. Propositional Satisfiability

22c¢:145 Artificial Intelligence
Russell & Norvig, Ch. 7.6

Validity vs. Satisfiability

e Valid
— Ag

int
— Asg

if (
— Pr
e Satis

ty:
sentence is valid if it is true in every interpretation (every
erpretation is a model).

sentence s is a valid consequence of a set S of sentences
S => s) is valid.
nof methods: Truth -Tables and Inference Rules

fiability:

— A set of sentences is satisfiable if there exists an

int
on

— Pr

erpretation in which every sentence is true (it has at least
e model).

pof Methods: Truth-Tables and

The Davis-Putnam-Logeman-Loveland procedure (DPLL).

N

>AT: Propositional Satisfiability

e An instance of SAT is def‘ined as (X, S)
— X: A set of 0-1 (propositional) variables
— S: A set of sentences (formulas) on X

e Goal: Find an assignment f: X -> {0, 1} so that
every sentence becomes true.

e SAT is the first NP-complete problem.

— Goad News: Thousands of problems can be
transformed into SAT

— Bad News: There are no efficient algorithms for SAT

Truth Table for Satisfiability

e A propositional formula ¢ is satisifiable iff one of the values of ¢
is True.

e Example: p=(aVc)&(bVc)&(-aV-bV-c)

a b c aVc bVc -aV-bV-=-c (0]
0 0 0 0 0 1 0
0 0 1 1 1 1 1
0 1 0 0 1 1 0
0 1 1 1 1 1 1
1 0 0 1 0 1 0
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 0 0

—~—
Q

£0,b =0, c=1}isamodel of ¢
|

N

simplification of Truth Table

e Aslong as ¢ has a value True, we may stop working.
e Several rows may be merged into one with don’t-care values (x)
e Example: p=(aVc)&(bVc)&(-aV-bV-c)

o
(op

Hl—\l—\Ob—‘I-AI—\cb<
[N

c -aV-bV-c
1

o| X |T

PR ROl ol o Ol
| O|kR|O| | POl o|lO
Rl R PRk k| oL
Oo|r|r| ol r| ol o

Rl R o|l ol k|
ol r|r|r| R r

Truth Table as a Binary Tree

e Each internal node has a variable
e Two children represent True and a

False.
e The leaf nodes have the value of ¢ V\

e Each row of Truth Table is a path b b

from the root to a leaf.
AN

e Example: p=(aVc)&(bVc)& ¢ C c c

S SRITER

0 10 10 11 0

N

>simplification of Binary Tree

e Don't-

care variables can be

removed from the tree

e Example: p=(aVc)&(bVc)&

(—|a \

N

C
Hb V =c) %\1 /0/\1
0 1 c c
AA
0 11 0

N

>5iImp

lification of Binary Tree

e Order

of variables may affect the

size of the tree

N

e Example: p=(aVc)&(bVc)& b b
(—|aV—|bV—|c)
AN
0 a 1 a
e TheD

ideas.

avis-Putnam-Logmann- \{
Loveland method exploit these

0 1 1 0

Conjunctive Normal Form (CNF)

(p&(bV & (GaV -b V -c)

Positive Negative
Clause I_ Literal Literal

- |

’ropositional Clauses

e Every propositional constraint can be converted into
a set|of equivalent clauses.
- SE{C,C,, ..,C,}=C,&C,&...&C,

e A clause is a disjunction of literals.
- Cx(L,VL,V.. VL)

e A literal is either a variable or the negation of a
variable.
—Lxx or L=-x

e A set of clauses is also said to be in Conjunctive
Normal Form (CNF).

