
CS:5360 Fall 2018 Homework 2
Due: Thu, 9/20

Notes: (a) It is possible that solutions to some of these problems are available to you via text-
books on randomized algorithms or on-line lecture notes, etc. If you use any such sources, please
acknowledge these in your homework fully and present your solutions in your own words. You
will benefit most from the homework, if you seriously attempt each problem on your own first,
before seeking other sources. (b) As mentioned in the syllabus, it is okay to form groups of two in
solving and submitting homework solutions. But, my advice from (b) still applies: you will benefit
most from the homework, if you seriously attempt each problem on your own first, before seeking
help from your group partner. (c) Discussing these problems with any of your classmates is okay,
provided you and your classmates are not being too specific about solutions. In any case, make
sure that you take no written material away from these discussions and (as in (b)) you present
your solutions in your own words. When discussing homework with classmates please be aware of
guidelines on “Academic Dishonesty” as mentioned in the course syllabus.

1. Suppose we roll a standard die 1000 times. Let X denote the sum of the numbers that
appeared over the 1000 rolls. (a) Use Markov’s inequality to upper bound Pr(X ≥ 5000).
(b) Use Chebyshev’s inequality to upper bound Pr(X ≥ 5000).

2. As mentioned in class, there is a simple randomized Las Vegas algorithm that solves the
Selection problem. This is very similar to the randomized quicksort algorithm discussed in
class. Here is an informal description of this algorithm. Suppose we want to find an element of
rank k in the given list L (of n distinct elements). We pick a pivot index p ∈ [1 . . . n] uniformly
at random and construct sublists L1 = {u ∈ S | u < L[p]} and L2 = {v ∈ S | v > L[p]}.
If L[p] has rank k, we are done. Otherwise, we recurse on one of L1 or L2 looking for an
element of appropriate rank.

(a) State this algorithm precisely in pseudocode.

(b) Show that the expected running time of this algorithm is O(n) by using the following
analysis approach.

– For i = 1, 2, . . ., let Yi be the random variable that denotes the number of recursive
calls made during which the size of the input is in the range((

2

3

)i

n,

(
2

3

)i−1

n

]
.

So for example, Y1 is the number of recursive calls that are made while the size the
input is more than (2/3)n. Similarly, Y2 is the number of recursive calls made when
the input size is more than 4n/9, but at most 2n/3. Show that E[Yi] = O(1) for all
i = 1, 2, . . ..

– Let Ti be the random variable that denotes the total running time of all the recursive
calls made during which the size of the input is in the range ((2/3)in, (2/3)i−1n].
Calculate E[Ti].

– Let T be the random variable that denotes the total running time of the algorithm.
Express T in terms of Ti’s and then calculate E[T ].
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(c) Show that the expected running time of the algorithm is O(n) by mimicking the approach
used for analyzing randomized quicksort in class. Specifically, let Xij denote the number
of times yi and yj are compared by the algorithm. (Recall the definitions of yi and yj
from lecture notes.) Let X =

∑
i

∑
j Xij denote the total number of comparisons made

by the algorithm. Show that E[X] = O(n).

3. The following problem models a simple distributed system wherein “agents” contend for
resources but “backoff” in the face of contention. This is a situation that arises in wireless
networks when wireless nodes contend for access to the wireless medium to send messages.

The system evolves in round. Every round, balls are thrown independently and uniformly
at random into n bins. Any ball that lands in a bin by itself is served and removed from
consideration. The remaining balls are all thrown again in the next round. We begin with n
balls in the first round and we finish when every ball is served.

(a) If there are b balls at the start of a round, what is the expected number of balls at the
start of the next round?

(b) Let xj be the expected number of balls left after j rounds. Show that xj+1 ≤ x2j/n.

(c) Use this to argue that if in every round the number of balls served was exactly the
expected number of balls to be served, then all balls would be served in O(log log n)
rounds.

4. Suppose we flip a fair coin n times to obtain n random bits. Consider all m =
(n
2

)
pairs of

bits in some order. Let Yi be the exclusive-or of the ith pair of bits and let Y =
∑m

i=1 Yi
denote the number of Yi’s that equal 1.

(a) Show that each Yi is 0 with probability 1/2 and 1 with probability 1/2.

(b) Show that the Yi’s are not mutually independent.

(c) Show that the Yi’s are pairwise independent.

(d) Calculate V ar[Y ] using that fact that if Yi’s are pairwise independent then V ar[Y ] =∑m
i=1 V ar[Yi].

(e) Finally, use Chebyshev’s Inequality to calculate an upper bound on Pr(|Y −E[Y ]| ≥ n).
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