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Abstract. Contract-based software development has long been a leading method-
ology for the construction of component-based reactive systems, embedded sys-
tems in particular. Contracts are an effective way to establish boundaries between
components and can be used efficiently to verify global properties by using com-
positional reasoning techniques. A contract specifies the assumptions a compo-
nent makes on its context and the guarantees it provides. Requirements in the
specification of a component are often case-based, with each case describing what
the component should do depending on a specific situation (or mode) the com-
ponent is in. We introduce COCOSPEC, a mode-aware assume-guarantee-based
contract language for embedded systems built as an extension of the Lustre lan-
guage. COCOSPEC lets users specify mode behavior directly, instead of encoding
it as conditional guarantees, thus preventing a loss of mode-specific information.
Mode-aware model checkers supporting COCOSPEC can increase the effective-
ness of the compositional analysis techniques found in assume-guarantee frame-
works and improve scalability. Such tools can also produce much better feedback
during the verification process, as well as valuable qualitative information on the
contract itself. We presents the COCOSPEC language and illustrate the benefits of
mode-aware model-checking on a case study involving a flight-critical avionics
system. The evaluation uses KIND 2, a collaborative, parallel, SMT-based model
checker extended to fully support COCOSPEC.

1 Introduction

The process of developing safety-critical embedded software (as used, for instance,
in transportation, in aerospace and in medical devices) is becoming increasingly more
challenging. The high number of functionalities now implemented at the software level,
the inter-dependencies of software tasks, and the need to integrate different existing
subsystems all lead to highly complex software-intensive cyber-physical systems. To
manage this complexity embedded software is designed and implemented as the com-
position of several reactive components, each performing a specific, relatively simple
functionality. A leading methodology to develop component-based software is contract-
based design. In this paradigm, each component is associated with a contract specifying
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its input-output behavior in terms of guarantees provided by the component when its
environment satisfies certain given assumptions. When contracts are specified formally
for individual components, they can facilitate a number of development activities such
as compositional reasoning during static analysis, stepwise refinement, systematic com-
ponent reuse, and component-level and integration-level test case generation.

Embedded system components often exhibit complex discrete internal behavior akin
to state transitions in finite-state machines. At any one time, the component is in some
of a number of different modes as a consequence of past events, and its response to
the current inputs differs depending on the mode(s) it is in. For instance, in a flight
guidance system, modes govern the choice of a specific control algorithm: an approach
mode enables a controller that attempts to land the airplane, whereas a climb mode
enables a controller that attempts to take the aircraft to a suitably safe altitude. The
behavior of a multi-component system emerges from complex interactions between the
modes of these components.

Despite the prevalence of modes in embedded system design, common contract
formalisms for such systems are not mode-aware, as they only allow one to express
general assumptions and guarantees. As a consequence, mode-based behavior, which
is ubiquitous in specification documents, ends up being encoded in conditional guar-
antees of the form “situation⇒ behavior”. Correspondingly, assume-guarantee-based
tools are mode-agnostic, they cannot easily distinguish between mode-specific require-
ments and general guarantees such as “the output shall always be positive” although the
two kinds of requirement describe very different expectations. We see mode-awareness
as a natural and important evolution of assume-guarantee contracts and compositional
reasoning based on them. We argue that by distinguishing between modes and guaran-
tees in contract-based design we avoid losing fine-grained information that can be used
to further improve the scalability and the user feedback of automated analyses.

Contributions This paper focuses on a large class of embedded systems, (finite- and
infinite-state) discrete synchronous reactive systems. For these systems, we introduce
COCOSPEC, a mode-aware specification language for COntract-based COmpositional
verification of safety properties that extends the assume-guarantee paradigm, and de-
scribe the sort of advantages that mode-aware tools can provide. We focus on features
of the language that help with i) detecting shortcomings in the (modes of the) specifi-
cation of a system independently of its implementation, ii) improving fault localization,
iii) comparing the user’s understanding of the contract / system pair with its actual be-
havior, and iv) improving the scalability of the verification process.

For concreteness, we have developed and implemented COCOSPEC as an extension
of the synchronous dataflow language Lustre [12], and so we will describe it as such
here. We stress, however, that its theory and applications are generic with respect to the
whole class of specification languages for discrete synchronous reactive systems.

We briefly introduce the Lustre language and the assume-guarantee paradigm in
Section 2. The syntax and semantics of COCOSPEC are described in Section 3, along
with a running example extracted from a medium-size case study we did to showcase
COCOSPEC’s main features. We present our case-study in more details in Section 5 and
report on the benefits of mode-awareness to write and debug contracts, raise the trust in
their accuracy, and improve the scalability of automatic contract verification.
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Related Work The notion of a contract has a long history in software engineering and
traces its root to rely-guaranteed approaches introduced by Hoare, Dijkstra and oth-
ers [14,10,17]. It is adopted in earnest in the design by contract methodology [25,16],
which has been applied in different areas of software development and verification.
Newer programming languages such as Dafny [22] incorporate formal contracts and
compile-time contract checking as native features. Formal contracts have also been in-
tegrated into popular programming languages, via the addition of ad hoc specification
languages, e.g., ACSL [20] for C/C++, JML [21] for Java, or SPARK [2] for Ada. ACSL
in particular has a notion of behavior in function contracts which is similar to that of
mode in COCOSPEC. One major difference is that predicates in an ASCL contract refer
only to individual states (such as the pre- and the post-state of a function call), while in
COCOSPEC, which is meant for reactive systems, they can use temporal operators.

