
22c:111 Programming Language Concepts - Fall 2008

22c:111 Programming Language Concepts

Fall 2008

Copyright 2007-08, The McGraw-Hill Company and Cesare Tinelli.
These notes were originally developed by Allen Tucker, Robert Noonan and modified by Cesare Tinelli. They are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are
prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

Types I

22c:111 Programming Language Concepts - Fall 2008

5.1 Type Errors
5.2 Static and Dynamic Typing
5.3 Basic Types
5.4 NonBasic Types
5.5 Recursive Data Types
5.6 Functions as Types
5.7 Type Equivalence
5.8 Subtypes
5.9 Polymorphism and Generics
5.10 Programmer-Defined Types

22c:111 Programming Language Concepts - Fall 2008

Def: A type is a collection of values and operations on
those values.

Examples:

• The Integer type has values ..., -2, -1, 0, 1, 2, ... and
operations +, -, *, /, <, ...

• The Boolean type has values true and false and
operations ∧, ∨, ¬.

22c:111 Programming Language Concepts - Fall 2008

Computer types have a finite number of values due to
fixed size allocation; problematic for numeric
types.

Exceptions:
• Smalltalk uses unbounded fractions.
• Haskell type Integer represents unbounded

integers.

Floating point problems?

22c:111 Programming Language Concepts - Fall 2008

Even more problematic is fixed sized floating point
numbers:

• 0.2 is not exact in binary.
• So 0.2 * 5 is not exactly 1.0
• Floating point is inconsistent with real numbers in

mathematics.

22c:111 Programming Language Concepts - Fall 2008

In the early languages, Fortran, Algol, Cobol, all of
the types were built in.

If needed a type color, could use integers; but what
does it mean to multiply two colors.

Purpose of types in programming languages is to
provide ways of effectively modeling a problem
solution.

22c:111 Programming Language Concepts - Fall 2008

5.1 Type Errors

Machine data carries no type information.
Basically, just a sequence of bits.
Example: 0100 0000 0101 1000 0000 0000 0000 0000

22c:111 Programming Language Concepts - Fall 2008

 0100 0000 0101 1000 0000 0000 0000 0000

• The floating point number 3.375
• The 32-bit integer 1,079,508,992
• Two 16-bit integers 16472 and 0
• Four ASCII characters: @ X NUL NUL

22c:111 Programming Language Concepts - Fall 2008

Def: A type error is any error that arises because an
operation is attempted on a data type for which it is
undefined.

Type errors are common in assembly language
programming.

High level languages reduce the number of type
errors.

22c:111 Programming Language Concepts - Fall 2008

Def: A type system is a precise definition of the
bindings between the types of a variable, its values,
and the possible operations over those values

A type system provides a basis for detecting type
errors.

22c:111 Programming Language Concepts - Fall 2008

5.2 Static and Dynamic Typing

A type system imposes constraints (such as the values
used in an addition must be numeric).

• Cannot be expressed syntactically in EBNF.
• Some languages perform type checking at compile

time (eg, C, C++, OCaml).
• Other languages (eg, Perl,Scheme,Python) perform

type checking at run time.
• Still others (eg, Java) do both.

22c:111 Programming Language Concepts - Fall 2008

Def: A language is statically typed if the types of all
variables are fixed when they are declared at
compile time.

Def: A language is dynamically typed if the type of a
variable can vary at run time depending on the
value assigned.

Can you give more examples of each?

22c:111 Programming Language Concepts - Fall 2008

Def: A language is strongly typed if its type system
allows all type errors in a program to be detected
either at compile time or at run time.

Note: A strongly typed language can be either
statically or dynamically typed.

Union types are a hole in the type system of many
languages (eg, C, C++).

Most dynamically typed languages associate a type
with each value.

22c:111 Programming Language Concepts - Fall 2008

5.3 Basic Types

Terminology in use with current 32-bit computers:
• Nibble: 4 bits
• Byte: 8 bits
• Half-word: 16 bits
• Word: 32 bits
• Double word: 64 bits
• Quad word: 128 bits

22c:111 Programming Language Concepts - Fall 2008

In most languages, the numeric types are finite in size.
So a + b may overflow the finite range.

Unlike mathematics:
a + (b + c) ≠ (a + b) + c

Can you see why?

22c:111 Programming Language Concepts - Fall 2008

Also in C-like languages, the equality and relational
operators produce an int, not a Boolean

• (2 < 4) evaluates to 0
• (2 > 4) evaluates to 1
• if 5 {…} else {…} is legal, and meaningful,

code!

22c:111 Programming Language Concepts - Fall 2008

Def: An operator or function is overloaded when its
meaning varies depending on the types of its
operands or arguments or result.