Gate CNF

a_ ¢g=[d=-(@&b)]

b -d d=[d—>—|(a&b)]&[—-(a&b)—>d]
=(-d V -aV -b)[-d - (a & b)]
=(@aVd)(bVd)(=aV-bV-d)

g =[d = -(ab)]

= -[d ® ~(a b)]

= [-(ab)-d Vabd]

=-[-a~+dV-b-dVabd]

=(@aVd)(bVd)(-aV-bV-d)

\ |
|
DIMACS Format

(
(

DIMAC

J
c This is an example of
- an SAT instance in DIMACS format

ocnf35
120
130 X1V X2
1-20 X1V X3
11-30 -X1V -X2
230 -X1V -X3
-X2 'V -X3
'S: Discrete Mathematics and Computer Science

=

Jore on Assignments

e Assignments: {a=0,b=1}=-a &b

— Partial (some variables still unassigned)

— Complete (all variables assigned)

— Conflicting (imply —¢)
¢o=(@Vec)&(bVec)&(-aV-bV)
¢ —>(@ve)

-(aVvce) >
-a & °C > @

iteral & Clause Classification

—

violated satisfied unresolved satisfied

| | | | | | | |
e=(@V-b)(-raVbV-c)aVcVvd)-aV-bV-c)

N I) I B

a ¢ b assignic and d unassigned|

Jnit Clause Rule - Implications

e An u
one

e A un
satis

. G

nresolved clause is unit if it has exactly
unassigned literal

e=((@Vc)bVc)(-aV-bV -c)
it clause has exactly one option for being
fied
ab—--c
must be set to 0.

- |

ure

Literal Rule

e A var
all ne

e Satis

pure
conta

e Setc
unsat

iable is pure if its literals are either all positive or
gative

fiability of a formula is unaffected by assigning
variables the values that satisfy all the clauses
lining them

¢=(aVc)bVc)bV-d(-aV-bVd

to 1, if ¢ becomes unsatisfiable, then it is also
isfiable when c is set to 0.

.|

Resolution/Consensus

e General technique for deriving new clauses
Example: o, =(-aVbVc),o,=(@VbVd)
Resolution:

res(o,, ®,, a)=(bVcVd)

Complete procedure for satisfiability [Davis, JACM’60]
Impractical for real-world problem instances
Application of restricted forms has been successful!
— E.g., always apply restricted resolution
slres((-raV o), (aVa), a) = (o)
o is a disjunction of literals

A Taxonomy of SAT Algorithms

C

SAT Algorithms
@nplete Incomplete

arBpebeckiseattisfiBBllity Cannot@aechiishtifiabiiy

Resolution (original DP) Continuous formulations

Genetic algorithms
Recursive| learning (RL)
BDDs (Binary Decision Diagram) Simulated annealing

Tabu search

AT XIV-X2
SAT: OV .
X1=0 - - =
A sea rCh X1V -X2
= -X1V-X3 N
PRy Py [P Fa N WAVZ.Y XQV_Xs le2
UV AZ
problem VX2 e
1V-X2 0V -X2
1V-X3 0V-X3
X2V -X3 -X2V -X3
X2
1
X3
1 1 X2=0
X2=0 1 %1 _§§ \
-X2 'V -X3)
/ X2V -X3 i
1
0 x:oy X3 X3=1 1 &:‘o
X3
1 -X3
» 1 1 1 1V-X3 1
L
0 0V -X3 1 1
1V-X3 1 1 1
1 1 1
1 0 1

Simplification Rules: 1VC=1,0VC=C

X1V X2
X1V X3
y X1V -X2 X1=1
X1V -X3
X2 X2V -X3 1
X3 1
1 X2
1 X3
X2V -X3 -X2V -X3
X2=1, X8=1 _ X2=0, X3=0
Unit
1 Propagation: 1
i Make all unit i
1 clauses true; 1
0 No splitting on 1
them.

HTH (a'al (a'a NN

L

oveland Algorithm

Dt Pa¥a Va n
| L UHC A

1960)

i(" ~
S utllialrti ITICrini

(

function
repeat

for ¢

if §
else
until nc

choose
if Satis

else if
else re

Satisfiable (clause set S) return {0, 1}
/[* unit propagation */
cach unit clause L in S do
delete from S every clause containing L
delete -L from each C in S in which -L occurs
iIs empty then return 1
if aclausein S is empty then return O
D more new unit clauses changes

a literal L occurring in S [* splitting */
sfiable(S U {L})thenreturn 1
Satisfiable(S U {-L}) thenreturn 1

turn O

|

)PLL uses Depth-First-Search

e DFS
path
The
ever

e The

splitt

with Backtrack: Instead of maintaining a
of nodes, only one node is maintained.
node is modified when going down and
ything is undone when going up.
branching factor is dictated by the

ing rule.

