
∼ not
∀ for all

The meaning of the four first operators are given by the truth tables below.

∧ true false
true true false
false false false

∨ true false
true true true
false true false

⇒ true false
true true false
false true true

b ∼ b
true false
false true
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Météor: A Successful Application of B in a Large Project. In Jean-
nette M. Wing, Jim Woodcock, and Jim Davies, editors, Proceedings
of FM’99: World Congress on Formal Methods, Lecture Notes in
Computer Science, pages 369–387. Springer-Verlag, 1999.

[BDM98] Patrick Behm, Pierre Desforges, and Jean-Marc Meynadier. Météor:
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