A suitable notion of contract for reactive software, where components continuously
process incoming data and produce output based on the input data and internal state
information, is provided by the assume-guarantee paradigm for compositional verifica-
tion [3]. A large number of contract formalisms have been proposed for reactive sys-
tems; for instance, Cimatti and Tonetta [7] develop a trace-based contract framework
and adapt it to the properties specification language Othello [6]. Cofer et al. [8] follow
a contract-based approach to perform compositional verification geared towards archi-
tectural models. Our approach differs from the techniques and languages above in the
emphasis COCOSPEC puts on the mode-based behavior of the analyzed embedded sys-
tem. In this sense, it is more in the spirit of Parnas tables [26], but for reactive systems.

2 Background

Lustre COCOSPEC was conceived as a contract extension to languages, such as Lus-
tre [12], for modeling systems composed of synchronous reactive components. Such
languages are based on the theory of synchronous time in which all components main-
tain a permanent interaction with their environment (e.g., a larger component, or the
physical environment in case of top level components) and are triggered by an abstract
universal clock. Lustre is a stream-based executable modeling language for finite- and
infinite-state reactive systems. Every system in Lustre takes as input one or more infi-
nite streams of values of the same type, and produces one or more infinite streams as
output. Lustre systems are assumed to run on a universal base clock that represents the
smallest time span the system is able to distinguish. Individual components can, how-
ever, be defined to run on coarser-grained clocks. For simplicity, we ignore this feature
here and pretend that all components run on the same clock. In that case, each stream
of type τ can be understood mathematically as a function from N to τ .

System components are expressed in Lustre as nodes with an externally visible set
of inputs and outputs. Variables are used to represent input, output and locally defined
streams. Basic value types include real numbers, integer numbers, and Booleans . Op-
erationally, a node has a cyclic behavior: at each clock tick t it reads the value of each
input stream at position or time t, and instantaneously computes and returns the value
of each output stream at time t. Lustre nodes can be made stateful by having them refer
to stream values from (a fixed number of) previous instants.
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Typically, the body of a Lustre node consists in a set of stream equations of the
form x = s, where x is a variable denoting an output or a locally defined stream and
s is a stream algebra over input, output, and local variables. Most stream operators are
point-wise liftings of the usual operators over stream values. For example, if x and y are
two integer streams, the expression x+ y is the stream denoting the function λt.x(t) +
y(t); an integer constant c, denotes the constant function λt.c. Two important additional
operators are a unary right-shift operator pre, used to specify state computations, and a
binary initialization operator ->, used to specify initial state values. At time t = 0, the
value (pre x)(t) is undefined; for each time t > 0, it is x(t− 1). In contrast, the value
(x -> y)(t) equals x(t) for t = 0 and y(t) for t > 0. Syntactic restrictions guarantee
that all streams in a node are inductively well defined.

Since a node is itself a mapping from input to (one or more) output streams, once
defined, it can be used like any other stream operator in the right-hand side of equations
in the body of other nodes, by applying it to streams of the proper type.

Example 1. As an example, here is how a stopwatch could be modeled in Lustre.
node previous ( x : int ) returns ( y : int )
let

y = 0 -> pre x ;
tel

node stopwatch ( toggle, reset : bool ) returns ( count : int );
var running : bool;
let

running = (false -> pre running) <> toggle ;
count = if reset then 0

else if running then previous(count) + 1
else previous(count) ;

tel

Auxiliary node previous defines an initializing delay operator for integer streams that
takes a stream with values x0, x1, x2, . . . and returns the stream 0, x0, x1, x2, . . . Node
stopwatch models a stopwatch with two buttons, modeled respectively by the Boolean
input variables toggle and reset, one to start/stop the stopwatch and the other to reset
its time to zero. The locally defined auxiliary stream running keeps track of when the
clock is running. Its value is true initially iff toggle is not equal to (<>) false at
that time; it is true later iff its previous value is different from the current value of
toggle. Stream count counts the number of instants the clock has been running since
the beginning or the last reset, if any. Initially, it is 0 unless reset is false and toggle
is true, in which case it is 1. Afterwards, it is reset to 0 every time reset is true, is
incremented by 1 while the clock is running, and is kept at its previous value when the
clock is stopped. The definition of count contains two applications of node previous,
to count itself. Note that despite the apparent circularity of this definition, count is well
defined because of the delay in previous. ut

Lustre has a formally specified semantics, which interprets nodes as a variant of
extended-state Mealy machines [13] and node application as parallel composition. Dis-
crete embedded systems developed in popular modeling languages such as Simulink or
SCADE can be faithfully translated into Lustre (e.g., [9]). A large class of safety prop-
erties of Lustre models can be internalized as (Boolean) observer streams or observer
nodes [11] and verified efficiently by SMT-based model checkers [18].
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Assume-Guarantee paradigm Assume-guarantee contracts [24] in component-based
reactive systems provide a mechanism for capturing the information needed to specify
and reason about component-level properties. An assume-guarantee contract for a com-
ponent K is a pair of past linear temporal logic (pLTL) [19] predicates 〈A,G〉 where
the assumption A ranges over the inputs of K, and the guarantee G ranges over its
inputs and outputs.

pLTL is a rich logic that uniformly supports the formulation of bounded liveness and
safety properties, the kind of properties we focus on in this work. In terms of standard
LTL, the semantics of an assume-guarantee contract 〈A,G〉 is the formula GA⇒ GG
where G is the globally operator. From a verification point of view, however, proving
that a component K satisfies that formula amounts to proving that the pLTL formula
HA⇒ G is invariant for K where H is the historically modality of pLTL [23].4

Compositional reasoning is achieved by proving that each component satisfies its
own contract as well as the guarantees of any component it provides input to. More
precisely, for the latter proof obligation, if a component K1 is composed in parallel
with a component K2 and provides inputs to K2, one must also prove that those inputs
always satisfy the assumptions of K2. The proof that K1 satisfies its contract can then
assume that any output provided by K2 satisfies the guarantees in K2’s contract. In
Lustre terms, one must prove that every application n(s1, . . . , sn) of a node n inside
another node m is safe in the sense that the actual parameters s1, . . . , sn satisfy at all
times the assumptions of n on its inputs. To prove that m satisfies its own contract one
can assume that the result of the application n(s1, . . . , sn) satisfies the guarantees in
n’s contract.