Java: a+b (ignoring size)

• integer add
• floating point add
• string concatenation
Mixed mode: one operand an int, the other floating

point

22c:111 Programming Language Concepts - Fall 2008

Languages that allow mix mode syntax introduce
implicit type conversion between values

 (eg. 3.4 + 1 is treated as 3.4 + intToFloat(1))

Def: A type conversion is a narrowing conversion if
the result type permits fewer bits, thus potentially
losing information. Otherwise it is a widening
conversion.

Should languages ban implicit narrowing conversions?
Why?

22c:111 Programming Language Concepts - Fall 2008

5.4 Nonbasic Types

Enumerations

enum day {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday};

enum day myDay = Wednesday;

In C/C++ these just define an int range [0..6]
where Monday == 0, Tuesday == 1 and so on

22c:111 Programming Language Concepts - Fall 2008

Enumeration types are powerful in Java:

for (day d : day.values()) Sytem.out.println(d);

They are even more powerful in Ocaml, Haskell as
they a special case of algebraic data types

 (more on them later)

22c:111 Programming Language Concepts - Fall 2008

Pointers

C, C++, Ada, Pascal
Java??? OCaml??

The values in a pointer type are memory addresses

They are used for indirect referencing of data

Operator in C: *

22c:111 Programming Language Concepts - Fall 2008

Example

struct Node {
int key;

struct Node* next;

};

struct Node* head;

22c:111 Programming Language Concepts - Fall 2008

 Fig 5.4: A Simple Linked List in C

22c:111 Programming Language Concepts - Fall 2008

Pointers

Bane of reliable software development
Error-prone
Buffer overflow, memory leaks
Particularly troublesome in C

22c:111 Programming Language Concepts - Fall 2008

void strcpy(char *p, char *q) {
while (*p++ = *q++) ;

}

strcpy

22c:111 Programming Language Concepts - Fall 2008

Pointer Operations

If T is a type and ref T is a pointer:
& : T → ref T

* : ref T → T

For an arbitrary variable x:
*(&x) = x

22c:111 Programming Language Concepts - Fall 2008

Arrays

int a[10];
float x[3][5]; /* odd syntax vs. math */

char s[40];

/* indices: 0 ... n-1 */

22c:111 Programming Language Concepts - Fall 2008

Array Indexing

Only operation for many languages

Type signature

[] : T[] x int → T

Example

float x[3] [5];

type of x: float[][]

type of x[1]: float[]

type of x[1][2]: float

22c:111 Programming Language Concepts - Fall 2008

Equivalence between arrays and pointers in C/C++

a = &a[0]

If either e1 or e2 is type: ref T
e1[e2] = *(e1 + e2)

Example: a is float[] and i int
a[i] = *(a + i)

22c:111 Programming Language Concepts - Fall 2008

float sum(float a[], int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)

s += a[i];
return s;

float sum(float *a, int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)

 s += *a++;
return s;

22c:111 Programming Language Concepts - Fall 2008

Strings

Now so fundamental, directly supported.
In C, a string is a 1D array with the string value

terminated by a NULL character (value = 0).
In Java, Perl, Python, a string variable can hold an

unbounded number of characters.
Libraries of string operations and functions.

22c:111 Programming Language Concepts - Fall 2008

Structures (aka Records)

Analogous to a tuple in mathematics
Collection of elements of different types
Used first in Cobol, PL/I
Absent from Fortran, Algol 60
Common to Pascal-like, C-like, ML-like languages,
Omitted from Java as redundant

22c:111 Programming Language Concepts - Fall 2008

struct employeeType {
 int id;
 char name[25];

int age;
float salary;
char dept;

};
struct employeeType employee;
...
employee.age = 45;

22c:111 Programming Language Concepts - Fall 2008

Unions

C: union
Pascal: case-variant record
Logically: multiple views of same storage
Useful in some systems applications

In functional languages, superseded by recursive data
types (sometimes also called union types or
algebraic data types)

22c:111 Programming Language Concepts - Fall 2008

(* Union type in Pascal *)
type union = record

case b : boolean of
true : (i : integer);
false : (r : real);

end;
var u : union, j: integer;
begin
 u := (b => false, r => 3.375);

j := tagged.i; (* will generate error *)

22c:111 Programming Language Concepts - Fall 2008

// simulated union type in Java
class Value extends Expression {

 // Value = int intValue | boolean boolValue

 Type t; int intValue; boolean boolValue;

 Value(int i) { intValue = i;

 t = new Type(Type.INTEGER);

 }

 Value(boolean b) { boolValue = b;

 t = new Type(Type.BOOLEAN);

 }

