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Validity vs. Satisfiability

Validity: 
– A sentence is valid if it is true in every interpretation (every 

interpretation is a model).
– A sentence s is a valid consequence of a set S of sentences  

if (S => s) is valid.
– Proof methods: Truth -Tables and Inference Rules

Satisfiability:
– A set of sentences is satisfiable if there exists an 

interpretation in which every sentence is true (it has at least 
one model).

– Proof Methods: Truth-Tables and
The Davis-Putnam-Logeman-Loveland procedure (DPLL).



SAT: Propositional Satisfiability
An instance of SAT is defined as (X, S)
– X:  A set of 0-1 (propositional) variables
– S:  A set of sentences (formulas) on X

Goal: Find an assignment f: X -> {0, 1} so that 
every sentence becomes true.
SAT is the first NP-complete problem.
– Good News: Thousands of problems can be 

transformed into SAT
– Bad News: There are no efficient algorithms for SAT

Truth Table for Satisfiability

A propositional formula ϕ is satisifiable iff one of the values of ϕ 
is True.
Example:  ϕ = ( a V c ) & ( b V c ) & (¬a V ¬b V ¬c )

0011111
1111011
1111101
0101001
1111110
0110010
1111100
0100000
ϕ¬a V ¬b V ¬cb V ca V ccba 

{ a = 0, b  = 0,  c = 1 } is a model of ϕ



Simplification of Truth Table 

As long as ϕ has a value True, we may stop working.
Several rows may be merged into one with don’t-care values (x)
Example:  ϕ = ( a V c ) & ( b V c ) & (¬a V ¬b V ¬c )

0011111
1111011
1111101
0101001
1111110
0110010
1111100
01000x0
ϕ¬a V ¬b V ¬cb V ca V ccba 

Truth Table as a Binary Tree
Each internal node has a variable
Two children represent True and 
False.
The leaf nodes have the value of  ϕ 
Each row of Truth Table is a path 
from the root to a leaf.

Example:  ϕ = ( a V c ) & ( b V c ) & 
(¬a V ¬b V ¬c )

a

b b

c c c c

0        1   0      1  0      1   1        0      

0            1

0       1           0         1

0     1     0     1 0     1      0    1



Simplification of Binary Tree
Don’t-care variables can be 
removed from the tree

Example:  ϕ = ( a V c ) & ( b V c ) & 
(¬a V ¬b V ¬c )

a

c b

0 1 c c

0      1   1        0      

0            1

0       1           0         1

0     1      0    1

Simplification of Binary Tree
Order of variables may affect the 
size of the tree

Example:  ϕ = ( a V c ) & ( b V c ) & 
(¬a V ¬b V ¬c )

The Davis-Putnam-Logmann-
Loveland method exploit these 
ideas.

c

b b

0 1 a

1        0 

0            1

0       1           0         1

0    1

a

0        1 

0    1



Conjunctive Normal Form (CNF)

Clause
Positive 
Literal

Negative 
Literal

ϕ = ( a V c ) & ( b V c ) & (¬a V ¬b V ¬c )

Propositional Clauses

Every propositional constraint can be converted into 
a set of equivalent clauses.
– S = { C1, C2, …, Cm } =  C1 & C2 & … & Cm

A clause is a disjunction of literals.
– C = (L1 V L2 V … V Lk)

A literal is either a variable or the negation of a 
variable.
– L = x   or   L = ¬ x

A set of clauses is also said to be in Conjunctive 
Normal Form (CNF).



Gate CNF

a
b d

ϕd = [d ≡ ¬(a b)]
= ¬[d ⊕ ¬(a b)]
= ¬[¬(a b)¬d V a b d]
= ¬[¬a ¬d V ¬b ¬d V a b d]
= (a V d)(b V d)(¬a V ¬b V ¬d)

ϕd = [d ≡ ¬(a & b )]
= [d → ¬(a & b)] & [¬(a & b) → d]
= (¬d V ¬a V ¬b)[¬d → (a & b)]
= (a V d)(b V d)(¬a V ¬b V ¬d)

DIMACS Format

DIMACS: Discrete Mathematics and Computer Science

c This is an example of
c an SAT instance in DIMACS format

p cnf 3 5
1 2 0
1 3 0
-1 -2 0
-1 -3 0
-2 -3 0

X1 V X2
X1 V X3
-X1 V -X2
-X1 V -X3
-X2 V -X3



More on Assignments

Assignments: {a = 0, b = 1} = ¬a & b
– Partial (some variables still unassigned)
– Complete (all variables assigned)
– Conflicting (imply ¬ϕ)