3 The CoCoSpec Language

COCOSPEC extends Lustre by adding constructs to specify contracts for individual
nodes, either as special Lustre comments added directly inside the node declaration, or
as external, stand-alone contract declarations. The latter are similar in shape to nodes
but are introduced with the contract instead of the node keyword. A node can import
an external contract using a special Lustre comment of the form

(*@contract import <name>(<input params>) returns (<output params>); *)

For specification convenience, the body of a stand-alone contract can contain equalities
defining local streams, using the var (const) keyword for (constant) streams. Besides
local streams, a contract contains assume and guarantee statements , and mode decla-
rations . Modes are named and consist of require and ensure statements . They have the
form shown on Figure 1. Statements can be any well-typed Lustre expressions of type
bool. In particular, expressions can contain applications to previously defined Lustre
nodes. This is convenient, for instance but not exclusively, if one wants to use pLTL
operators since those can be defined as Lustre nodes.

Example 2. A possible contract, and associated import, for the stopwatch component
from Example 1 could be the following:

4 Intuitively, HP states that P has been true in all states of an execution up to the current state.
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contract stopwatchSpec ( tgl, rst : bool ) returns ( c : int ) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;
assume not (rst and tgl) ; guarantee c >= 0 ;
mode resetting ( require rst ; ensure c = 0 ; ) ;
mode running ( require not rst ; require on ; ensure c = (1 -> pre c + 1) ; ) ;
mode stopped ( require not rst ; require not on ; ensure c = (0 -> pre c) ; ) ;

tel

node stopwatch ( toggle, reset : bool ) returns ( time : int ) ;
(*@contract import stopwatchSpec(toggle, reset ) returns (time) ; *)
let ... tel

Note that pre binds more strongly than all other operators; => is Boolean implication.
The contract has the same interface as the node. It uses an auxiliary Boolean vari-

able on capturing the exact conditions under which the stopwatch should be on: initially
when the start/stop button tgl is pressed (i.e., true); later when it was previously on and
the start/stop button is not being pressed, or it was previously off and the start/stop but-
ton is being pressed. The contract contains a global assumption that the reset button rst
and the start/stop button are never pressed at the same time, and a global guarantee that
the time counter c is always non-negative. It also specifies three modes for the stop-
watch. The component is in resetting mode if the reset button is pressed. When that
button is not pressed, it is in running mode if the conditions captured by on hold, and is
in stopped mode otherwise. The ensure statements of the three modes specify how c,
the counter, should behave. It i) is reset to 0 in resetting mode, ii) is incremented by 1
in running mode, and iii) maintains its previous value in stopped mode. To import the
contract, node stopwatch instantiates the contract’s formal (input an output) parameters
with any expression of the same type. ut

In our experience, the ability of a node to import a stand-alone contract provides
great flexibility. It makes writing specifications and implementations more independent,
and facilitates the reuse of contracts between components. In general, a node can import
more than one contract and have also local assumptions, guarantees and modes. The
contract of a node is the union of all the local and imported assumptions, guarantees
and modes.

Expressions in contracts can refer to a mode directly by using its name as if it were
a Boolean variable. This is just a shorthand for the conjunction of all the require state-
ments in the mode. COCOSPEC avoids potential dependency cycles between modes
due to this feature by prohibiting forward and self references. Each stand-alone con-
tract defines a namespace, with :: as the namespace projection operator. As a conse-
quence, modes can be referred to both inside and outside the contract they belong to.
For example, in the stopwatch contract the require statement not on of mode stopped
can be replaced, equivalently, by not ::running. In contrast, the require and ensure
statements of running cannot contain a (forward) reference to mode stopped. The ex-
pression ::stopwatchSpec::running can be used in the contract of stopwatch to refer
to the running mode of the imported stopwatchSpec contract, as in

node stopwatch ( toggle, reset : bool) returns ( time : int ) ;
(*@contract import stopwatchSpec(toggle, reset) returns (time) ;

guarantee true -> (
(pre ::stopwatchSpec::running and tgl) => ::stopwatchSpec::stopped

) ; *)
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Finally, neither assume nor require statements can contain references to current
values of an output stream—although they may refer to previous values of those streams
via the pre operator. This is a natural restriction because it does not make sense in
practice to impose preconditions on the current output values.

3.1 Formal Semantics and Methodology

A COCOSPEC contract for a Lustre node N is a triple 〈A,G,M〉 where A is a set
of assumptions , G is a set of guarantees , and M is a set of modes . A mode is a pair
(R, E) whereR is a set of requires and E is a set of ensures . Assumptions, guarantees,
requires and ensures are all stream formulas, i.e., Boolean expressions over streams. A
mode (R, E) in the contract of N is active at time t in in an execution of N if

∧
R is

true at that time.
Formally, we define a COCOSPEC contractC = 〈A,G,M = {(Ri, Ei)}〉 for some

node N as the assume-guarantee contract C ′ = 〈A, G′〉, with G′ = G ∪ {Ri ⇒ Ei}.5
Node N satisfies C if its corresponding extended-state machine satisfies contract C ′ in
the standard sense, that is, if it satisfies GA⇒ GG′.

We require for a contract C = 〈A,G,M = {(Ri, Ei)}〉 to be such that the formula

G (A ∧G ∧ {Ri ⇒ Ei}) ⇒ G (
∨
{Ri}) (1)

is logically valid in LTL. Note that this is a (meta)requirement on the contract itself,
not on its associated node(s). Intuitively, it states that in the scenario where the con-
tract’s assumptions and guarantees both hold, at least one of the requires holds at all
times. COCOSPEC modes are meant to formalize requirements coming from specifica-
tion documents that describe a transient behavior. If property (1) holds, then any node
satisfying contract C, and used in a context where C’s assumptions are always met, has
at all times at least one active mode. This ensures that the contract covers all possible
cases whenever its assumptions hold.

