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Abstract 

Objective: To determine if Clostridioides difficile infection (CDI) exhibits spatiotemporal interaction and 

clustering.  

Design: Retrospective observational study 

Setting: The University of Iowa Hospitals and Clinics 

Patients: 1,963 CDI cases, January 2005-December 2011 

Methods: We extracted location and time information for each case and ran the Knox, Mantel, and mean 

and maximum component size tests for time thresholds T = 7, 14, and 21 (days) and distance thresholds D 

= 2, 3, 4, and 5 units (1 unit = 5-6 meters). All tests were implemented using Monte Carlo simulations, 

with random CDI cases constructed by randomly permuting times of CDI cases, 20,000 times. As a 

counterfactual, we repeated all tests on 790 aspiration pneumonia cases, since aspiration pneumonia is a 

complication without environmental factors. 

Results: Results from the Knox test and mean component size test reject the null hypothesis of no 

spatiotemporal interaction with p-value < 0.0001, for all values of T and D. Results from the Mantel test 

reject the hypothesis of no spatiotemporal interaction with p-value < 0.0003. The same tests show no such 

effects for aspiration pneumonia. Results from the maximum component size tests show similar trends, 

but are not consistently significant, possibly because CDI outbreaks attributable to the environment were 

relatively small.  

Conclusion: Our results clearly show spatiotemporal interaction and clustering among CDI cases and 

none whatsoever for aspiration pneumonia cases. These results strongly suggest that environmental 

factors play a role in the onset of some CDI cases. However, our results are not inconsistent with the 

possibility that there were many genetically unrelated CDI cases during our study period. 

 

  



Introduction 

Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections as well 

as the leading cause of healthcare-associated diarrhea.1,2 Accordingly, CDI is an important cause of 

excess morbidity and mortality,2,3 and cases of CDI increase the cost of healthcare.4 Exposure to 

antibiotics is the major risk factor for CDI.5,6 However, additional individual-level risk factors have been 

identified, including advanced age,7-9 greater underlying severity of illness,5,6 increased levels of co-

morbidities,5,6 and medications designed to decrease gastric acid levels.10 

 

In addition to individual-level-risk factors, the environment, especially in hospitals, has been implicated 

as a risk factor for CDI. In general, CDI pressure, the increasing risk of CDI acquisition with increasing 

numbers of CDI patients, has been documented at both the ward11 and hospital levels.12 More specifically, 

evidence for underlying environmental CDI contamination include reports of C. difficile spores on high-

touch surfaces in healthcare settings,13,14 patients’ skin,15,16 and the hands of healthcare workers.17,18 In 

addition, C. difficile contamination increases in rooms occupied by patients with symptomatic CDI: thus, 

room assignments (e.g., patients placed in a room with previous occupant who had CDI) are also 

associated with increased risk of CDI acquisition.19 Evidence that the environment is a contributor to 

increased risk for CDI has led to infection-control  recommendations for disinfection, isolation, and hand 

washing with soap and water especially in outbreak settings.20 

 

The emphasis on the environment’s role in CDI has recently been subject to scrutiny. Whole-genome 

sequencing studies have shown that, at least in non-outbreak settings, a substantial proportion of 

Clostridioides difficile isolates are not genetically related.21 Other work on screening asymptomatic 

patients for Clostridioides difficile carriage report that colonization established before hospitalization may 

also be an important risk factor for subsequent cases of hospital-based CDI.22,23 These results raise 

questions regarding the proportion of CDI attributable to the healthcare environment. 



 

One effective approach to quantify the environment’s contribution to CDI is to measure the 

spatiotemporal interaction and clustering of CDI cases, because such spatiotemporal clustering suggests 

that environmental factors may be contributing to the spread of CDI. This approach has been widely used 

outside hospital settings to understand risk factors for several infectious diseases.24 However, applying 

this approach within the hospital is challenging due to the lack of fine-grained spatial data that is 

necessary to estimate distances between pairs of in-hospital CDI cases. In this paper, we present an 

analysis to determine if the CDI cases observed at the University of Iowa Hospitals and Clinics (UIHC) 

exhibit spatiotemporal interaction and clustering after adjusting for effects that are either purely spatial or 

purely temporal. 

