Lecture Notes CS:5360 Randomized Algorithms
Lectures 12 and 13: Sep 27 and Oct 2, 2018
Scribe: Cory Kromer-Edwards

1 Chernoff Bounds

The most commonly used tail bounds. They can be much more powerful than Markov and
Chebyshev.

Setting: Let Xj, Xo,...,X,, be mutually independent binary random variables. Let Pr(X; =
1) =P fori=1,2,...,n. Let X =3 7" | X;. Let use denote E[X]| = p.

Note: p=FE[X|=>" EX;]=>" P

Chernoff Bounds

(a) For any § > 0,
é
e
> < (—mm )
(b) For 0 < <1,

Pr(X > (1+6)u) < e M3

(¢) For R > 6p,
Pr(X >R) <27 %

Note about a-c: All upper tail bounds

Example: Coin tossing Let X = number of heads we get when we toss n fair coins indepen-

dently.
X=X1+ Xo+...4+ X, where

~J 1 ifith coin toss = Heads
~ 10 otherwise

p=EX]=3

What is Pr(X > 3n) = Pr(X > (1+ 3)2)?

§ = 3, so using form (b) we get:
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Recall
e ML O(1)
e Chebyshev: O(1)
e Chernoff: O(—1—)

exp(n)
What is Pr(X > § + %\/ 6ninn)? Remember: pu = §, so:

6nlnn n

= Pr(X>(1+ %)

n

In this case, § = 1/ %" therefore by form (b) of Chernoff Bounds,

P’]"(X>E+l 6nlnn) <e_%*6n1llnn*% :e_lnn:l
-2 2V n - n

This means that the number of heads stays really close to 5, and gets closer as n increases.

Example: Probability Amplification for BPP algorithms

Recall: BPP = class of decision problemsX such that there is a Polynomial time Monte Carlo
algorithm A for X:

- if x is a yes-instance of X then Pr(A(z) =1) > %
- if x is a no-instance of X then Pr(A(z) =0) > %
Theorem 1 if X ¢ BPP then there exists a Polynomial time Monte Carlo algorithm A’ for X:
- if z is a yes-instance of X then Pr(A'(z)=1)>1— ﬁ
- if z is a no-instance of X then Pr(A'(z) =0) > 1 — ﬁ

Where |z| is the input size.
Algorithm A’ on input x: Repeat A(x) k times and output the majority answer.

Example: Let x be a yes-instance of X. Let Y be the number of "no” answers returned by A.
Fori=1,2,...,k, let

(2)

~J1 if A(x) = 0 when A is called the ith time
" 10 if A(x) = 1 when A is called the ith time

Then, Y =% v
Since the k calls are independent of each other, the Y;’s are mutually independent.



EY]=YF By <k

A’ will output an incorrect answer if the number of "no”s returned by k calls to a is >

[l

k
— A’ output incorrect answer =Y > 5 — our goal is to upper bound Pr(Y >

)

o |
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1 1
Pr(Y > 5) =Pr(Y > (1+ 5)%) < Pr(Y > (1+ 5)/”0 < o H*I*5

We cannot plug % in for p because Y < % instead of Y = % So, let Z; be a binomial random

variable such that Pr(Z; =1) = 1. Let Z = Sk | Z; therefor, E[Z] = L

Claim: Pr(Y >

O[3

) < Pr(Z > %) Z stochastically dominates Y.
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Pz > 5 =Pz > 4 DY < Prz s s Dy <ot

Set k = 36|z|. Then, Pr(Z > &) < eIl
Notes:
- Even though k = 36|z|, the running time of A’ is polynomial in ||
- x being a no-instance is symmetric
Example: High Probability Analysis of Randomized QuickSort
Recall: We showed a Las Vegas algorithm (randomized QuickSort) with expected running

time O(nlogn).
The time could look like:

O(nlogn)

We will show that for some constant c,

1
Pr(running time of QuickSort > cnlogn) < .



cnlogn

Recall: Before we showed

(3)

. J1 ify; and y; are compared
& 0 Otherwise

let X =3, x;; then, E[z] = O(nlogn)
We cannot use Chernoff bounds with this because X;;’s are not mutually independent.

Setup: Consider the recurison tree of randomized QuickSort

Root
choice

Root
choice

node is good = pivot is in middle third of input

Questions:

1. How many good nodes can there be in a root-leaf path?
ANS: < c¢—logan

2. Can you show by Chernoff Bounds that a root-leaf path cannot be too long, e; > 10c * logan
Prob < %
- n



