

- An instance of SAT is defined as (X, S)
 - X: A set of 0-1 (propositional) variables
 - S: A set of sentences (formulas) on X
- Goal: Find an assignment f: X -> {0, 1} so that every sentence becomes true.
- SAT is the first NP-complete problem.
 - Good News: Thousands of problems can be transformed into SAT
 - Bad News: There are no efficient algorithms for SAT

Truth Table for Satisfiability

- A propositional formula ϕ is satisifiable iff one of the values of ϕ is *True*.
- Example: φ = (a ∨ c) & (b ∨ c) & (¬a ∨ ¬b ∨ ¬c)

	а	b	С	аVс	bVc	¬a∨¬b∨¬c	φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	1	1	1	1
0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1	0	1	0	0	1	1	0
1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1	0	1	1	1	1	1	1
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1	1	0	0	1	0	1	0
1 1 0 1 1 1 1	1	0	1	1	1	1	1
	1	1	0	1	1	1	1
	1	1	1	1	1	0	0

Simplification of Truth Table

- As long as φ has a value *True*, we may stop working.
- Several rows may be merged into one with don't-care values (x)
- Example: φ = (a ∨ c) & (b ∨ c) & (¬a ∨ ¬b ∨ ¬c)

а	b	С	aVc	bVс	¬a∨¬b∨¬c	φ
0	х	0	0	-0	4	0
0	0	1	1	1	1	1
0	1	0	0	1	1	0
0	1	1	1	1	1	1
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	0	0
			•			
				1		

Resolution/Consensus

General technique for deriving new clauses
 Example: ω₁ = (¬a ∨ b ∨ c), ω₂ = (a ∨ b ∨ d)
 Resolution:

 $res(\omega_1, \omega_2, a) = (b \lor c \lor d)$

- Complete procedure for satisfiability [Davis, JACM'60]
- Impractical for real-world problem instances
- Application of restricted forms has been successful!
 - E.g., always apply restricted resolution
 - res(($\neg a \lor \alpha$), ($a \lor \alpha$), a) = (α) α is a disjunction of literals

The Davis-Putnam-Logemann-Loveland Algorithm (1960)

else return 0

DPLL uses Backtrack Search

- Implicit enumeration
- Iterated unit-clause rule
 Boolean constraint propagation
- Pure-literal rule
- Chronological backtracking in presence of conflicts
- The worst-time complexity is exponential in terms of the number of variables.

• Place n queens on an n x n chessboard so that no two queens attack each other.

- Conditions:
 - Each row has a unique queen
 - No two queens on the same column
 - No two queens on the same diagonal
- Use h² boolean variables: q_{ij} is true iff the queen on row i is in column j.

			_
n	solutions	1 soln.	all soln.
8	92	0.00	0.01
10	724	0.00	0.04
20	>100,000	0.00	240
40	-	0.16	-
60	-	1.30	-
80	-	4.30	-
100	-	11.20	-

Supposedly, Albert Einstein wrote this riddle, and said 98% of the world could not solve it.

- There are 5 houses in five different colors.
- In each house lives a person with a different nationality.
- These 5 owners drink a certain drink, smoke a certain brand of tobacco and keep a certain pet.
- No owners have the same pet, smoke the same tobacco, or drink the same drink.
- The question is: Who owns the fish?

Hints to Einstein Puzzle

- The Brit lives in the red house
- The Swede keeps dogs as pets
- The Dane drinks tea
- The green house is adjacent on the left of the white house
- The green house owner drinks coffee
- The person who smokes Pall Mall raises birds
- The owner of the yellow house smokes Dunhill
- The man living in the house right in the center drinks milk

Hints to Einstein Puzzle (cont)

- The Norwegian lives in the first house
- The man who smokes Blends lives next to the one who keeps cats
- The man who keeps horses lives next to the one who smokes Dunhill
- The owner who smokes Bluemaster drinks juice
- The German smokes Prince
- The Norwegian lives next to the blue house
- The man who smokes Blend has a neighbor who drinks water.

