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Introduction and Overview
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Programming languages have four properties:
– Syntax
– Names
– Types
– Semantics

For any language:
– Its designers must define these properties
– Its programmers must master these properties

1.1  Principles



Syntax

The syntax of a programming language is a precise
description of all its grammatically correct programs.

When studying syntax, we ask questions like:
– What is the grammar for the language?
– What is the basic vocabulary?
– How are syntax errors detected?



Names

Various kinds of entities in a program have names:
variables, types, functions, parameters, classes, objects, …

Named entities are bound in a running program to:
– Scope
– Visibility
– Type
– Lifetime



Types
A type is a collection of values and a collection of

operations on those values.
• Simple types

– numbers, characters, booleans, …

• Structured types
– Strings, lists, trees, hash tables, …

• A language’s type system can help to:
– Determine legal operations
– Detect type errors
– Optimize certain operations



Semantics

The meaning of a program is called its semantics.
In studying semantics, we ask questions like:

– When a program is running, what happens to the values of
the variables?

– What does each statement mean?
– What underlying model governs run-time behavior, such

as function call?
– How are objects allocated to memory at run-time?



A programming paradigm is a pattern of problem-
solving thought that underlies a particular genre of
programs and languages.

There are several main programming paradigms:
– Imperative
– Object-oriented
– Functional
– Logic
– Dataflow

1.2  Paradigms

}Focus of this course



Imperative Paradigm

Follows the classic von Neumann-Eckert model:
– Program and data are indistinguishable in memory
– Program = sequence of commands modifying current state
– State = values of all variables when program runs
– Large programs use procedural abstraction

Example imperative languages:
– Cobol, Fortran, C, Ada, Perl, …



The von Neumann-Eckert Model



Object-oriented (OO) Paradigm

An OO Program is a collection of objects that interact by
passing messages that transform the state.

When studying OO, we learn about:
– Encapsulated State
– Sending Messages
– Inheritance
– Subtype Polymorphism

Example OO languages:
Smalltalk, Java, C++, C#, and Python



Functional Paradigm

Functional programming models a computation as a
collection of mathematical functions.
– Input = domain
– Output = range

Functional languages are characterized by:
– Functional composition
– Recursion

Example functional languages:
– Lisp, Scheme, ML, Haskell, OCaml,…



Functional Paradigm

Functional programming models a computation as a
collection of mathematical functions.
– Input = domain
– Output = range

Notable features of modern functional languages:
– Functions as values
– Symbolic data types
– Pattern matching
– Sophisticated type system and module system



Logic Paradigm
Logic programming declares what outcome the

program should accomplish, rather than how it
should be accomplished.

When studying logic programming we see:
– Programs as sets of constraints on a problem
– Programs that achieve all possible solutions
– Programs that are nondeterministic

Example logic programming languages:
– Prolog



• Event handling
– E.g., GUIs, home security systems

• Concurrency
– E.g., Client-server programs

• Correctness
– How can we prove that a program does what it is

supposed to do under all circumstances?
– Why is this important?

1.3  Special Topics



How and when did programming languages evolve?
What communities have developed and used them?

– Artificial Intelligence
– Computer Science Education
– Science and Engineering
– Information Systems
– Systems and Networks
– World Wide Web

1.4  A Brief History





Design Constraints
– Computer architecture
– Technical setting
– Standards
– Legacy systems

Design Outcomes and Goals

1.5  On Language Design



What makes a successful language?

Key characteristics:
– Simplicity and readability
– Clarity about binding
– Reliability
– Support
– Abstraction
– Orthogonality
– Efficient implementation



Simplicity and Readability

• Small instruction set
– E.g., Java vs Scheme

• Simple syntax
– E.g., C/C++/Java vs Python

• Benefits:
– Ease of learning
– Ease of programming



A language element is bound to a property at the time
that property is defined for it.

So a binding is the association between an object and
a property of that object
– Examples:

• a variable and its type

•  a variable and its value

– Early binding takes place at compile-time

– Late binding takes place at run time

Clarity about Binding



Reliability

A language is reliable if:
– Program behavior is the same on different platforms

• E.g., early versions of Fortran

– Type errors are detected
• E.g., C vs Haskell

– Semantic errors are properly trapped
• E.g., C vs C++

– Memory leaks are prevented
• E.g., C vs Java



Language Support

• Accessible (public domain) compilers/interpreters
• Good texts and tutorials
• Wide community of users
• Integrated with development environments (IDEs)



Abstraction in Programming

• Data
– Programmer-defined types/classes
– Class libraries

• Procedural
– Programmer-defined functions
– Standard function libraries



Orthogonality

A language is orthogonal if its features are built upon
a small, mutually independent set of primitive
operations.

• Fewer exceptional rules = conceptual simplicity
– E.g., restricting types of arguments to a function

• Tradeoffs with efficiency



Efficient implementation

• Embedded systems
– Real-time responsiveness (e.g., navigation)
– Failures of early Ada implementations

• Web applications
– Responsiveness to users (e.g., Google search)

• Corporate database applications
– Efficient search and updating

• AI applications
– Modeling human behaviors



Compiler – produces machine code
Interpreter – executes instructions on a virtual machine
• Example compiled languages:

– Fortran, Cobol, C, C++

• Example interpreted languages:
– Scheme, Haskell, Python

• Hybrid compilation/interpretation
– The Java Virtual Machine (JVM)
– OCaml

1.6  Compilers and Virtual Machines



The Compiling Process



The Interpreting Process



Discussion Questions

1. Comment on the following quotation:
It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC; as potential
programmers they are mentally mutilated beyond hope of
regeneration. – E. Dijkstra

2.  Give an example statement in your favorite language
that is particularly unreadable.  E.g., what does the C
expression while (*p++ = *q++) mean?