M/

DPLL uses Backtrack Search

e Impl

cit enumeration

e |terated unit-clause rule
— Boolean constraint propagation
e Pure-literal rule

e Chronological backtracking in presence of
conflicts

e The

worst-time complexity is exponential in

terms of the number of variables.

mple

menting The DPLL Algorithm

e A des

tructive data structure is needed for

clauses: Instead of copying clauses, modify

them

and then undo modification when

backtracking.
e Efficient algorithms for unit-propagation.

e There are many choices for selecting a literal to
split (heuristics are needed).

The n-queen problem

e Place n queens on an n x n chessboard so that no
two queens attack each other.

e Conditions:
— Each row has a unigue queen
— Na two queens on the same column
— Na two queens on the same diagonal

e Use n? boolean variables: g is true iff the queen on
row ijis in column j.

m

-xample: 4-queen problem

e 16 variables: q11, q12, q13, q14, 921, ..., g44

e Each row has a unique queen
1. q11|qg12|ql3|ql4d

021|922 | 923 | q24

0311932 933|g34

041|942 | 943 | q44

-ql1|-g12

a kv

-g43 | -q44

m

-xample: 4-queen problem

e 16V
e Not

1. q
2. q
3. q

o !

ariables: q11, q12, q13, q14, 921, ..., g44
WO queens on the same column

11| -g21

11| -031

11 | -g41

-qB4 | -q44

Wo queens on the same diagonal

-ql1|-922, -q11 | -g33, -ql1l1 | -q44
-q12 | -g21, -q12 | -g23, -q12 | -q34

(da)

>atbox’s Results on n-queen prob.

n solutions 1 soln. |all soln.

8 92 0.00 0.01

10 724 0.00 0.04

20 |>100,000 0.00 240

40 0.16

60 1.30

80 4.30

.00 11.20

* Times are in seconds.
» There are 1646800 clauses for n=100

1

"he Einstein Puzzle

Suppos

edly, Albert Einstein wrote this riddle, and

said 98

% of the world could not solve it.

e The
e Ine
nati
The
brar
No
toba

The

re are 5 houses in five different colors.

ach house lives a person with a different
onality.

se 5 owners drink a certain drink, smoke a certain
nd of tobacco and keep a certain pet.

pwners have the same pet, smoke the same
icco, or drink the same drink.

question is: Who owns the fish?

{ints

T

to Einstein Puzzle

e The Br
e The Sv
e The Ds

e The gre
white h

e The gre
e The pe
e The ow

e The ms
drinks

t lives in the red house
vede keeps dogs as pets
ne drinks tea

een house is adjacent on the left of the
ouse

2en house owner drinks coffee
rson who smokes Pall Mall raises birds
ner of the yellow house smokes Dunhill

an living in the house right in the center
milk

Hints to Einstein Puzzle (cont)

who ke

e The ow

eps cats

e The Norwegian lives in the first house
e The man who smokes Blends lives next to the one

e The man who keeps horses lives next to the one
who smokes Dunhill

ner who smokes Bluemaster drinks juice

e The German smokes Prince
e The Norwegian lives next to the blue house

e The man who smokes Blend has a neighbor who
drinks water.

>pecify Einstein Puzzle in SAT

C

\

e The ha

e Definit
— #def
— #def
— #def
— #def
— #def

e #define

e Answe

)uses are presented by 1, 2, 3, 4, 5.

on of colors */

neredO
ne green 1
ne white 2
ne blue 3
ne yellow 4

2 color(x,y) ((X)+5%(y))

rr391517 21

N

>pecify Einstein Puzzle in SAT

e Definit
— #def
— #def
— #def
— #def
— #def

e Answe

e The houses are presented by 1, 2, 3, 4, 5.

on of nationality
ne brit 5

ne swede 6

ne dane 7

ne norwegian 8

ne german 9

e #define lives(x,y) ((X)+5*(y))

r:28 35374149

N

>pec

ify Einstein Puzzle in SAT

e Definit
— #def
— #def
— #def
— #def
— #def

e Answe

e The houses are presented by 1, 2, 3, 4, 5.