In practice, the first step when verifying a COCOSPEC contract is to check the de-
fensive property (1). If it does not hold, a situation unspecified by the contract is reach-
able, hence the contract is incomplete and must be fixed. If one desires, temporarily
perhaps, to have an underspecified contract on purpose, one can add a mode with an
empty set of ensures and a set of requires that captures the missing cases. The point is
that the underspecification of mode behavior should be formalized explicitly and not be
a consequence of a missing set of requirements.

If the defensive property of a contractC of a nodeN holds, the next step is to verify,
using assume-guarantee reasoning, that N respects C. We abstract each application of
another node inside N by that node’s contract, replacing the contract’s formal param-
eters with the actual parameters in the application. We then prove that N respects C
whenever its subnodes respect their own contract. We also prove that N contains only
safe applications of other nodes. Overall, the analysis of a system is successful if we
can prove that i) none of the contracts used allow unspecified behavior, ii) all nodes
respect their contract, and iii) all node applications are safe.

5 We will identify sets of formulas, such as Ri and Ei, with the conjunction of their elements.
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mode <id> (
require <expr> ;
...
require <expr> ;
ensure <expr> ;
...
ensure <expr> ;

) ;

Fig. 1: Mode syntax.

node ml (
−− Control request flags.
altRequest, fpaRequest : bool ;
−− Deactivation flag.
deactivate : bool ;
−− Current and target altitude.
altitude, targetAlt : real )

returns ( altEngaged, fpaEngaged: bool ) ;

Fig. 2: Activates one of the controllers.

node switch( on, off: bool )
returns ( out : bool ) ;
let

out =
not off and
(on -> on or pre out) ;

tel

Fig. 3: switch helper node.

Note that a traditional assume-guarantee contracts 〈A,G〉 is expressible in CO-
COSPEC, as the contract 〈A,G, ∅〉. Property (1) is then trivially valid, and the analysis
reduces to verifying 〈A,G〉. COCOSPEC is thus an extension of assume-guarantee con-
tracts that natively supports, via the use of modes, requirements for transient behavior.
We discuss the benefits that modes bring to mode-aware analyses in Section 5.

3.2 Using COCOSPEC: an Example

We now describe an example of system specification in COCOSPEC that allows us to
illustrate concretely the main features of the language. The example is derived from an
extensive case study where we took a realistic Lustre model of an avionics system de-
veloped by NASA [15,4], and wrote COCOSPEC contracts based on a natural language
requirement specification. We discuss the study in detail in Section 5. For the purposes
of this subsection, it is not crucial to explain the whole model and its expected overall
functionality except to say that the system has a component ml that governs the engage-
ment of two sub-controllers. Figure 2 shows the signature of the corresponding Lustre
node6. This component decides whether two controllers, an altitude controller (alt) and
a flight path angle (FPA) controller (fpa), should be engaged or not based on their re-
spective request flags (altRequest and fpaRequest), a deactivation flag (deactivate),
the current altitude (altitude), and the target altitude (targetAlt).7

Let smallGap be a predicate that holds iff the distance between the current and the
target altitude is smaller than a certain value, say 200ft. The requirements relevant to the
ml component, namely Guide 170, 180, and 210 in [15], state that when smallGap holds
then the altitude controller has priority over the FPA controller: when requested to, the
latter can engage provided that there is no request for the altitude controller to engage.
When smallGap is false the FPA controller has priority instead (Guide 170 and 180).
The request protocol is the following. An engagement request for a controller becomes
active as soon as the corresponding input flag becomes true, and remains active until
the deactivate flag becomes true. A generic auxiliary node modeling this protocol for
an arbitrary pair of activation and deactivation flags is shown in Figure 3.

6 The node, called MODE LOGIC AltAndFPAMode in the original model, was slightly altered and
its specification simplified for readability and simplicity.

7 What the altitude and the FPA controllers actually do is not important at this point.
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The specification for the ml component does not have any explicit assumptions. In
the traditional assume-guarantee setting (e.g., in [1]) one would then be inclined to write
a contract for ml with the following guarantee:

( smallGap and altRequested => altEngaged) and
( smallGap and fpaRequested and not altRequested => fpaEngaged) and
(not smallGap and fpaRequested => fpaEngaged) and
(not smallGap and altRequested and not fpaRequested => altEngaged)

where altRequested = switch(altRequest, deactivate) and fpaRequested is de-
fined similarly. A contract with a single, complex guarantee, leads to loss of information
in practice, for both human readers and static analysis tools such as model checkers. In
contrast, COCOSPEC allows one to provide the same information but in a disaggre-
gated form, explicitly accounting for the various cases through the use of modes. With
a mode-based specification, assumptions only state general conditions on legal uses
of the component—for instance, that the altitude values are always positive. Similarly,
guarantees specify mode-independent behavior—in this case, that the altitude and FPA
controllers never engage at the same time.

contract ml ( altRequest, fpaRequest, deactivate : bool ; altitude, targetAlt : real )
returns ( altEngaged, fpaEngaged : bool ) ;
let

var altRequested = switch(altRequest, deactivate) ;
var fpaRequested = switch(fpaRequest, deactivate) ;
var smallGap = abs(altitude - targetAlt) < 200.0 ;
assume altitude >= 0.0 ;
guarantee targetAlt >= 0.0 ;
guarantee not altEngaged or not fpaEngaged ;
mode guide210Alt ( require smallGap ; require altRequested; ensure altEngaged ; ) ;
mode guide210FPA ( require smallGap ; require fpaRequested ; require not altRequested;

ensure fpaEngaged; ) ;
mode guide180 ( require not smallGap ; require fpaRequested; ensure fpaEngaged; ) ;
mode guide170 ( require not smallGap ; require altRequested ; require not fpaRequested;

ensure altEngaged ; ) ;
tel

Debugging the specification early on We argue that, in addition to enabling compo-
sitional reasoning, COCOSPEC contracts also lead to more accurate analyses compared
to traditional assume-guarantee by facilitating blame assignment . A mode-aware tool
knows which modes are active at each step of a counterexample execution. Hence it can
provide better feedback since modes are in effect user-provided abstractions of concrete
states. Designers can reason about them to fix the system or its specification, instead of
looking at concrete values, which may be less readable and informative.