ϕ = (a V c) & (b V c) & (¬a V ¬b V ¬c)
ϕ → (a V c)
¬(a V c) → ¬ϕ
¬a & ¬c → ¬ϕ

Literal & Clause Classification

ϕ = (a V ¬b)(¬a V b V ¬c )(a V c V d )(¬a V ¬b V ¬c )

a assigned 0b assigned 1c and d unassigned

violated satisfiedsatisfied unresolved



An unresolved clause is unit if it has exactly 
one unassigned literal

ϕ = (a V c)(b V c)(¬a V ¬b V ¬c)
A unit clause has exactly one option for being 
satisfied

a b → ¬c
i.e. c must be set to 0.

Unit Clause Rule - Implications

Pure Literal Rule

A variable is pure if its literals are either all positive or 
all negative
Satisfiability of a formula is unaffected by assigning 
pure variables the values that satisfy all the clauses 
containing them

ϕ = (a V c )(b V c )(b V ¬d)(¬a V ¬b V d)

Set c to 1; if ϕ becomes unsatisfiable, then it is also 
unsatisfiable when c is set to 0. 



General technique for deriving new clauses
Example: ω1 = (¬a V b V c), ω2 = (a V b V d)
Resolution:

res(ω1, ω2, a) = (b V c V d)

Complete procedure for satisfiability [Davis, JACM’60]
Impractical for real-world problem instances
Application of restricted forms has been successful!
– E.g., always apply restricted resolution

• res((¬a V α), (a V α), a) = (α)
α is a disjunction of literals

Resolution/Consensus

A Taxonomy of SAT Algorithms

Backtrack search (DP)

Resolution (original DP)

Recursive learning (RL)

BDDs (Binary Decision Diagram)

...

Local search (hill climbing)

Continuous formulations

Genetic algorithms

Simulated annealing

...

Tabu search

SAT Algorithms

Complete Incomplete

Can prove unsatisfiability Cannot prove unsatisfiability



X1 V X2
X1 V X3
-X1 V -X2
-X1 V -X3
-X2 V -X3 1 V X2

1 V X3
0 V -X2
0 V -X3
-X2 V -X3

0 V X2
0 V X3
1 V -X2
1 V -X3
-X2 V -X3

X1=0

X2
X3
1
1
-X2 V -X3

1
X3
1
1
0 V -X3

1    
1
1
1
0

X2=1

X1=1

1
1
-X2
-X3
-X2 V -X3 1

1
1
-X3
1 V -X3 1      

1
1
1
1

X2=0

X3=0

SAT: 
A search 
problem

1    
0
1
1
1

X3=0 X3=10    
X3
1
1
1 V –X3

X2=0

X1 V X2
X1 V X3
-X1 V -X2
-X1 V -X3
-X2 V -X3 1

1
-X2
-X3
-X2 V -X3

X2
X3
1
1
-X2 V -X3

X1=0

1
1
1
1
0

X2=1, X3=1

X1=1

Simplification Rules:  1 V C = 1, 0 V C = C

1
1
1
1
1

X2=0, X3=0
Unit 
Propagation:
Make all unit 
clauses true;
No splitting on 
them.



The Davis-Putnam-Logemann-
Loveland Algorithm (1960)

function Satisfiable ( clause set S )  return { 0, 1 }
repeat /* unit propagation */  

for each unit clause L in S do
delete from S every clause containing L
delete -L from each C in S in which -L occurs

if S is empty then return 1
else if a clause in S is empty then return 0 

until no more new unit clauses changes

choose a literal L occurring in S /* splitting  */
if Satisfiable( S U { L } ) then return 1 
else if Satisfiable( S U { -L } )  then return 1
else return 0

DPLL uses Depth-First-Search

DFS with Backtrack: Instead of maintaining a 
path of nodes, only one node is maintained. 
The node is modified when going down and 
everything is undone when going up. 
The branching factor is dictated by the 
splitting rule.



DPLL uses Backtrack Search

Implicit enumeration
Iterated unit-clause rule
– Boolean constraint propagation 

Pure-literal rule
Chronological backtracking in presence of 
conflicts
The worst-time complexity is exponential in 
terms of the number of variables.

Implementing The DPLL Algorithm

A destructive data structure is needed for 
clauses: Instead of copying clauses, modify 
them and then undo modification when 
backtracking.
Efficient algorithms for unit-propagation.
There are many choices for selecting a literal to 
split (heuristics are needed). 