on of drinks
ne tea 10

ne coffee 11
ne water 12
ne juice 13
ne milk 14

e #define drinks(x,y) ((xX)+5*(y))

rr52596170 73

Clauses in DIMACS Format

printf(“p ¢

for (k=0
I/l every
for (a=
printf("0
for (a=
for (b

for (b

nf 125 1000\n”); // actual clauses: 885

k <5; k++) {

house has a color

1; a <= 5; a++) printf("%d ", color(a, k));

n");

l:a<=5; a++) {

=1;b<a;b++) //acolorcan be used once

printf("-%d -%d 0\n", color(a, k), color(b, k));

=0:b<5;b++)if (b 1=K

/I d house can have only one color.
printf("-%d -%d 0\n", color(a, k), color(a, b));

Clauses in DIMACS Format

}

/I The
for (a

}

/I The Brit lives in the red house

for(ax 1;a<=5;a++){
printf("-%d %d 0\n", lives(a, brit), color(a, red));
printf("%d -%d 0\n", lives(a, brit), color(a, red));

Swede keeps dogs as pets
=z1;a<=5;a++){

printf("-%d %d 0\n", lives(a, swede), pets(a, dog));
printf("%d -%d 0\n", lives(a, swede), pets(a, dog));

Clauses in DIMACS Format

/I The man living in the house right in the center drinks milk
printf("%d 0\n", drinks(3, milk));

/l The Norwegian lives in the first house
printf("%d O0\n", lives(1, norwegian));

Clauses in DIMACS Format

/l The man who smokes Blends lives next to the one
I who keeps cats
printf("-%d %d 0\n", smokes(1, Blends), pets(2, cat));
printf("-%d %d 0\n", smokes(5, Blends), pets(4, cat));
for(a@=2;a<=4;att+){
printf("-%d %d %d 0\n",
smokes(a, Blends),
pets(a-1, cat), pets(a+1, cat));

N

sato’s Result

o - SATO 3.2.1, 04/2000 on serv16.divms.uiowa.edu ------

¢ Input file "einstein.cnf" is open.

¢ Reading clauses in DIMACS's format.

¢ Max_atom = 125, Max_clause = 1000

There are 885 input clauses (3 unit, 251 subsumed, 637 retained).

Model #1: (indices of true atoms)
391517 21 28 35 37 41 49 52 59 61 70 73 77 81 90 93 99
103 106 112 120 124

The number of found models is 1.

There are 13 branches (1 succeeded, 9 failed, 0 jumped).

Stats

run time (seconds) 0.00
build time 0.00
search time 0.00

mallocated (K bytes 96.49

SUDOKU Puzzle

e Fill numbers

between 1 and 9 5 4
on a 9x9 square 409
such|that each
row, each 5 9
column and each 924 3 6
small 3x3 square 8|4 6|9
is a permutation 5 2 38
of 1t0 9. 3)

3

3 9

SUDOKU Puzzle

e Fill nt
betwé
ona
such
row,
colun
small
isanp
of 1t

umbers

ren 1 and 9

Ox9 square
that each

pach

nn and each

3x3 square

ermutation

0 9.

WO INO|N| O] h&~O
NP WN]O OO
O OO BN INW
R OIW O OO N|DN
QO[NNI PP Wlh|lO)| 0
OIND” N OI|O|W|
NP OIW O N[00 &~

AW O OO N|F| N

D[N[OOI N|PFPlW| U1 ©

T

10w

to Code the Puzzle

e Letp

e Thet

X,¥,Z) be the boolean variable such that the

number at (x, y) is z, where x,y, zarein { 1..9 }
e In DIMACS Fomat, p(x,y,z) = 81(x-1)+9(y-1)+z
otal number of boolean variables is 93 = 729.

T-

10w

to Code the Puzzle

e Atce

¢
There

e Row

There
e Colur

e Each

I (X, y), the number is between 1 and 9:

(xy,1) [p(xy.2) | p(x.y,3) | ... | p(X.y,9)

> are 81 such clauses.

X IS a permutation of 1..9: For any z,

p(x,1,2) | -p(x,2,2), -p(x,1,2) | -p(x,3,2), ...