In our running example, attempting to prove ml correct does not go very far: the
defensive check fails right away and produces a counterexample triggering unspecified
behavior. The problem is resolved by noting that the English specification means to say
that fpaRequested and altRequested should be true only in the cases discussed above.
Hence, this issue is easily addressed by adding the following two modes:

mode noAlt ( require not altRequested ; ensure not altEngaged ; ) ;
mode noFPA ( require not fpaRequested ; ensure not fpaEngaged ; ) ;

Now, because this example is quite simple, an experienced reader may have noticed the
incompleteness in the specification already when we first introduced it. As we argue in
Section 5, however, mode-based blame assignment is a very valuable feature on realistic
systems with a large number of modes and complex require predicates.
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Fig. 4: Reachable combinations of modes in one transition from the initial state for ml.

Evaluating the specification We discuss next two approaches for checking that the
semantics of a COCOSPEC contract corresponds to a user’s understanding of it.

Unreachable properties over the specification as modes. Going back to the ml node,
one could argue that mode guide170 should not be reachable from mode guide210FPA
in one step (i.e., from time t to time t + 1). That this is the case is not necessarily
obvious because of the memorization capabilities provided by the switch component
from Figure 3.8 Since the property is expected to hold, verifying it would raise trust in
the contract. Moreover, if the specification or the system later evolved to the point of not
satisfying that property anymore, it would be useful for a new analysis to reveal that.
This can be achieved by formulating the property explicitly as a COCOSPEC mode:

mode no170From210FPA ( require false -> pre ::guide210FPA ; ensure not ::guide170 ; ) ;

Exploration of reachable modes. When the defensive property (1) holds, modes provide
effectively a small, user-defined abstraction of a component’s reachable state set, with
each abstract state represented by a set of active modes. One can then use explicit-state
model checking techniques to analyze the possible executions of a component at the
level of mode transitions. For instance, one can unroll the abstract transition relation
to some depth to verify the presence of expected mode transition sequences or see
if unexpected ones occur. Figure 4 shows (up to depth 1 only, for space constraints)
the graph of reachable modes for the ml system, starting from each possible initial
mode combination. Even by simple visual inspection, one can obtain a better high-
level validation of one’s understanding of the contract against the actual behavior of the
model. For instance, is it expected that guide170 is active only when noFpa is, or that the
mode combination {noFpa, noAlt} can be reached from any initial mode combination?

4 Implementation

We added full support for COCOSPEC to KIND 2 [5], an open-source, multi-engine,
SMT-based model checker for safety properties of Lustre programs, built as a successor
of the PKIND model checker [18].9 Its basic version takes as input a Lustre file an-
notated with multiple properties to be proven invariant, and outputs for each property
either a confirmation or a counterexample trace, a sequence of inputs that falsifies the
property. KIND 2 is able to read Lustre models annotated with COCOSPEC contracts

8 It is true in this instance because in the switch mode, off has priority over on.
9 KIND 2 is available at http://kind.cs.uiowa.edu/ .

http://kind.cs.uiowa.edu/
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and verify them using compositional reasoning. We implemented all the features dis-
cussed in the previous section, including the exploration of the reachable modes of the
input system to generate the corresponding graph.

Given a Lustre system S annotated with COCOSPEC contracts, KIND 2 can be run
in compositional mode on S. In that case it will analyze the top node of S by abstracting
its subnodes by their contracts, as discussed above. This is not enough to prove S correct
though, since the correctness of the subsystems represented by the subnodes is not
checked. KIND 2’s modular mode addresses this shortcoming: in modular mode, KIND
2 will analyze each subsystem of the hierarchy, bottom-up, reusing previous results as
it goes. When run in compositional and modular mode together, KIND 2 will analyze
each subsystem compositionally, after proving the defensive check on its contract. If all
systems of the hierarchy are proved correct, then the system as a whole is deemed safe.

KIND 2 also has a refinement mechanism. Say a node M contains an application
of a node N , and the compositional analysis of M produces a counterexample. The
counterexample might be spurious, as N was abstracted by its contract which might
be too weak to verify M . In this case, if N was proved correct previously under some
abstraction A of the node applications in its own body, then KIND 2 will launch a new
analysis where the application of N in M is (in effect) replaced by the body of N
under the abstraction A. The failure of the compositional analysis signals that there is
something wrong with the system and/or its specification. The refinement mechanism
aims at giving more information about the problem. For instance, if M can be proved
correct after refining the application ofN as described above then probably the contract
of N should be strengthened until the compositional analysis succeeds without having
to use refinement.

