
22c:111 Programming Language Concepts

Fall 2008

Copyright 2007-08, The McGraw-Hill Company and Cesare Tinelli.
These notes were originally developed by Allen Tucker, Robert Noonan and modified by Cesare Tinelli. They are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are
prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express
written permission of one of the copyright holders.

Introduction and Overview

Contents

1.1 Principles
1.2 Paradigms
1.3 Special Topics
1.4 A Brief History
1.5 On Language Design

1.5.1 Design Constraints
1.5.2 Outcomes and Goals

1.6 Compilers and Virtual Machines

Programming languages have four properties:
– Syntax
– Names
– Types
– Semantics

For any language:
– Its designers must define these properties
– Its programmers must master these properties

1.1 Principles

Syntax

The syntax of a programming language is a precise
description of all its grammatically correct programs.

When studying syntax, we ask questions like:
– What is the grammar for the language?
– What is the basic vocabulary?
– How are syntax errors detected?

Names

Various kinds of entities in a program have names:
variables, types, functions, parameters, classes, objects, …

Named entities are bound in a running program to:
– Scope
– Visibility
– Type
– Lifetime

Types
A type is a collection of values and a collection of

operations on those values.
• Simple types

– numbers, characters, booleans, …

• Structured types
– Strings, lists, trees, hash tables, …

• A language’s type system can help to:
– Determine legal operations
– Detect type errors
– Optimize certain operations

Semantics

The meaning of a program is called its semantics.
In studying semantics, we ask questions like:

– When a program is running, what happens to the values of
the variables?

– What does each statement mean?
– What underlying model governs run-time behavior, such

as function call?
– How are objects allocated to memory at run-time?

A programming paradigm is a pattern of problem-
solving thought that underlies a particular genre of
programs and languages.

There are several main programming paradigms:
– Imperative
– Object-oriented
– Functional
– Logic
– Dataflow

1.2 Paradigms

}Focus of this course

Imperative Paradigm

Follows the classic von Neumann-Eckert model:
– Program and data are indistinguishable in memory
– Program = sequence of commands modifying current state
– State = values of all variables when program runs
– Large programs use procedural abstraction

Example imperative languages:
– Cobol, Fortran, C, Ada, Perl, …

The von Neumann-Eckert Model

Object-oriented (OO) Paradigm

An OO Program is a collection of objects that interact by
passing messages that transform the state.

When studying OO, we learn about:
– Encapsulated State
– Sending Messages
– Inheritance
– Subtype Polymorphism

Example OO languages:
Smalltalk, Java, C++, C#, and Python

Functional Paradigm

Functional programming models a computation as a
collection of mathematical functions.
– Input = domain
– Output = range

Functional languages are characterized by:
– Functional composition
– Recursion

Example functional languages:
– Lisp, Scheme, ML, Haskell, OCaml,…

Functional Paradigm

Functional programming models a computation as a
collection of mathematical functions.
– Input = domain
– Output = range

Notable features of modern functional languages:
– Functions as values
– Symbolic data types
– Pattern matching
– Sophisticated type system and module system

Logic Paradigm
Logic programming declares what outcome the

program should accomplish, rather than how it
should be accomplished.

When studying logic programming we see:
– Programs as sets of constraints on a problem
– Programs that achieve all possible solutions
– Programs that are nondeterministic

Example logic programming languages:
– Prolog

• Event handling
– E.g., GUIs, home security systems

• Concurrency
– E.g., Client-server programs

• Correctness
– How can we prove that a program does what it is

supposed to do under all circumstances?
– Why is this important?

1.3 Special Topics

How and when did programming languages evolve?
What communities have developed and used them?

– Artificial Intelligence
– Computer Science Education
– Science and Engineering
– Information Systems
– Systems and Networks
– World Wide Web

1.4 A Brief History

Design Constraints
– Computer architecture
– Technical setting
– Standards
– Legacy systems

Design Outcomes and Goals

1.5 On Language Design

What makes a successful language?

Key characteristics:
– Simplicity and readability
– Clarity about binding
– Reliability
– Support
– Abstraction
– Orthogonality
– Efficient implementation

Simplicity and Readability

• Small instruction set
– E.g., Java vs Scheme

• Simple syntax
– E.g., C/C++/Java vs Python

• Benefits:
– Ease of learning
– Ease of programming

A language element is bound to a property at the time
that property is defined for it.

So a binding is the association between an object and
a property of that object
– Examples:

• a variable and its type

• a variable and its value

– Early binding takes place at compile-time

– Late binding takes place at run time

Clarity about Binding

Reliability

A language is reliable if:
– Program behavior is the same on different platforms

• E.g., early versions of Fortran

– Type errors are detected
• E.g., C vs Haskell

– Semantic errors are properly trapped
• E.g., C vs C++

– Memory leaks are prevented
• E.g., C vs Java

Language Support

• Accessible (public domain) compilers/interpreters
• Good texts and tutorials
• Wide community of users
• Integrated with development environments (IDEs)

Abstraction in Programming

• Data
– Programmer-defined types/classes
– Class libraries

• Procedural
– Programmer-defined functions
– Standard function libraries

Orthogonality

A language is orthogonal if its features are built upon
a small, mutually independent set of primitive
operations.

• Fewer exceptional rules = conceptual simplicity
– E.g., restricting types of arguments to a function

• Tradeoffs with efficiency

Efficient implementation

• Embedded systems
– Real-time responsiveness (e.g., navigation)
– Failures of early Ada implementations

• Web applications
– Responsiveness to users (e.g., Google search)

• Corporate database applications
– Efficient search and updating

• AI applications
– Modeling human behaviors

Compiler – produces machine code
Interpreter – executes instructions on a virtual machine
• Example compiled languages:

– Fortran, Cobol, C, C++

• Example interpreted languages:
– Scheme, Haskell, Python

• Hybrid compilation/interpretation
– The Java Virtual Machine (JVM)
– OCaml

1.6 Compilers and Virtual Machines

The Compiling Process

The Interpreting Process

Discussion Questions

1. Comment on the following quotation:
It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC; as potential
programmers they are mentally mutilated beyond hope of
regeneration. – E. Dijkstra

2. Give an example statement in your favorite language
that is particularly unreadable. E.g., what does the C
expression while (*p++ = *q++) mean?