> are 81*36 such clauses.

mny is a permutation of 1..9: For any z,

p(l,y,Z) | -p(2,y,z), -p(l,y,Z) I 'p(3,y,2),

small square is a permutation of 1..9: For any z,

-p(1,1,2) | -p(2,2,2), -p(1,1,2) | -p(2,3,2), ...

-

Resolution (original DP)

e |terat
varia

- e

— for

e Stop
— Eit

- Or
Ins

o=@V

@vVv-

¢ =
:(dVﬂ

ively apply resolution (consensus) to eliminate one
ble each time

, resolution between all pairs of clauses containing x and -x
mula satisfiability is preserved

applying resolution when,

her empty clause is derived = instance is unsatisfiable

only clauses satisfied or with pure literals are obtained =
tance is satisfiable

mw)

aV-b)bV-aV-b)dV-aV-b)
avVv-b)

Eliminate variable c

Instance is SAT !

m

-limination of variables

e LetSn

e Letva
them f

Fo

ri

}

ret
e Assu

be the set of input clauses.
ables in S be ordered as x1, x2, ..., xn and we eliminate

rom xn to x1 by the following algorithm:

k:=ntolstep-1do{

Let Sk be divided into Sk = Pk U Nk U S’, where
Pk contains all clauses having positive xk

Nk contains all clauses having negative —xk

Let S(k-1) := S’ U Resolution(Pk, Nk, xk)

If the empty clause is in S(k-1), return UNSAT

urn SAT.

e Resolution(Pk, Nk, xk) apply the resolution to any pair of

clauses from Pk and Nk on xk. Duplicate literals in a clause are
removed. Tautology clauses are removed from Sk.

~ompleteness of Resolution

o |f the
— Be
the

e |f the
has 4

— We

XN

un

— Th

algorithm returns UNSAT, then S is unsatisfiable.

cause resolution is sound, if the empty clause is generated,

n S must be unsatisfiable.

algorithm returns SAT, then S is satisfiable, i.e., S

| model.

> construct an assigment by assigning truth values from x1 to
such that when xk is assigned, then all clauses in Sk are true
der the current assignement.

s assignment is a model when xn is assigned a truth value.

_ompleteness of Resolution

— At
wil
tru

fal

e They

— Su
ag

e Claim
assig
e Proof:
— Basic case: k=1.

— Inductive hypothesis: After x(k-1) is assigned, clauses in S(k-1)
are true.

— Inductive case: The assignment of xk will make every clause in
Skitrue.

yrocedure for assigning truth values from x1 to xn:

first, either P1 or N1 is empty, otherwise, the empty clause
be generated from Resolution(P1, N1, x1). We assign P1 to

e if N1 is empty; otherwise P1 to false.

ppose we have assigned a truth value to x1, x2, ..., x(k-1). If
lause in Nk after removing —xk becomes false, we assign

se to xk; otherwise assign true to xk.

1: All clauses in Sk are true in the current
nment after xk is assigned a truth value.

sate

CNF

a
b

=(avd

=

9a=[d=-(a&b)]
=[d - -(a & b)] & [+(a & b) —> d]
= (+d V =a V =b)[~d —> (a & b)]

o-d

= (aVd)(b Vd)-aV -b V -d)
®q = [d =~(a b)]

==[d @ ~(a b)]

= -[~(ab)-d V a b d]

= [~a-dV -b-dVabd]

(b V d)(~a V =b V -d)

Converting Formula into CNF

e Repl:
nega
_ x=
- X4
— x4
e Push
- =(
- =(
e Distri
_xl
-y

3ce equivalence, xor, etc. by and (&), or (]),
tion ()
y by (=x]y) & (x | =y)
Dy by (=x | 7y) & (x| y)
>y by (=x 1Y)
negation as low as possible:
|'y) by (=X & -y)
&y) by (=x]-y)
X by x
bute or over and
(y&2z) by (x]y) & (x| 2)
& z) [x by (y|X) & (z] X)

Techniques for Backtrack Search

e Coni
- Cl
— N
® Inco
— Re
e Forn
e Ran

flict analysis

ause/implicate recording

pn-chronological backtracking

rporate and extend ideas from:
2solution

nula simplification & Clause inference

domization & Restarts

Clause Recording

—

e During backtrack search, for each conflict create clause
that explains and prevents recurrence of same conflict