5 Evaluation

As a case study to evaluate the usefulness and effectiveness of COCOSPEC, we chose
a model derived from NASA Langley’s Transport Class Model (TCM) [15], a control
system for a mid-size (∼250K lb), twin-engine, commercial transport-class aircraft.
While the TCM is not intended as a high-fidelity simulation of any particular transport
aircraft, it was designed to be representative of the types of nonlinear behaviors of this
class of aircraft. We specified in COCOSPEC some of the safety requirements for the
TMC recently elicited by Brat et al. [4] from Federal Aviation Regulations and other
documents. We will refer to those as FAR requirements. In this section, we discuss
our specification of the FAR requirements and how COCOSPEC aided their automated
compositional verification.10

The TCM includes submodels for the avionics (with transport delay), actuators, en-
gines, landing gear, nonlinear aerodynamics, sensors (including noise), aircraft param-
eters, equations of motion, and gravity. It is primarily written in Simulink, consisting of
approximately 5,700 Simulink blocks. The system also includes several thousand lines

10 Full data on the case study, including models, contracts, reachability graphs, and instructions
on how to reproduce our experimental results using the COCOSPEC version of KIND 2 are
available at https://github.com/kind2-mc/cocospec_tcm_experiments.

https://github.com/kind2-mc/cocospec_tcm_experiments
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Autopilot

Mode Logic Longitudinal Controller

Altitude Controller FPA Controller

Fig. 5: Autopilot subsystem of the TCM.

of C/C++ code in libraries, primarily used for the simulation of the aircraft engines and
the nonlinear aerodynamics models. Here, we focus on the guidance and control sub-
models and their properties within the context of the TCM. These models are written
entirely in Simulink and so can be faithfully converted automatically to a (multi-node)
Lustre model. We will call Autopilot the subsystem of the TCM that combines these
subcomponents.

The subsystem is depicted in Figure 5. Each node in the graph corresponds to a
component of the Autopilot system, and to a node in the Lustre model. The system
actually has more nodes than this graph, which only shows the main components that
are specified by a contract. While using the same name, we will distinguish between a
component (for instance, the Autopilot node of the graph) and its corresponding sub-
system, obtained as the composition of that component with all of its subcomponents.
Of particular interest to us is the Longitudinal Controller subsystem, which combines
two mutually exclusive subcontrollers, the Altitude Controller and the FPA Controller ,
to produce an elevation command for the aircraft. When engaged, the first subcontroller
produces an elevation command aimed at reaching the target altitude it is given as in-
put. The other subcontroller produces instead an elevation command aimed at reaching
a target flight path angle (FPA). In practice, the two subcontrollers are not independent
since the FPA Controller uses the output of the Altitude Controller to produce its out-
put, regardless of which controller is engaged. The Longitudinal Controller and all its
subcomponents are mostly numerical and include nonlinear arithmetic expressions.

Another subsystem of Autopilot, called Mode Logic , is in charge of deciding which
of the subcontrollers, if any, should be active at any time. The decision is based on a
number of parameters, including the aircraft’s speed, altitude, and pitch, and the com-
mands from the cockpit. A simplified version of the Mode Logic component is modeled
by the ml Lustre node described in Section 3, and so we will not discuss it further here.
Instead, we present the benefits of mode-awareness in the specification and verification
of the Longitudinal Controller and of the Autopilot overall.

5.1 Benefits of COCOSPEC

Since we are not experts in flight control systems, we do not have a full understanding of
the TCM or the details that the rather high-level FAR requirements leave unspecified.
So, for our case study, we started from the FAR requirements and the TCM models
(in Simulink and in their Lustre translation), and wrote naı̈ve contracts for the Lustre
components, which KIND 2 would then promptly disprove. In general, the concrete
counterexample traces returned by KIND 2 were too detailed and specific for us to see
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what was wrong. However, thanks to the mode information, KIND 2 could point us
relatively precisely to relevant parts of a trace. Additionally, knowing what modes were
active at any point in the trace provided a nice abstraction that would allow us to reframe
the problem in more general terms and help us find ways to revise the contract.

Probably the most useful feature was the exploration of reachable modes yielding
the reachability graphs introduced in Section 3. Even when KIND 2 proved the cor-
rectness of the modes we wrote, the mode reachability graph it generated would often
reveal significant gaps in our understanding of the system’s behavior. Sometimes only
idle modes would be reachable, because of problems in our require statements; some
other times the graph would contain mode transitions we expected not to be possible;
or, even worse, it would contain deadlocked states. We cannot overstate the usefulness
of this feature in the case study: it quickly became impossible for us to trust a contract
without examining the mode reachability graph first.

We discussed in Section 3.2 how easy it is to express in COCOSPEC mode properties
by using a mode’s identifier to refer to the conjunction of its require statements. For
instance, properties like “mode m2 cannot immediately follow mode m1” and “modes
m3 and m4 cannot be active at the same time” can be encoded respectively as:

guarantee true -> pre ::m1 => not ::m2 ;
guarantee not (::m3 and ::m4) ;

Based on the reachability graphs and our understanding of the specification and the var-
ious subsystems, we ended up writing several properties like the above, to assess the
quality of our contract. While reachability graphs provide a graphical mode-based ex-
ploration of the system and its specification up to some depth, expressing and checking
properties over the specification itself considerably raises the trust in both the specifica-
tion and the verification process. The fact that we do not duplicate mode requirements,
but instead rely on a mode-aware tool to refer directly to mode identifiers, guarantees
that these properties are synchronized with the current definition of each mode.

5.2 Verifying the Longitudinal Controller

KIND 2, like other model checkers for infinite-state systems, eventually relies on issu-
ing queries to an SMT solver to reason about the system under analysis. Lustre models
are converted internally into transition systems with an initial state condition and a two-
state transition relation. These transition systems are then expressed as first-order for-
mulas in one of the theories supported by the back-end SMT solver(s). Given the state
of the art in SMT, without any compositional mechanism, an analysis of the Longitudi-
nal Controller is currently impossible. The reason is that the system features nonlinear
arithmetic constraints (with multiplications and divisions) which are very challenging
for today’s SMT solvers. On a system the size of this one, all solvers we tried give up
as soon as we unroll the transition relation once, and return unknown.