 

Methods 

Our analysis is based on a fine-grained dataset we have assembled on operations at the University of Iowa 

Hospitals and Clinics (or UIHC, a 700-bed comprehensive academic medical and regional referral center 

in Iowa City) from Jan 2005 through Dec 2011. The dataset contains both architectural and in-patient 

data, such as admission-discharge-transfer records, diagnostic codes, and clinical test results. We 

construct the set of CDI cases for in-patients by extracting (i) the date of positive CDI diagnosis and (ii) 

the patient’s room in the hospital at the time of positive CDI test. CDI diagnosis was via laboratory test; 

C. diff  toxin test was used during [Jan 2005, April 2008], C.diff  toxin A and B test during [May 2008, 

Dec 2009], and C. diff  toxin PCR test afterwards. Formally, a CDI case can be viewed as a triple (p, r, d), 

where p is a patient, r is a room in the hospital, and d is a day in the time period [Jan 2005, Dec 2011] 

such that patient p tested positive for CDI on day d while occupying room r. There are a total of 1,963 

CDI cases in our dataset. 

 



To determine if CDI cases exhibit spatiotemporal interaction and clustering, we need to accurately 

estimate the distance between pairs of rooms in the hospital. Starting with architectural drawings, we 

“discretized” the UIHC hospital space and constructed a hospital graph. The results from this 

discretization process have also been reported elsewhere.25 Each room in the hospital is represented by a 

node (larger spaces, such as hallways, are subdivided into smaller room-sized sized polygons, represented 

as individual nodes), and edges (or hops) are added between pairs of nodes corresponding to spatial units 

between which direct physical passage is possible. Each edge (hop) corresponds to a walking distance of 

5-6 meters. Edges respect architectural barriers (e.g., walls), so two adjacent rooms that do not share a 

doorway are not connected by an edge. There are 18,961 nodes and 23,442 edges in the hospital graph. 

The hospital graph imposes a distance metric on the UIHC space and distances along shortest paths in this 

graph correspond to shortest walking distances in the UIHC space, as shown in Figure 1. 

 

Our analysis is based on spatiotemporal interaction and clustering tests, all of which correct for solely 

spatial or solely temporal effects. Three of these tests are performed using a CDI case proximity graph, 

which consists of nodes representing CDI cases and edges connecting two nodes if they occur within T 

days and within distance D in the hospital graph of each other, where T ≥ 0 and D ≥ 0 are integer 

parameters (see Figure 2).  

 

The Knox test compares the observed number of pairs of CDI cases that occur both within T days and 

within distance D of each other to the distribution of the number of pairs of cases within these time and 

distance thresholds of each other, conditioned on the absence of spatiotemporal interaction.26 In other 

words, we compare the number of edges in the observe𝑑  CDI case proximity graph, denoted 𝐶𝑃𝐺(𝑇,𝐷)
𝐶𝐷𝐼,𝑜𝑏𝑠

, 

to the distribution of the number of edges in a random CDI case proximity graph denoted 𝐶𝑃𝐺(𝑇,𝐷)
𝐶𝐷𝐼,𝑟𝑎𝑛𝑑

. 

To calculate this distribution, we ran Monte Carlo simulations with the time stamps of cases randomly 

permuted. Note that permuting the time stamps leaves purely spatial correlations and purely temporal 



correlations intact while disrupting the joint spatiotemporal structure. We use extensions of the Knox test 

to explicitly test for other aspects of spatiotemporal structure.  To test for burstiness, an important facet of 

infection diffusion involving periods of significant activity followed by periods of inactivity, we 

implement the mean component size test.27,28 A component in the CDI case proximity graph is a maximal 

set of cases that are all reachable from each other via paths composed of edges in the graph.  A graph can 

have many components and in the mean component size test, we compare the mean size of components in 

𝐶𝑃𝐺(𝑇,𝐷)
𝐶𝐷𝐼,𝑜𝑏𝑠

  to the distribution of mean component size of 𝐶𝑃𝐺(𝑇,𝐷)
𝐶𝐷𝐼,𝑟𝑎𝑛𝑑

. As in the case of the Knox test, 

we use Monte Carlo simulations with the time stamps randomly permuted to calculate these expectations. 

The maximum component size test is similar; details appear in Appendix A.  Finally, we also perform the 

Mantel test,30 which computes the Pearson correlation between the spatial and temporal distance matrices 

of the CDI cases and compares this with the correlation between a randomly permuted spatial distance 

matrix and the (unpermuted) temporal distance matrix. The motivation for this test is that if the two 

observed distance matrices have high correlation, then randomization will result in correlation that is 

consistently smaller.  