The n-queen problem

Place n queens on an n x n chessboard so that no 
two queens attack each other.
Conditions: 
– Each row has a unique queen
– No two queens on the same column
– No two queens on the same diagonal

Use n2 boolean variables: qij is true iff the queen on 
row i is in column j.

Example: 4-queen problem

16 variables: q11, q12, q13, q14, q21, …, q44
Each row has a unique queen
1. q11 | q12 | q13 | q14
2. q21 | q22 | q23 | q24
3. q31 | q32 | q33 | q34
4. q41 | q42 | q43 | q44 
5. -q11 | -q12

...
-q43 | -q44



Example: 4-queen problem

16 variables: q11, q12, q13, q14, q21, …, q44
No two queens on the same column
1. -q11 | -q21
2. -q11 | -q31
3. -q11 | -q41

…
-q34 | -q44

No two queens on the same diagonal
1. -q11 | -q22, -q11 | -q33, -q11 | -q44
2. -q12 | -q21, -q12 | -q23, -q12 | -q34

…

Satbox’s Results on n-queen prob.

-11.20-100
-4.30-80
-1.30-60
-0.16-40

2400.00>100,00020
0.040.0072410
0.010.00928

all soln.1 soln.solutionsn

• Times are in seconds. 
• There are 1646800 clauses for n=100



The Einstein Puzzle

There are 5 houses in five different colors.                    
In each house lives a person with a different 
nationality.                                                    
These 5 owners drink a certain drink, smoke a certain 
brand of tobacco and keep a certain pet.                        
No owners have the same pet, smoke the same 
tobacco, or drink the same drink.                               
The question is:   Who owns the fish? 

Supposedly, Albert Einstein wrote this riddle, and 
said 98% of the world could not solve it. 

Hints to Einstein Puzzle

The Brit lives in the red house                                 
The Swede keeps dogs as pets                                   
The Dane drinks tea                                             
The green house is adjacent on the left of the 
white house                                                     
The green house owner drinks coffee                          
The person who smokes Pall Mall raises birds            
The owner of the yellow house smokes Dunhill           
The man living in the house right in the center 
drinks milk                                                     



Hints to Einstein Puzzle (cont)

The Norwegian lives in the first house 
The man who smokes Blends lives next to the one 
who keeps cats 
The man who keeps horses lives next to the one 
who smokes Dunhill                                              
The owner who smokes Bluemaster drinks juice         
The German smokes Prince                                        
The Norwegian lives next to the blue house                 
The man who smokes Blend has a neighbor who 
drinks water. 

Specify Einstein Puzzle in SAT

The houses are presented by 1, 2, 3, 4, 5.                  
Definition of colors */                                         
– #define red 0                                                   
– #define green 1                                                 
– #define white 2                                                 
– #define blue 3                                                  
– #define yellow 4                                                

#define color(x,y) ((x)+5*(y))                                        
Answer: 3 9 15 17 21 



Specify Einstein Puzzle in SAT

The houses are presented by 1, 2, 3, 4, 5.                  
Definition of nationality                                       
– #define brit 5                                                              
– #define swede 6                                                              
– #define dane 7                                                              
– #define norwegian 8                                                             
– #define german 9

#define lives(x,y) ((x)+5*(y))                                         
Answer: 28 35 37 41 49 

Specify Einstein Puzzle in SAT

The houses are presented by 1, 2, 3, 4, 5.                  
Definition of drinks                                            
– #define tea 10                                                  
– #define coffee 11                                               
– #define water 12                                                
– #define juice 13                                                
– #define milk 14

#define drinks(x,y) ((x)+5*(y))                                      
Answer: 52 59 61 70 73 



Clauses in DIMACS Format
printf(“p cnf 125 1000\n”);  // actual clauses: 885

for (k = 0; k < 5; k++) {
// every house has a color
for (a = 1; a <= 5; a++) printf("%d ", color(a, k));                     
printf("0\n");                                                            
for (a = 1; a <= 5; a++) {                                    

for (b = 1; b < a; b++)     // a color can be used once   
printf("-%d -%d 0\n", color(a, k), color(b, k));                                        

for (b = 0; b < 5 ; b++) if (b != k)    
// a house can have only one color.
printf("-%d -%d 0\n", color(a, k), color(a, b));              