The first step towards verifying any contract in the Autopilot system was thus for
us to abstract the nonlinear expressions in it. To do so, we manually replaced nonlinear
applications of the * and / Lustre operators with applications of Lustre nodes, written
by us, meant to abstract those operators. For instance, an expression of the form s * t
with s and t of type real would be abstracted by times(s,t) where time is the node
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node times( x, y : real ) returns ( z : real )
let

z = x * y ;
tel

The abstracting nodes were provided with a contract specifying salient algebraic, and
linear, properties of the abstracted operators, such as the existence of neutral and ab-
sorbing elements, sign, and proportionality. Because we isolated the nonlinear expres-
sions, we were able to get the SMT solvers to prove these contracts. This allowed us to
use just the contracts, which are on purpose weaker than the full implementation of the
multiplication and division nodes, in the analysis of components using those nodes. As
a nice side effect, by adding in the contract for the division node divid the assumption
that the denominator argument is nonzero, we also got the analysis to check that no
division by zero can happen in the system.

Armed with this sort of abstraction, we wrote contracts for the Longitudinal Con-
trollers and its two subcontroller based on Guide 120 and 130 of the FAR requirements.
A major challenge was that the output of the Altitude controller feeds also into the FPA
controller, even when the former is disengaged. We thus had to write a contract for the
Altitude Controller to specify its behavior even when it is not engaged. Now, the output
in question is the result r of a nonlinear division of two values n and d, and is supposed
to be within certain bounds. Our generic abstraction of division did not have a strong
enough contract to guarantee that. However, the way the system is defined, when the Al-
titude Controller is disengaged both n and d are themselves bounded. So, we designed
a custom abstraction for division, divid bounded num, which takes as input constant
upper and lower bounds on the denominator and has a contract that extend our generic
one for division with modes specifying that the result is within in an interval:11

contract divid_bounded_num( num, den: real ; const lbound, ubound: real )
returns ( res: real ) ;
let

...
assume dem <> 0.0 and lbound <> 0.0 and u_bound <> 0.0 ;
assume lbound <= den and den <= ubound ;
...
mode num_pos_lbound_pos (

require 0.0 <= num ; require 0.0 < lbound ;
ensure num/ubound <= res and res <= num/lbound ;

) ;
tel

There are six modes like num pos lbound pos in the full contract, depending on the
sign of the numerator and how the denominator compares to zero. Using this version
of division we were able to prove that the output of the Altitude Controller is indeed
within the expected bounds when the controller is disengaged.

Compositional analysis. Due to the nonlinearities discussed above, KIND 2 is unable to
perform a monolithic analysis of the Longitudinal Controller subsystem, that is, one that
looks at the subsystem as a whole, ignoring that it is the composition of several com-
ponents. Hence, we evaluated the compositional approach by comparing a linearized-
monolithic analysis, where only the nonlinear expressions are abstracted, with a com-
positional one, where the two Altitude and the FPA subcontrollers are abstracted.

11 Full contracts for times, divid, and divid bounded num are available on the case study website.

https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L168
https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L197
https://github.com/kind2-mc/cocospec_tcm_experiments/blob/master/systems/helpers.lus#L230
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contract logic_alt_fpa(...) returns (...) ;
let

mode alt_170 (...) ; mode alt_210 (...) ;
mode fpa_180 (...) ; mode fpa_210 (...) ;

tel

contract mode_logic (...) returns (...) ;
let

import logic_alt_fpa (...) returns (...) ;
tel

contract logic_longitudinal (
head_engage, alt_engage, fpa_engage: bool ; alt, alt_target, hdot,
fpa, fpa_target, pitch, speed, gskts, cas, elev, ail: real ;

) returns (
head_engaged, alt_engaged, fpa_engaged: bool ; out_alt, out_pitch, out_elev: real ;

) ;
let

import mode_logic (
head_engage, alt_engage, fpa_engage, elev <> 0.0 or ail <> 0.0, alt, alt_target

) returns ( head_engaged, alt_engaged, fpa_engaged ) ;
import longitudinal (

::mode_logic::logic_alt_fpa::alt_170 or ::mode_logic::logic_alt_fpa::alt_210,
::mode_logic::logic_alt_fpa::fpa_180 or ::mode_logic::logic_alt_fpa::fpa_210,
alt, alt_target, hdot, fpa, fpa_target, pitch, speed, gskts, cas, elev

) returns ( out_alt, out_pitch, out_elev ) ;
tel

Fig. 6: A sketch of the contract for the Autopilot node.

Both analysis were successful, but with no appreciable difference: they both termi-
nate in a matter of seconds. This is not surprising because the implementation of those
subcontrollers is not a lot more complex than their contract. In contrast, we did see a
significant difference between the linearized monolithic analysis and the compositional
one when we analyze the Autopilot system, as we explain next.

5.3 Verifying Autopilot

To verify the full Autopilot we wrote contracts also for its Mode Logic subsystem. The
pertinent FAR requirements for that subsystem are Guide 170, 180, and 210, which
specify how and when the altitude and the FPA controllers supposed to engage. We will
not go over the contracts of Mode Logic here but describe instead our experience in
verifying its composition with the Longitudinal Controller in the Autopilot system.

Before that, it is worth noting that during the verification of the Mode Logic com-
ponent we found a bug in the Lustre model. The bug occurs when the input signals
respectively enabling the Altitude and the FPA controller go from true to false at the
same time.12 In that case, the output flag for the controller that has been given priority
by Mode Logic will become true, as expected, but then alternate between true and false
at every step afterwards. Since fixing the model was beyond our level of expertise, we
side-stepped the problem for this case study by adding a require clause stating that the
two input signals never fall together.