Specify Einstein Puzzle in SAT

- The houses are presented by 1, 2, 3, 4, 5.
- Definition of nationality
 - #define brit 5
 - #define swede 6
 - #define dane 7
 - #define norwegian 8
 - #define german 9
- #define lives(x,y) ((x)+5*(y))
- Answer: 28 35 37 41 49

Specify Einstein Puzzle in SAT

- The houses are presented by 1, 2, 3, 4, 5.
- Definition of drinks
 - #define tea 10
 - #define coffee 11
 - #define water 12
 - #define juice 13
 - #define milk 14
- #define drinks(x,y) ((x)+5*(y))
- Answer: 52 59 61 70 73

Clauses in DIMACS Format

```
printf("p cnf 125 1000\n"); // actual clauses: 885
for (k = 0; k < 5; k++) {
    // every house has a color
    for (a = 1; a <= 5; a++) printf("%d ", color(a, k));
    printf("0\n");
    for (a = 1; a <= 5; a++) {
        for (b = 1; b < a; b++) // a color can be used once
            printf("-%d -%d 0\n", color(a, k), color(b, k));
        for (b = 0; b < 5; b++) if (b != k)
            // a house can have only one color.
        printf("-%d -%d 0\n", color(a, k), color(a, b));
    }
</pre>
```

Clauses in DIMACS Format

```
// The Brit lives in the red house
for (a = 1; a <= 5; a++) {
    printf("-%d %d 0\n", lives(a, brit), color(a, red));
    printf("%d -%d 0\n", lives(a, brit), color(a, red));
  }
  // The Swede keeps dogs as pets
  for (a = 1; a <= 5; a++) {
    printf("-%d %d 0\n", lives(a, swede), pets(a, dog));
    printf("%d -%d 0\n", lives(a, swede), pets(a, dog));
  }
}
```



```
pets(a-1, cat), pets(a+1, cat));
```

}

Sato's Result

- ------ SATO 3.2.1, 04/2000 on serv16.divms.uiowa.edu ------
- c Input file "einstein.cnf" is open.
- c Reading clauses in DIMACS's format.
- c Max_atom = 125, Max_clause = 1000
- There are 885 input clauses (3 unit, 251 subsumed, 637 retained).
- Model #1: (indices of true atoms)
- 3 9 15 17 21 28 35 37 41 49 52 59 61 70 73 77 81 90 93 99
- 103 106 112 120 124
- The number of found models is 1.
- There are 13 branches (1 succeeded, 9 failed, 0 jumped).
- ----- Stats -----
- run time (seconds) 0.00

•	build time	0.00

- search time 0.00
- mallocated (K bytes 96.49

\$UDOKU Puzzle

• Fill numbers between 1 and 9 on a 9x9 square such that each row, each column and each small 3x3 square is a permutation of 1 to 9.

5						4		9
4	9							
			5		9			
9	2	4		3			6	
		8	4		6	9		
	5			2		3	8	4
			3		4			
							3	7
3		9						6

SUDOKU Puzzle

• Fill numbers between 1 and 9 on a 9x9 square such that each row, each column and each small 3x3 square is a permutation of 1 to 9.

5	6	3	2	8	1	4	7	9
4	9	2	7	6	3	8	1	5
1	8	7	5	4	9	6	2	3
9	2	4	8	3	5	7	6	1
7	3	8	4	1	6	9	5	2
6	5	1	9	2	7	3	8	4
2	1	6	3	7	4	5	9	8
8	4	5	6	9	2	1	3	7
3	7	9	1	5	8	2	4	6

How to Code the Puzzle

- Let p(x,y,z) be the boolean variable such that the number at (x, y) is z, where x, y, z are in { 1..9 }
- In DIMACS Fomat, p(x,y,z) = 81(x-1)+9(y-1)+z
- The total number of boolean variables is $9^3 = 729$.