} 

Clauses in DIMACS Format

// The Brit lives in the red house                              
for (a = 1; a <= 5; a++) {                                    
printf("-%d %d 0\n", lives(a, brit), color(a, red));                     
printf("%d -%d 0\n", lives(a, brit), color(a, red));                     

}                                                             

// The Swede keeps dogs as pets                               
for (a = 1; a <= 5; a++) {                                    
printf("-%d %d 0\n", lives(a, swede), pets(a, dog));                
printf("%d -%d 0\n", lives(a, swede), pets(a, dog));                

} 



Clauses in DIMACS Format

// The man living in the house right in the center drinks milk  
printf("%d 0\n", drinks(3, milk));                                           

// The Norwegian lives in the first house                       
printf("%d 0\n", lives(1, norwegian));                                      

Clauses in DIMACS Format

// The man who smokes Blends lives next to the one
// who keeps cats           

printf("-%d %d 0\n", smokes(1, Blends), pets(2, cat));           
printf("-%d %d 0\n", smokes(5, Blends), pets(4, cat));           
for (a = 2; a <= 4; a++) {                                      

printf("-%d %d %d 0\n", 
smokes(a, Blends), 
pets(a-1, cat), pets(a+1, cat)); 

} 



Sato’s Result
------- SATO 3.2.1, 04/2000 on serv16.divms.uiowa.edu ------
c Input file "einstein.cnf" is open.
c Reading clauses in DIMACS's format.
c Max_atom = 125, Max_clause = 1000
There are 885 input clauses (3 unit, 251 subsumed, 637 retained).

Model #1: (indices of true atoms)
3  9  15  17  21  28  35  37  41  49  52  59  61  70  73  77 81  90  93  99 
103  106  112  120  124  

The number of found models is 1.
There are 13 branches (1 succeeded, 9 failed, 0 jumped).

---------------- Stats ----------------
run time (seconds)           0.00

build time                       0.00
search time                    0.00

mallocated (K bytes       96.49
---------------------------------------

SUDOKU Puzzle

Fill numbers 
between 1 and 9 
on a 9x9 square 
such that each 
row, each 
column and each 
small 3x3 square 
is a permutation 
of 1 to 9.

693
73

43
48325

9648
63429

95
94

945



SUDOKU Puzzle

Fill numbers 
between 1 and 9 
on a 9x9 square 
such that each 
row, each 
column and each 
small 3x3 square 
is a permutation 
of 1 to 9.

642851973
731296548
895473612
483729156
259614837
167538429
326945781
518367294
974182365

How to Code the Puzzle

Let p(x,y,z) be the boolean variable such that the 
number at (x, y) is z, where x, y, z are in { 1..9 }
In DIMACS Fomat, p(x,y,z) = 81(x-1)+9(y-1)+z
The total number of boolean variables is 93 = 729.



How to Code the Puzzle

At cell (x, y), the number is between 1 and 9:
p(x,y,1) | p(x,y,2) | p(x,y,3) | … | p(x,y,9)

There are 81 such clauses.
Row x is a permutation of 1..9: For any z,

-p(x,1,z) | -p(x,2,z),   -p(x,1,z) | -p(x,3,z), …
There are 81*36 such clauses.
Column y is a permutation of 1..9: For any z,

-p(1,y,z) | -p(2,y,z),   -p(1,y,z) | -p(3,y,z), …
Each small square is a permutation of 1..9: For any z,

-p(1,1,z) | -p(2,2,z),  -p(1,1,z) | -p(2,3,z), …

Resolution (original DP)

Iteratively apply resolution (consensus) to eliminate one 
variable each time
– i.e., resolution between all pairs of clauses containing x and ¬x
– formula satisfiability is preserved

Stop applying resolution when,
– Either empty clause is derived ⇒ instance is unsatisfiable
– Or only clauses satisfied or with pure literals are obtained ⇒

instance is satisfiable

ϕ = (a V c)(b V c)(d V c)(¬a V ¬b V ¬c) Eliminate variable c

ϕ1 = (a V ¬a V ¬b)(b V ¬a V ¬b )(d V ¬a V ¬b )
= (d V ¬a V ¬b ) Instance is SAT !



Elimination of variables
Let Sn be the set of input clauses.
Let variables in S be ordered as x1, x2, …, xn and we eliminate 
them from xn to x1 by the following algorithm:

For k := n to 1 step -1 do {
Let Sk be divided into Sk = Pk U Nk U S’, where
Pk contains all clauses having positive xk
Nk contains all clauses having negative –xk
Let S(k-1) := S’ U Resolution(Pk, Nk, xk)
If the empty clause is in S(k-1), return UNSAT

}
return SAT.