Q= (@/ b)(—lb V@V d) (—Ib Vv e)(—-d V -e \@)

Assume (decisions) c=0andf=0

S

Assign a = 0 and imply assignments

i

A conflict is|reached: (-d V -e V f) is unsatisfiable
a=0)A(C=0)A(f=0)= (p=0)
e=1)=@=1)v(c=1v(f=1)

-.Create new clause: (aV c V)

Clause Recording

e Clauses derived from conflicts can also be viewed as
the result of applying selective resolution

¢=(@Vb)(=bVcVd)(-bVe)-dV-eVi..

resolution /

@vbvd) ”_ﬂ,,, \kéya
(aVéV}éVﬂ

(a VeV f) Uditaniges@ Mevante) condidt
anthisplievessignheobafict !

Non

-Chronological Backtracking

A

A
€
(¢

e Durin
backt

¢

ssume (de

ssignment
(avceV

conflict is ¢
a=1) A (C
=1)=(a

g backtrack search, in the presence of conflicts,
rack to one of the causes of the conflict

= (@Vb)(=bV(cVd) (-bVe)-dV -e\T)
(avceV f)(@v 9)(=g V b)(=h V j)(=i V K)...
cisions) c=0,f=0,h=0andi=0

a = 0 caused conflict = clause (a V c V f) created
f)impliesa=1

again reached: (-d V —e V f) is unsat
=0) A (f=0)=(¢=0)

=0)v(c=1)v(f=1)
‘ | .create new clause: (-a V c V f)

Non

-Chronological Backtracking

Created ¢

Apply resc
new u

.. backtrack to most recent decision: f=0

auses: (aVcVf)and (-aVcVi)

plution: .
nsat clause (c V f)

-.Created
(aVvec

(cVHf

(raVcVf),and

clauses/implicates:
V),

(cVi

Circuit Satisfiability

¢ =[d = -(ab)] [e = ~(bVc)] [f=-d] [g =dVe] [n=fg] h

E [d = —(ab)] [e = ~(bVe)] [f = ~d] [g = dVe] [h =]
(a \ d)(b \% d)(—la V-bV —ld)
(bV-e)(-cV-e)bVcVe)

(~d V -fH(d V)

(-d Vg)(-e Vg)(d VeV -g)

m

-quivalence Checking

Comt

binational Circuits:

;. >

z=1"7

e

If z =1 is unsatisfiable, the
two circuits are equivalent !

N

SAT Problem Hardness in EDA

Boun
Supe

ded Model Checking (BMC)
rscalar processor verification

FPGA routing

Equiv
Circu

alence Checking (CEC)
it Delay Computation

Test Pattern Generation (ATPG):
— Stuck-at, Delay faults, etc.
— Redundancy Removal

Noise analysis Hardest

Easiest
Unknown

Conclusions

Many
Hard

“Easy

e Othe

recent SAT algorithms and (EDA) applications

Applications

Bounded Model Checking
Cambinational Equivalence Checking
Superscalar processor verification
FPGA routing

" Applications

Test Pattern Generation: Stuck-at, Delay faults, etc.
Redundancy Removal
Circuit Delay Computation

No

-

Applications

ise analysis, etc.

Conclusions

e Comj

e Tech

blete vs. Incomplete algorithms

Balcktrack search (DP)

Re
Re

solution (original DP)
cursive learning

Local search

niques for backtrack search (infer implicates)

conflict-induced clause recording
non-chronological backtracking

res

olution, SM and RL within backtrack search

formula simplification & clause inference conditions

ratrf

domization & restarts

.|

Rese

arch Directions

e Algor
— EX

- Ad

— De

p

e Appli
— Ind

— SA

av

=

ithms:

plore relation between different techniques

backtrack search; conflict analysis; recursive learning;
branch-merge rule; randomization & restarts; clause
inference; local search (?); BDDs (?)

dress specific solvers (circuits, incremental, etc.)
velop visualization aids for helping to better understand

oblem hardness
cations:

ustry has applied SAT solvers to different applications
T research requires challenging and representative publicly

ailable benchmark instances !