 

As a counterfactual experiment – and as a “stress test” for our approach – we repeat all of the tests just 

described on aspiration pneumonia, a complication which occurs when food, stomach acid, or saliva are 

inhaled into the lungs. Since aspiration pneumonia is not infectious, we expect to see very different results 

for aspiration pneumonia than CDI. For the 6-year period time-period between January 2007 and 

December 2013, there were 790 aspiration pneumonia cases reported at UIHC. Unlike CDI, however, 

hospital records associate aspiration pneumonia with a hospitalization rather than a precise date of onset. 

We therefore use hospital prescription data to get a “proxy” for an onset date. Starting from the list of 

antibiotics commonly used to treat aspiration pneumonia,31-33 we define the onset of aspiration pneumonia 

as the first time one of these antibiotics (see Table 1) is prescribed for a patient diagnosed with aspiration 

pneumonia. This method yields a total of 535 distinct aspiration pneumonia cases with associated time 



stamps; patient rooms are then determined based on the time stamps and used to construct the observed 

aspiration pneumonia case proximity graph 𝐶𝑃𝐺(𝑇,𝐷)
𝐴𝑃,𝑜𝑏𝑠

. 

 

Results 

Preliminary inspection reveals that CDI cases do exhibit some spatial clustering; certain medical units 

such as General Medicine, Cancer, and the MICU have many more CDI cases than others, such as 

Neurology. There may also be spatial patterns in CDI cases due to number of beds per room: of the 709 

patient rooms at the UIHC, 342 are singles, 280 are doubles, 68 are triples, and 19 are quads or larger. We 

have verified that our UIHC CDI cases do not exhibit seasonality, even though case counts at the regional 

and national level do.34 Finally, one important temporal variation in the number of CDI cases is due to a 

change in the CDI test from C. diff toxin A and B to C. diff toxin PCR in December 2009, which 

significantly increased apparent CDI rates.  However, since our tests control for purely spatial and purely 

temporal correlations, this should not affect our results. No substantial or hospital-wide changes to 

infection control policies (e.g., contact isolation policies or room cleaning policies) were known to have 

occurred during the study period. 

 

We ran the Knox test with time thresholds T = 7, 14, and 21 and distance thresholds D = 2, 3, 4, and 5. 

Results for T = 14 (Figure 3, left) show that the observed number of pairs of CDI cases that are 

simultaneously close to each other, both in space and in time, are consistently larger than all of the 

corresponding expected values obtained in simulation (p < 0.0001 in all cases). For example, for T = 14, 

D = 2, the observed value is 287 (shown by the blue dot) and the value obtained in simulation has 

distribution shown by the box whisker plot (mean 157.902, std. dev. 12.5193). This is a rejection of the 

null hypothesis of no spatiotemporal interaction among CDI cases. The results are strikingly different for 

aspiration pneumonia (Figure 3, right). In all four shown cases for T = 14, the observed number of 

aspiration pneumonia case pairs that are proximate both in space and time is no greater than the expected 



number of proximate aspiration pneumonia case pairs over the 20,000 time permutations. These results 

indicate a clear spatiotemporal interaction for CDI, but none whatsoever for aspiration pneumonia. 

 

We next present results from the mean component size and the maximum component size tests on 

𝐶𝑃𝐺(𝑇,𝐷)
𝐶𝐷𝐼,𝑜𝑏𝑠

 for T = 7, 14, and 21 and D = 2, 3, 4, and 5. For T = 14 and all D = 2, 3, 4, and 5 (see Figure 

4, left) the observed mean component sizes are larger than the corresponding mean component sizes for 

all 20,000 permutations (thus, by definition, p = 0 in all cases).  For example, for T = 14, D = 2 (Figure 4, 

left) the observed mean component size is 1.11661 (shown as a blue dot) and this value is larger than the 

complete distribution (shown as box whisker plot) of mean component sizes (mean 1.06513, std. dev. 