Assume Resolution(Pk, Nk, xk) apply the resolution to any pair of 
clauses from Pk and Nk on xk. Duplicate literals in a clause are 
removed. Tautology clauses are removed from Sk.

Completeness of Resolution

If the algorithm returns UNSAT, then S is unsatisfiable.
– Because resolution is sound, if the empty clause is generated, 

then S must be unsatisfiable.

If the algorithm returns SAT, then S is satisfiable, i.e., S 
has a model.
– We construct an assigment by assigning truth values from x1 to 

xn such that when xk is assigned, then all clauses in Sk are true 
under the current assignement.

– This assignment is a model when xn is assigned a truth value.



Completeness of Resolution

The procedure for assigning truth values from x1 to xn:
– At first, either P1 or N1 is empty, otherwise, the empty clause 

will be generated from Resolution(P1, N1, x1). We assign P1 to 
true if N1 is empty; otherwise P1 to false.

– Suppose we have assigned a truth value to x1, x2, …, x(k-1).  If 
a clause in Nk after removing –xk becomes false, we assign 
false to xk; otherwise assign true to xk. 

Claim: All clauses in Sk are true in the current 
assignment after xk is assigned a truth value.
Proof: 
– Basic case: k = 1.
– Inductive hypothesis: After x(k-1) is assigned, clauses in S(k-1) 

are true.
– Inductive case: The assignment of xk will make every clause in 

Sk true.

Gate CNF

a
b d

ϕd = [d ≡ ¬(a b)]
= ¬[d ⊕ ¬(a b)]
= ¬[¬(a b)¬d V a b d]
= ¬[¬a ¬d V ¬b ¬d V a b d]
= (a V d)(b V d)(¬a V ¬b V ¬d)

ϕd = [d ≡ ¬(a & b )]
= [d → ¬(a & b)] & [¬(a & b) → d]
= (¬d V ¬a V ¬b)[¬d → (a & b)]
= (a V d)(b V d)(¬a V ¬b V ¬d)



Converting Formula into CNF

Replace equivalence, xor, etc. by and (&), or (|), 
negation (¬) 
– x ≡ y  by (¬x | y) & (x  | ¬y)
– x ⊕ y by (¬x | ¬y) & (x | y)
– x → y by (¬x | y) 

Push negation as low as possible:
– ¬(x | y) by (¬x & ¬y) 
– ¬(x & y) by (¬x | ¬y) 
– ¬¬x by x

Distribute or over and
– x | (y & z) by (x | y) & (x | z)
– (y & z) | x by (y | x) & (z | x)

Techniques for Backtrack Search

Conflict analysis
– Clause/implicate recording
– Non-chronological backtracking

Incorporate and extend ideas from:
– Resolution

Formula simplification & Clause inference
Randomization & Restarts



(a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…

Clause Recording

During backtrack search, for each conflict create clause 
that explains and prevents recurrence of same conflict

Assume (decisions) c = 0 and f = 0

Assign a = 0 and imply assignments

A conflict is reached: (¬d V ¬e V f) is unsatisfiable

(ϕ = 1) ⇒ (a = 1) ∨ (c = 1) ∨ (f = 1)

∴create new clause: (a V c V f)

Clause Recording

Clauses derived from conflicts can also be viewed as 
the result of applying selective resolution

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)…

(a V c V d)
resolution

(a V c V ¬e V f)

(a V c V f)

(a V e)

Unit clause: prevents conflict 
and implies assignment a = 1

Clause (a V c V f) would 
have prevented the conflict !



(a = 1) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

Non-Chronological Backtracking

During backtrack search, in the presence of conflicts, 
backtrack to one of the causes of the conflict

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)
(a V c V f)(¬a V g)(¬g V b)(¬h V j)(¬i V k)…

Assume (decisions) c = 0, f = 0, h = 0 and i = 0 
Assignment a = 0 caused conflict ⇒ clause (a V c V f) created

(a V c V f) implies a = 1

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)
(a V c V f)(¬a V g)(¬g V b)(¬h V j)(¬i V k)…

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)
(a V c V f)(¬a V g)(¬g V b)(¬h V j)(¬i V k)…

ϕ = (a V b)(¬b V c V d) (¬b V e)(¬d V ¬e V f)
(a V c V f)(¬a V g)(¬g V b)(¬h V j)(¬i V k)…

A conflict is again reached: (¬d V ¬e V f) is unsat

(ϕ = 1) ⇒ (a = 0) ∨ (c = 1) ∨ (f = 1)
∴create new clause: (¬a V c V f)

Non-Chronological Backtracking

Created clauses: (a V c V f) and (¬a V c V f)

∴ backtrack to most recent decision: f = 0

∴created clauses/implicates:
(a V c V f),
(¬a V c V f), and
(c V f)

Apply resolution:
new unsat clause (c V f)

0

0

c

f

i

h

0

0

a
0 1

(c V f)



Circuit Satisfiability

a
b

c

d

e g

f

h?