Contracts for high-level components like Autopilot can be expressed in terms of the
contracts for their subcomponents. Overall we found that lifting subcomponent con-
tracts to their calling component is relatively straightforward thanks to the contract
import feature discussed in Section 3. This feature is often flexible enough to let one
write parametric contracts that can be adapted, by instantiation, to nodes with similar

12 This is possible in principle if these signals come from distinct physical on/off buttons, as
opposed to a switch, that are released at the same time.
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behavior. In the case of the Autopilot node, its contract can be created by importing
and suitably connecting the contracts of its Mode Logic and Longitudinal Controller
subcomponents, as illustrated in Figure 6. Note that the two first parameters of the
longitudinal import refer to the modes of the mode logic contract to communicate
whether the Altitude or the FPA controller is active. Reusing the contracts of the two
subsystems through imports to write the contract for the Autopilot component reduces
the duplication of specs across the overall system. This improves user-friendliness,
maintainability and, hence, trust in the correctness of the specs.

There is still, however, room for errors in the contracts themselves. Mode informa-
tion helps fix those errors that cause the contract to be falsifiable. Once a contract is
proved, the exploration of reachable modes is again an invaluable tool to make sure
all the modes can actually be activated, and that the system and the contract behave as
expected, at least up to the explored depth of the reachability graph.

Compositional versus linearized-monolithic. The Autopilot system is rather complex.
Recall that the Mode Logic component decides which controller is engaged based on
information arbitrarily far in the past because of the request mechanism. Its outputs
control the mutually-exclusive activation of the two subsystems of the Longitudinal
Controller. Moreover, these subsystems are not independent as the FPA Controller takes
as input the output of the Altitude Controller.

A monolithic analysis of this system in KIND 2 is again impossible because of
the nonlinear expressions in the Longitudinal Controller subsystem, as discussed in
Section 5.2. We therefore compared a linearized-monolithic analysis of Autopilot with a
compositional one. The former could discharge some of the proof obligations generated
for the Autopilot contract, but was overall inconclusive after running for one hour on
an i7 (2014) CPU running Mac OS X. The compositional analysis, on the other hand,
was able to prove the entire contract of the Autopilot node and all the proof obligations
for the calls to its subcomponents in about 80 seconds.

We also had KIND 2 run a full analysis on Autopilot. As explained in Section 4,
KIND 2 does that automatically by going through the hierarchy of nodes in a Lustre
model bottom-up, and running a compositional analysis on each of them, where im-
mediate subcomponents with contracts are abstracted by their contract. This guarantees
that every node with a contract is correct, in the sense that it respects its contract as
well as all the assumptions, if any, of the nodes it calls. The overhead of checking the
correctness of all the subcomponents of Autopilot is minimal. The total runtime for this
analysis, including the nonlinear abstractions, was under 100 seconds.

6 Conclusion

We described COCOSPEC, a mode aware assume-guarantee-based contract language
for the specification of synchronous reactive systems. The starting point of COCOSPEC
was the need to have a contract language able to accurately capture the behaviors of em-
bedded systems. COCOSPEC is currently designed as an extension of the synchronous
dataflow language Lustre. We have described COCOSPEC’s main benefits, including
i) bringing the specification language closer to the specification documents, ii) enabling
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defensive semantics checking of the specification for oversights, iii) allowing more ef-
fective and more scalable compositional analyses, and iv) providing better feedback for
fault localization. In addition to these direct benefits come features such as the explo-
ration of reachable modes or the formulation of properties about the specification (by
referring to mode requirements). This allows a mode-aware tool supporting COCOSPEC
to provide several means to raise trust in the specification.

We added full support for COCOSPEC to the Lustre model-checker KIND 2. We
demonstrated the usefulness of compositional reasoning in the context of COCOSPEC
by applying it successfully to the TCM, a flight-critical system case study which, due to
its realistic functionality, size, and complexity, is not amenable to monolithic analyses.

Future Work KIND 2 is also able to generate a concrete trace of inputs for each path
in the tree of reachable modes. We conjecture that, by exploring the reachable modes
of a contract, it is possible to generate specification-based test cases which are of better
quality than those produced by syntactic test generation techniques. This is particularly
relevant for outsourced components, which are often provided by subcontractors in exe-
cutable form only. For such components, test cases are the only means to verify contract
compliance. We plan to evaluate our conjecture experimentally in future work.
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lessa, V., Muccini, H., Demirörs, O. (eds.) 38th Euromicro Conference on Software Engi-
neering and Advanced Applications, SEAA 2012. IEEE Computer Society (2012)

8. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Compositional
verification of architectural models. In: Goodloe, A., Person, S. (eds.) NASA Formal Meth-
ods - 4th International Symposium, NFM 2012. Lecture Notes in Computer Science, vol.
7226. Springer (2012)



18 Champion et al.

9. Dieumegard, A., Garoche, P., Kahsai, T., Taillar, A., Thirioux, X.: Compilation of syn-
chronous observers as code contracts. In: Wainwright, R.L., Corchado, J.M., Bechini, A.,
Hong, J. (eds.) Proceedings of the 30th Annual ACM Symposium on Applied Computing,
2015. ACM (2015)

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
11. Halbwachs, N., Fernandez, J.C., Bouajjanni, A.: An executable temporal logic to express

safety properties and its connection with the language lustre. In: Sixth International Sympo-
sium on Lucid and Intensional Programming, ISLIP 1993 (1993)

12. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTRE. IEEE Trans. Software Eng. 18(9)
(1992)

13. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verification of
reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Algebraic Methodology
and Software Technology (AMAST), Proceedings of the Third International Conference on
Methodology and Software Technology, 1993. Workshops in Computing, Springer (1993)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

15. Hueschen, R.M.: Development of the Transport Class Model (TCM) aircraft simulation from
a sub-scale Generic Transport Model (GTM) simulation. Tech. rep., NASA, Langley Re-
search Center (2011)
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