0.00571) obtained via simulations. This is a rejection of the null hypothesis (with p-value < 0.0001) that 

there is no spatiotemporal clustering of CDI cases. In contrast, for aspiration pneumonia, the observed 

mean component sizes in 𝐶𝑃𝐺(𝑇,𝐷)
𝐴𝑃,𝑜𝑏𝑠

 mostly appear in the lower half of the estimated distribution of mean 

component sizes of random 𝐶𝑃𝐺(𝑇,𝐷)
𝐴𝑃,𝑟𝑎𝑛𝑑

 (see Figure 4, right). These results imply that there is significant 

spatiotemporal clustering of CDI cases, but none for aspiration pneumonia, at least as measured by mean 

component sizes in the case proximity graphs. Results for the maximum component size test appear in 

Appendix A. 

 

Finally, we apply the Mantel test, comparing the correlation of the temporal distance matrix with the 

spatial distance matrix for the observed data to the distribution of correlations obtained from randomly 

permuting the spatial (but, not temporal) distance matrix, 20,000 times. For CDI (Figure 5, left), the 

Pearson correlation coefficient of the temporal distance matrix and the spatial distance matrix is far to the 

right of the mean correlation obtained by permuting the spatial distance matrix, rejecting the null 

hypothesis of no spatiotemporal correlation with p-value < 0.0003. In contrast, the corresponding test for 

aspiration pneumonia (Figure 5, right) yields an observed Pearson correlation coefficient of 0.007, not far 

from the mean (0.006) of the distribution of correlations with one matrix randomly permuted (p = 0.452). 



Our tests yield substantively similar results for T = 7 and T = 21 with D = 2, 3, 4 and 5. These results are 

summarized in Appendix B. 

Discussion 

The importance of hospital design and room assignments have been previously cited as factors in the 

transmission of infectious diseases. 19,35,36 However, only a small number of studies in the literature have 

focused on spread of infections and outbreaks within healthcare facilities.24 Such studies are hampered by 

the difficulty of defining spatial relationships inside healthcare institutions, where architectural features, 

(e.g., walls, elevators, nurses’ stations) make it complicated to compute distances between cases. Indeed, 

one peripheral contribution of this paper is to point a way forward, using distances computed from readily 

available CAD drawings of healthcare facilities.  

 

Our results help bridge two categories of CDI investigations – those that implicate the environment in the 

spread of CDI11,19 and those that report that a substantial proportion of CDI cases are genetically 

unrelated,21 thereby discounting environmental factors. Our results, obtained from a variety of 

spatiotemporal statistical tests, provide compelling evidence that there is spatiotemporal interaction as 

well as clustering among CDI cases at the UIHC. These results suggest that environmental factors are in 

play. On the other hand, our case proximity graphs contain many connected components (for various T, D 

values), each with a relatively small maximum size component. Specifically, over all T and D values 

considered, the largest maximum component size is 13 (about 0.66% of the number of cases). Thus, our 

results are not inconsistent with the possibility of many genetically unrelated cases, with relatively small 

outbreaks.  

 

Our results hold despite routine infection control precautions in place at the UIHC. For example, CDI 

patient rooms may undergo extra terminal cleaning, sometimes with Ultraviolet germicidal irradiation. All 

patients admitted with diarrhea are placed in contact isolation, but spread throughout the hospital 



depending on their primary diagnosis. We verified that this placement does not cause additional 

spatiotemporal interaction or clustering by checking that our results hold even if we define CDI cases as 

patients with positive CDI test at least 48 hours after admission (see Appendix D).   

 

In future work, we plan to use whole-genome sequencing to investigate whether genetically related strains 

of CDI are more common within space-time CDI clusters than among cases that did not cluster. It is 

worth noting that there is at least one investigation37 that reports that clusters of genetically related CDI 

cases did not correspond to clusters of CDI case identified by spatiotemporal tests. However, a much 

closer look at this connection (or lack thereof) is needed. More specifically, this particular study37 was 

done in the somewhat unique environment of a pediatric hospital; results in other hospitals may be 

different. Results may also vary in time: during periods when CDI is endemic, environmental factors may 

be insignificant, whereas during periods of outbreak they may be significant. Another direction of future 

work is incorporating connections between patients via shared healthcare workers.38 Thus, joining clusters 

detected from case proximity graphs to staffing records could help us better understand and quantify the 

role of healthcare workers in the transmission of healthcare associated infections. 