ϕ = [d ≡ ¬(ab)] [e ≡ ¬(bVc)] [f ≡ ¬d] [g ≡ dVe] [h ≡ fg] h

= h
(a V d)(b V d)(¬a V ¬b V ¬d)
(¬b V ¬e)(¬c V ¬e)(b V c V e)
(¬d V ¬f)(d V f)
(¬d V g)(¬e V g)(d V e V ¬g)
(f V ¬h)(g V ¬h)(¬f V ¬g V h)

= h
(a V d)(b V d)(¬a V ¬b V ¬d)
(¬b V ¬e)(¬c V ¬e)(b V c V e)
(¬d V ¬f)(d V f)
(¬d V g)(¬e V g)(d V e V ¬g)
(f V ¬h)(g V ¬h)(¬f V ¬g V h)

= h
(a V d)(b V d)(¬a V ¬b V ¬d)
(¬b V ¬e)(¬c V ¬e)(b V c V e)
(¬d V ¬f)(d V f)
(¬d V g)(¬e V g)(d V e V ¬g)
(f V ¬h)(g V ¬h)(¬f V ¬g V h)

= h
(a V d)(b V d)(¬a V ¬b V ¬d)
(¬b V ¬e)(¬c V ¬e)(b V c V e)
(¬d V ¬f)(d V f)
(¬d V g)(¬e V g)(d V e V ¬g)
(f V ¬h)(g V ¬h)(¬f V ¬g V h)

= h
(a V d)(b V d)(¬a V ¬b V ¬d)
(¬b V ¬e)(¬c V ¬e)(b V c V e)
(¬d V ¬f)(d V f)
(¬d V g)(¬e V g)(d V e V ¬g)
(f V ¬h)(g V ¬h)(¬f V ¬g V h)

Circuit Satisfiability

a
b

c

d

e g

f

h?

ϕ = h [d ≡ ¬(ab)] [e ≡ ¬(bVc)] [f ≡ ¬d] [g ≡ dVe] [h ≡ fg]

a
b

c

d

e g

f

h?

a
b

c

d

e g

f

h?

a
b

c

d

e g

f

h?



Equivalence Checking

If z = 1 is unsatisfiable, the
two circuits are equivalent !

CB

CA

z = 1 ?

Combinational Circuits:

SAT Problem Hardness in EDA

Bounded Model Checking (BMC)
Superscalar processor verification
FPGA routing
Equivalence Checking (CEC)
Circuit Delay Computation
Test Pattern Generation (ATPG):
– Stuck-at, Delay faults, etc.
– Redundancy Removal

Noise analysis
...

Hardest

Easiest
Unknown



Conclusions

Many recent SAT algorithms and (EDA) applications
Hard Applications
– Bounded Model Checking
– Combinational Equivalence Checking
– Superscalar processor verification
– FPGA routing

“Easy” Applications
– Test Pattern Generation: Stuck-at, Delay faults, etc.
– Redundancy Removal
– Circuit Delay Computation

Other Applications
– Noise analysis, etc.

Conclusions

Complete vs. Incomplete algorithms
– Backtrack search (DP)
– Resolution (original DP)
– Recursive learning
– Local search

Techniques for backtrack search (infer implicates)
– conflict-induced clause recording
– non-chronological backtracking
– resolution, SM and RL within backtrack search
– formula simplification & clause inference conditions
– randomization & restarts



Research Directions

Algorithms:
– Explore relation between different techniques

• backtrack search; conflict analysis; recursive learning; 
branch-merge rule; randomization & restarts; clause 
inference; local search (?); BDDs (?)

– Address specific solvers (circuits, incremental, etc.)
– Develop visualization aids for helping to better understand 

problem hardness

Applications:
– Industry has applied SAT solvers to different applications
– SAT research requires challenging and representative publicly 

available benchmark instances !


