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Def: A type is a collection of values and operations on
those values.

Examples:

• The Integer type has values ..., -2, -1, 0, 1, 2, ... and
operations +, -, *, /, <, ...

• The Boolean type has values true and false and
operations ∧, ∨, ¬.
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Computer types have a finite number of values due to
fixed size allocation; problematic for numeric
types.

Exceptions:
• Smalltalk uses unbounded fractions.
• Haskell type Integer represents unbounded

integers.

Floating point problems?
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Even more problematic is fixed sized floating point
numbers:

• 0.2 is not exact in binary.
• So 0.2 * 5 is not exactly 1.0
• Floating point is inconsistent with real numbers in

mathematics.
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In the early languages, Fortran, Algol, Cobol, all of
the types were built in.

If needed a type color, could use integers; but what
does it mean to multiply two colors.

Purpose of types in programming languages is to
provide ways of effectively modeling a problem
solution.
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5.1 Type Errors

Machine data carries no type information.
Basically, just a sequence of bits.
Example: 0100 0000 0101 1000 0000 0000 0000 0000
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 0100 0000 0101 1000 0000 0000 0000 0000

• The floating point number 3.375
• The 32-bit integer 1,079,508,992
• Two 16-bit integers 16472 and 0
• Four ASCII characters: @ X NUL NUL
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Def: A type error is any error that arises because an
operation is attempted on a data type for which it is
undefined.

Type errors are common in assembly language
programming.

High level languages reduce the number of type
errors.
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Def: A type system is a precise definition of the
bindings between the types of a variable, its values,
and the possible operations over those values

A type system provides a basis for detecting type
errors.
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5.2 Static and Dynamic Typing

A type system imposes constraints (such as the values
used in an addition must be numeric).

• Cannot be expressed syntactically in EBNF.
• Some languages perform type checking at compile

time (eg, C, C++, OCaml ).
• Other languages (eg, Perl,Scheme,Python) perform

type checking at run time.
• Still others (eg, Java) do both.
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Def: A language is statically typed if the types of all
variables are fixed when they are declared at
compile time.

Def: A language is dynamically typed if the type of a
variable can vary at run time depending on the
value assigned.

Can you give more examples of each?
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Def: A language is strongly typed if its type system
allows all type errors in a program to be detected
either at compile time or at run time.

Note: A strongly typed language can be either
statically or dynamically typed.

Union types are a hole in the type system of many
languages (eg, C, C++).

Most dynamically typed languages associate a type
with each value.
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5.3 Basic Types

Terminology in use with current 32-bit computers:
• Nibble: 4 bits
• Byte: 8 bits
• Half-word: 16 bits
• Word: 32 bits
• Double word: 64 bits
• Quad word: 128 bits
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In most languages, the numeric types are finite in size.
So a + b may overflow the finite range.

Unlike mathematics:
a + (b + c) ≠ (a + b) + c

Can you see why?
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Also in C-like languages, the equality and relational
operators produce an int, not a Boolean

•  (2 < 4) evaluates to 0
•  (2 > 4) evaluates to 1
•  if 5 {…} else {…} is legal, and meaningful,

code!
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Def: An operator or function is overloaded when its
meaning varies depending on the types of its
operands or arguments or result.

Java: a+b  (ignoring size)

• integer add
• floating point add
• string concatenation
Mixed mode: one operand an int, the other floating

point
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Languages that allow mix mode syntax introduce
implicit type conversion between values

     (eg. 3.4 + 1 is treated as 3.4 + intToFloat(1))

Def: A type conversion is a narrowing conversion if
the result type permits fewer bits, thus potentially
losing information. Otherwise it is a widening
conversion.

Should languages ban implicit narrowing conversions?
Why?
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5.4 Nonbasic Types

Enumerations

enum day {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday};

enum day myDay = Wednesday;

In C/C++  these just define an int range [0..6]
where Monday == 0, Tuesday == 1 and so on
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Enumeration types are powerful in Java:

for (day d : day.values()) Sytem.out.println(d);

They are even more powerful in Ocaml, Haskell as
they a special case of algebraic data types

     (more on them later)
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Pointers

C, C++, Ada, Pascal
Java??? OCaml??

The values in a pointer type are memory addresses

They are used for indirect referencing of data

Operator in C: *
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Example

struct Node {
int key;

struct Node* next;

};

struct Node* head;
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 Fig 5.4: A Simple Linked List in C
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Pointers

Bane of reliable software development
Error-prone
Buffer overflow, memory leaks
Particularly troublesome in C
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void strcpy(char *p, char *q) {
while (*p++ = *q++)  ;

}

strcpy
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Pointer Operations

If T is a type and ref T is a pointer:
& : T → ref T

* : ref T → T

For an arbitrary variable x:
*(&x) = x
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Arrays

int a[10];
float x[3][5];  /* odd syntax vs. math */

char s[40];

/* indices: 0 ... n-1 */
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Array Indexing

Only operation for many languages

Type signature

[ ] : T[ ] x int → T

Example

float x[3] [5];

type of x: float[ ][ ]

type of x[1]:  float[ ]

type of x[1][2]: float
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Equivalence between arrays and pointers in C/C++

a = &a[0]

If either e1 or e2 is type: ref T
e1[e2] = *(e1 + e2)

Example: a is float[ ] and i int
a[i] = *(a + i)
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float sum(float a[ ], int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)

s += a[i];
return s;

float sum(float *a, int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)

 s += *a++;
return s;
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Strings

Now so fundamental, directly supported.
In C, a string is a 1D array with the string value

terminated by a NULL character (value = 0).
In Java, Perl, Python, a string variable can hold an

unbounded number of characters.
Libraries of string operations and functions.
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Structures (aka Records)

Analogous to a tuple in mathematics
Collection of elements of different types
Used first in Cobol, PL/I
Absent from Fortran, Algol 60
Common to Pascal-like, C-like, ML-like languages,
Omitted from Java as redundant
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struct employeeType {
    int id;
    char name[25];

int age;
float salary;
char dept;

};
struct employeeType employee;
...
employee.age = 45;
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Unions

C: union
Pascal: case-variant record
Logically: multiple views of same storage
Useful in some systems applications

In functional languages, superseded by recursive data
types (sometimes also called union types or
algebraic data types)
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(* Union type in Pascal *)
type union = record

case b : boolean of
true : (i : integer);
false : (r : real);

end;
var  u : union, j: integer;
begin
    u := (b => false, r => 3.375);

j := tagged.i;  (* will generate error *)
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// simulated union type in Java
class Value extends Expression {

    // Value = int intValue | boolean boolValue

    Type t;  int intValue;  boolean boolValue;

    Value(int i) { intValue = i;

        t = new Type(Type.INTEGER); 

    }

    Value(boolean b) { boolValue = b;

        t = new Type(Type.BOOLEAN);

    }