Completeness of Resolution

- The procedure for assigning truth values from x1 to xn:
 - At first, either P1 or N1 is empty, otherwise, the empty clause will be generated from Resolution(P1, N1, x1). We assign P1 to true if N1 is empty; otherwise P1 to false.
 - Suppose we have assigned a truth value to x1, x2, ..., x(k-1). If a clause in Nk after removing –xk becomes false, we assign false to xk; otherwise assign true to xk.
- Claim: All clauses in Sk are true in the current assignment after xk is assigned a truth value.
- Proof:
 - Basic case: k = 1.
 - Inductive hypothesis: After x(k-1) is assigned, clauses in S(k-1) are true.
 - Inductive case: The assignment of xk will make every clause in Sk true.

Clause Recording

 During backtrack search, for each conflict create clause that <u>explains</u> and <u>prevents</u> recurrence of same conflict

$$\varphi = (a \lor b)(\neg b \lor c \lor d) (\neg b \lor e)(\neg d \lor \neg e \lor f)...$$

Assume (decisions) c = 0 and f = 0

Assign a = 0 and imply assignments

A conflict is reached: $(\neg d \lor \neg e \lor f)$ is unsatisfiable

 $(a = 0) \land (c = 0) \land (f = 0) \Rightarrow (\phi = 0)$ $(\phi = 1) \Rightarrow (a = 1) \lor (c = 1) \lor (f = 1)$

∴create new clause: (a V c V f)

Non-Chronological Backtracking

• During backtrack search, in the presence of conflicts, backtrack to one of the <u>causes</u> of the conflict

φ = (a ∨ b)(¬b ∨ c) ∨ d) (¬b ∨ e)(¬d ∨ ¬e ∨ f) (a ∨ c ∨ f)(¬a ∨ g)(¬g ∨ b)(¬h ∨ j)(¬i ∨ k)...

Assume (decisions) c = 0, f = 0, h = 0 and i = 0

Assignment a = 0 caused conflict \Rightarrow clause ($a \lor c \lor f$) created ($a \lor c \lor f$) implies a = 1

A conflict is again reached: $(\neg d \lor \neg e \lor f)$ is unsat

$$(a = 1) \land (c = 0) \land (f = 0) \Rightarrow (\phi = 0)$$

$$(\phi = 1) \Rightarrow (a = 0) \lor (c = 1) \lor (f = 1)$$

 \therefore create new clause: ($\neg a \lor c \lor f$)

SAT Problem Hardness in EDA

- Bounded Model Checking (BMC)
- Superscalar processor verification
- FPGA routing
- Equivalence Checking (CEC)
- Circuit Delay Computation
- Test Pattern Generation (ATPG):
 - Stuck-at, Delay faults, etc.
 - Redundancy Removal
- Noise analysis
- ...

Hardest Easiest Unknown

Conclusions

- Many recent SAT algorithms and (EDA) applications
- Hard Applications
 - Bounded Model Checking
 - Combinational Equivalence Checking
 - Superscalar processor verification
 - FPGA routing
- "Easy" Applications
 - Test Pattern Generation: Stuck-at, Delay faults, etc.
 - Redundancy Removal
 - Circuit Delay Computation
- Other Applications
 - Noise analysis, etc.

Conclusions

- Complete vs. Incomplete algorithms
 - Backtrack search (DP)
 - Resolution (original DP)
 - Recursive learning
 - Local search
- Techniques for backtrack search (infer implicates)
 - conflict-induced clause recording
 - non-chronological backtracking
 - resolution, SM and RL within backtrack search
 - formula simplification & clause inference conditions
 - randomization & restarts

Research Directions

• Algorithms:

- Explore relation between different techniques

- backtrack search; conflict analysis; recursive learning; branch-merge rule; randomization & restarts; clause inference; local search (?); BDDs (?)
- Address specific solvers (circuits, incremental, etc.)
- Develop visualization aids for helping to better understand problem hardness
- Applications:
 - Industry has applied SAT solvers to different applications
 - SAT research requires challenging and representative publicly available benchmark instances !