Algorithmic Perspective on the
Vaccine Allocation Problem

CS: 4980 Spring 2020
Computational Epidemiology
Tue, Apr 7

Example: Vaccine Allocation problem

Input: Contact network G = (V, E), vaccination budget B > 0

Choice variables: x,, € {0,1} foreachv €V (x, indicates if individual v is
to be vaccinated.)

Possible objective function: Expected number of individuals infected by an
infection (e.g., SIR model) that starts at a random individual and spreads on
G with vaccinated individuals removed.

Constraints:), .y X, < B (number of vaccines cannot exceed the budget)

Simplified problem: deterministic infection

An infected node infects all susceptible neighbors in the next time step,
after it has become infected.

Implication: if a node in a connected component becomes infected,

then all nodes in that connected component will eventually become
infected.

Example

e Suppose B =1

* In post-vaccination contact network:
* If infection source = a then infection size = 4
* If infection source = b (or c or d) then infection size 2

Example

e Suppose B =1

* Expected infection size:

4 A 2 ; 2 5 2 2
1_0()+E()+1_0()+1_0()

Expected Infection Size

* Suppose the original contact network has n nodes and we vaccinate
(delete) B of these nodes.

* Suppose this yields t connected components of sizes ¢4, ¢y, C3, ..., C¢.
* Expected size of infection:

C3
n—nB

Ct
n—=nB

S (e) == (@) F () + k= ()

n—~B n—

Min Sum-of-Squares Partition (MSSP) problem

INPUT: A graph G = (V, E), a positive integer B

OUTPUT: A subset S € V of nodes, |S| = B, such that if ¢c{, ¢c,, c3, ..., C;
are the sizes of the connected components in G — S, then

ci+cs+ci+ ..+t

IS mMinimum.

Example

e Suppose B =1

e If node in red circle is vaccinated:

Expected infection size = 4% + 2% + 2% + 2% =28
* If node in blue box is vaccinated

Expected infection size = 3% + 7% = 49

Question 1: can you come up with a 2-sentence argument that with B = 1,
choosing the node circled red is optimal?

\VISSP seeks a balanced partition

Given that
ct+c,+c3+-+c,=n—2~B

if there were no other constraints on the ¢;’s then

cZ+cs+cs+ ..+ cf

. n-B
IS minimized at ¢; = —

How to efficiently solve this problem?

Degree-based heuristic:
Repeatedly vaccinate node with highest degree in the remaining graph until B
nodes are vaccinated

* The performance of the degree-based heuristic can be quite bad.

2
e ~n? (degree-based) vs ~n7 (optimal).

How to efficiently solve this problem?

* Question 2: Can you come up with other graphs that are even
worse for the degree-based heuristic, making the gap between
degree-based and optimal much worse, say 10 times or 100 times
even?

* Question 3: Other heuristics that seem reasonable to you for
solving this problem?

Bad news: MSSP is NP-hard

* Recall: This means that if we’re able to come up with an efficient
(polynomial-time) algorithm for MSSP, it would imply that many,
many other problems (e.g., SAT, TSP, Minimum Vertex Cover, etc.), will
all have efficient solutions.

* Since the latter is considered extremely unlikely, the MSSP is
extremely unlikely to have an efficient solution.

So what should we do?

Approximation algorithms

For a minimization problem II, an algorithm A is an a-approximation
algorithm if:

* A runsin polynomial time

* Cost of solution produced by A is at most a times cost of optimal solution.

An approximation algorithm is a “heuristic” that provides a worst-case
guarantee on the gap between its solution and the optimal solution.

Approximation algorithm for MSSP

* Goal: To design an efficient a-approximation algorithm for MSSP for
small a.

* Here is an approach from the paper:

“Inoculation strategies for victims of viruses and the sum-of-squares partition problem”, by
James Aspnes, Kevin Chang, Aleksandr Yampolskiy, SODA 2005, pp 53-52.

Graph Partition problems

* Graph Partitioning problems (either via edge removal or node removal)
have been studied for decades by the CS community.

* Applications:
* VLS| design
* Parallel computing
* Social network analysis
* Vaccination allocation

Most graph partitioning problems are NP-hard and are solved by heuristics
or by approximation algorithmes.

Example: Minimum Cut (MinCut)

INPUT: A graph G = (V, E)

OUTPUT: A partition (S,V — S) (aka “cut”) such that the number of
edges between S and V — § is fewest.

* We are looking for a non-trivial solution; so S # @ and
V—-S=+0.

* Thisis the “edge version” of the problem because we
remove edges to partition the graph.

* An optimal solution in this example has size 2.

Example: Minimum Cut (MinCut) node version

INPUT: A graph G = (V, E)

OUTPUT: A partition (V/1, R, V,) such that there are no edges between
I; and V, and the size of R is smallest.

Solution needs to be non-trivial, i.e., VV; # @ and
V, + .

Question 4: What is the minimum node cut in this
example?

Algorithms for MinCut

* Both the edge version and the node version of MinCut can be solved
efficiently (i.e., in polynomial time).

* This is one of the success stories of algorithm
design; one way to solve MinCut is by using
network flows.

5 Dy v Py i
8 . -~

THEORY, ALGORITHMS, AND APPLICATIONS

Example: Sparsest Cut (SparseCut)

Definition: Given a graph ¢ = (V,E) andacut (S5,V —5), the
sparsity of the cut (S,V —S5) is
a(S) =

|SIX|V =S|

Numerator: number of edges that go between S and IV — S.
Denominator: maximum possible edges between S and IV — S.

2
0(Sreqa) = o)

| =

3 3
U(Spencil) = m = ;

Example: Sparsest Cut (SparseCut)

INPUT: A graph G = (V,E)
OUTPUT: A cut (S,V — S) of smallest sparsity a(S).

Question 5: Intuitively, what is the difference between the MinCut and
the SparseCut problems?

(Hint: Think about the two problems on a path.)

Example: Sparsest Cut (SparseCut) node version

INPUT: A graph G = (V,E)
OUTPUT: A partition (V;, R, V,) of such that

R

(val +18hx v, + &

is minimized.

Question 6: Consider a 5 node path. What is sparsity of the optimal node cut?

Algorithms for SparseCut

* While MinCut has an efficient algorithm, SparseCut is NP-hard.

* But, SparseCut is a relatively old problem and it has a well-known

O (log n)-approximation algorithm due to Leighton and Rao (JACM
1999).

Question 7: What does an O(log n)-approximation even mean?

Algorithm for MSSP via a SparseCut algorithm

* A good approximation algorithm for MSSP can be obtained by greedily using
a good approximation algorithm for SparseCut.

* A good solution to SparseCut
e places “few” nodes in R
e and “balances” |V;| and |V]

e So we add R to our set of to-be
vaccinated nodes.

e Balancing |V;| and |V, | has the effect of minimizing |V | + |V5|?.

MISSP Algorithm: High-level overview

After the algorithm has proceeded for some iterations, we have:
* a set B'of nodes already set aside for vaccination,
 and connected components Hy, H,, ..., H; of G — B’

Next iteration:
1. Find sparsest cut R; foreach H;,i = 1,2, ..., t.
2. Discard each R;: |B’| + |R;]| is too big, relative to B

3. For among the remaining R;'s, add to B’ the R; that is most cost-
effective.

4. Replace H; by the connected components of H — R;

MSSP Result

Advanced approaches

For the general problem of probabilistic SIR-type models, spectral
methods, i.e., methods from linear algebra have been successful.

Thanks for your attention.

Any questions?