 

Our work has several limitations. First, due to the retrospective nature of this study, we do not have the 

ability to perform genetic sequencing of CDI cases within and outside of clusters. This is a future 

extension of our work. Second, there are other sources of information that we did not fuse into this 

investigation, e.g., staffing patterns, patient trajectories through the hospital. However, in future work, 

such covariates could be incorporated into space-time tests. Finally, onset of CDI infectivity may precede 

the date of positive CDI test. It may be important to incorporate this type of uncertainty, to obtain more 

robust spatiotemporal tests. 

 



In conclusion, through a variety of statistical tests, we have shown that CDI cases at the hospital during 

the period from January 2005 to December 2011 exhibit significant spatiotemporal interactions and 

clustering. In contrast, aspiration pneumonia cases in a similar time frame do not show any 

spatiotemporal interactions or clustering behavior. Together, these results strongly suggest that 

environmental factors play a significant role in the onset for some cases of CDI. Finally, in addition to 

CDI, our approach could be extended to other infections within the hospital and even non-infectious 

outcomes with localized environmental factors (e.g., falls, medication errors).  
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Antibiotic Count 

Piperacillin/Tazobactam 427 

Metronidazole (Systemic) 154 

Clindamycin (Systemic) 94 

Meropenem 88 

Moxifloxacin 86 

Ceftriaxone 83 

Ampicillin Sod/Sulbactam Sod 57 

Cefotaxime 5 

Imipenem/Cilastatin 2 

Table 1: Most frequently prescribed antibiotics, sorted by frequency, for patient visit records marked with 

the aspiration pneumonia complication code during the 2007-2013 time period. A total of 790 patient 

visits were coded with aspiration pneumonia; because some patients were prescribed more than one 

antibiotic from the list, the sum of the prescriptions (996) exceeds the number of aspiration pneumonia 

codes. 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Each path in the hospital graph from a node s to a node t corresponds to a valid walking route in 

the hospital from the spatial unit corresponding to node s to the spatial unit corresponding to node t. For 

example, the top-left figure shows two rooms, 4082-A and 4084, whose shortest path distance in the 

UIHC graph is 11 hops (a hop is an edge in the hospital graph). The top right figure shows rooms 4082-A 

and 4049, whose shortest path distance in the UIHC is 3 hops.  

  



 
 

 

Figure 2. 𝐶𝑃𝐺(14,5)
𝐶𝐷𝐼,𝑜𝑏𝑠

: CDI case proximity graph for T = 14 days and path length of D = 5 (≤ 30m). The 

graph contains 1,963 nodes, corresponding to CDI cases at the UIHC during time period from January 

2005 to December 2011. Its 682 edges correspond to pairs of cases occurring with 14 days and distances 

of no more than 5 hops (≤ 30 m) from one another. The resulting CDI case proximity graph contains 

1,519 components, 1,229 of which are single nodes. The mean component size is 1.29 and the maximum 

component size is 11. A component of size 11 is enlarged and shown on the left. The CDI cases in this 

component occurred over a roughly 2-month period (30 April to 21 June, 2010) in the GMed (4JPE) unit; 

9 of these cases occurred in a “pod” of 7 adjacent patient rooms, whereas 2 occurred in a single patient 

room in a separate “pod.” 

  



 

Figure 3. The Knox test for CDI (right) and aspiration pneumonia (left) are shown for time threshold T = 

14 days, and distance threshold D = 2, 3, 4, and 5 hops. The test results were derived from 20,000 random 

permutations of the time stamps of the cases.  The boxplots show the distribution of the Knox test 

statistics and the blue dots corresponds to the Knox test statistics on the observed data. There is a striking 

difference in the results for CDI and aspiration pneumonia. 

  



 

Figure 4. The mean component size test for CDI (top left) and for aspiration pneumonia (top right) are 

shown for time threshold T = 14 days, and distance threshold D = 2, 3, 4, and 5 hops. The test results were 

derived from 20,000 random permutations of the time stamps of the cases. The boxplots show the 

distributions of the test statistics obtained from the random permutations and the blue dots corresponds to 

the test statistics on the observed data. 

 

  

 

  



 

Figure 5. The figure on the left shows the Pearson correlation coefficient (0.01924, black line) for the 

spatial and temporal distance matrices of CDI cases in comparison with the distribution of correlation 

coefficient (mean is the red line), when one of the matrices is permuted randomly. The plot is the result of 

randomly permuting the matrix 20,000 times. The figure on the right shows the results of the same 

computation for aspiration pneumonia cases.   
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