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Overview

The paper has 5 parts:

1. Overall goal
2. Modeling and simulation
3. Modeling as optimization problems
4. Approximation algorithms for optimization problems
5. Results



Part I: Overall goal
• Let ! denote the set of human agents and " denote the set of locations.
• Let # = ! ∪ "

Goal: Find a rate vector & = (( 1 , ( 2 , … , ( # ), where ([/]denotes the 
rate at which an “agent” / ∈ ! ∪ " is monitored, that 
• maximizes the probability of detecting an infection or
• moves the detection day forward in time as much as possible.

Notes: (a) ([/] is the probability that agent / will be monitored in a day.
(b) Monitoring could mean testing a stool sample or swabbing a surface.



Part I: Overall goal
• The problem would be trivial, if we were allowed to make the rate 

vector as high as possible (e.g., ! = (1, 1, … , 1)).

• There is a given cost vector ) = (* 1 , * 2 , … , * , ) that associates 
with each agent -, a cost *[-] of monitoring that agent.

• Then
* 1 0 1 + * 2 0 2 + …+ * , 0[,]

is the expected per day cost of monitoring agents according the chosen 
rate vector !.
• We are given a budget 2 and it is required that 

* 1 0 1 + * 2 0 2 + …+ * , 0 , ≤ 2



Questions on Part I

• Does this overall goal make sense to you?

• How should we take into account the fact that hospital population is 
changing as patients get discharged and new patients are admitted?

• Should the rate vectors be dynamic, i.e., change over time for a 
particular agent?

• Any other aspects you think should be modeled in this problem?



Part II: Modeling and simulation
(a) Contacts

Questions: How is this table generated? What data is it based on?
What types of agents/locations are included?



Part II: Modeling and simulation
(b) Disease model

Questions: Does this disease model for C.difficile make sense? What
data is it based on? How are the transition probabilities inferred?



Part II: Modeling and simulation
(c) Pathogen load model

Questions: Does this model for pathogen load make sense? What data is it
based on? How does the transition probability depend on number of
infected people? Do they have to be severely infected? Asymptomatic?



Part III: Modeling as optimization problems
• Run a bunch of simulations. Each simulation instance ! is the output 

of a particular simulation, consisting of who got infected, when, and 
pathogen load on locations over time. 
• Let ℐ be the set of all simulation instances. These form the input to 

our optimization problems.
• For an agent # ∈ % ∪ ' and simulation instance ! ∈ ℐ, let ((#, !)

denote the number of days # was infected in simulation instance !.
• Then the probability of detecting # in a given simulation instance !, 

given a rate vector -, is

%. # !, - = 1 − (1 − 2 # )3(4,5)



Part III: Modeling as optimization problems
• Then the probability of detecting some infected human agent in 

simulation instance !, given a rate vector ", is

#$(!, ") = 1 − +
,∈.∪0

(1 − #$ 1 !, " )

• Plugging in the expression for #$ 1 !, " , this simplifies to

#$(!, ") = 1 − +
,∈.∪0

(1 − 2 1 )3(,,4)



Part III: Modeling as optimization problems
Maximizing Detection Probability (MDP) problem
Find ! that maximizes

" ! ∶=%
&∈ℐ

)*(,, !)

subject to

%
/01

2
3 4 5 4 ≤ 7.

Questions: What is this problem saying? Is there a danger of “overfitting” 
to the simulations? Are there other aspects that should be considered in 
this problem formulation?
Note: The Early Detection (ED) problem is also formulated as an 
optimization problem. Read about it.



Part IV: Approximation algorithms for optimization problems
• Both MDP and ED are NP-hard (no surprise there!)

• So we look for approximation algorithms (i.e., heuristics with
guarantees on error).

• For this we take a detour into submodular functions.

Definition: Let Ω be a finite set. A function ": 2% ⟶ ℝ is a submodular 
set function if it satisfies the following diminishing marginal returns 
property:

For every (, * ⊆ Ω, where ( ⊆ *, and every , ∈ Ω − *,
" ( ∪ , − " ( ≥ " * ∪ , − "(*)



Part IV: Approximation algorithms for optimization problems
Example: The coverage function is submodular 
Let !" = {%, ', (}, !* = {+, ,, (}, !- = {%, +}, !. = %, ,, ( , !/ = {%, 0} be 
arbitrary subsets of 1 = %, ', +, ,, (, 0 .

Define 0: 2{",*,-,.,/} → ℝ as 0 7 = |⋃:∈< !:|.
Note: 0(7) is the size of coverage of the subsets indexed by 7.

So 0 3,5 = !- ∪ !/ = %, +, 0 = 3.
So 0 1,4 = !" ∪ !. = %, ', ,, ( = 4.

Question: 0 is submodular. Why?



Part IV: Approximation algorithms for optimization problems
What do submodular functions have to do with anything?
For any submodular set function !, the problem

maximize ! #
|#| ≤ &

has a simple, greedy approximation algorithm. 

Example: The MaxCoverage problem
Given a collection of sets '(, '),…, '*, find a subcollection of & sets 
'+,, '+-,…, '+. such that |'+, ∪ '+- ∪ ⋯∪ '+.| is maximized.



• Appeared in KDD 2007

• They show that placing a few “sensors” in a network 
• network of water pipes in a city
• network of blogs that link to each other

to maximize probability of detecting water contamination or a viral piece of 
news is equivalent to the problem of maximizing a submodular function 
subject to a budget constraint.

• This is the connection to disease-surveillance.

Part IV: Approximation algorithms for optimization problems



Simple, greedy algorithm?

! ← ∅
while |!| ≤ & do

Pick an ' ∈ ) − ! that maximizes + ! ∪ ' − +(!)
! ← ! ∪ {'}

• This algorithm guarantees a 1 − 2
3 ≈ 0.632 approximation.

• In other words, even in the worst case this algorithm is guaranteed to 
produce a set ! such that +(!) is at least 63% as large as + !∗ , 
where !∗is an optimal set.

Part IV: Approximation algorithms for optimization problems



Maximizing Detection Probability (MDP) problem
Find ! that maximizes

" ! ∶=%
&∈ℐ

)*(,, !)

subject to

%
/01

2
3 4 5 4 ≤ 7.

• The objective function is a function of the rate vector ! ∈ ℝ:.
• The authors assume that each rate can take a discrete value, say,

; = 0
100 ,

1
100 ,… ,

99
100 ,

100
100

• So ! ∈ ;2 and "(!) is a function over a discrete lattice.

Part IV: Approximation algorithms for optimization problems



• The authors show that !(#) has the diminishing returns property in the 
following sense. 

For every %, &, such that % ≼ &, for every )*, 1 ≤ - ≤ .,
! % + )* − ! % ≥ ! & + )* − !(&)

Note: (i) % ≼ & means every element of % is less than or equal to the 
corresponding element in &. (ii) )* is the length-. vector with 2

233 at index -
and 0’s everywhere else.
• ! is called a submodular lattice function.
• A simple, greedy approximation algorithm exists for maximizing

submodular lattice functions, subject to the budget constraint.

Part IV: Approximation algorithms for optimization problems



Part IV: Approximation algorithms for optimization problems

Questions: Try to understand this algorithm. What could they mean by “feasible 
initial vector”? What does Step 4 mean? What about Step 6? 



Part V: Results
• We will not discuss the results today.
• This part of the paper is for you to study carefully. We will discuss on 

Tuesday.

Thanks for your attention…

Any final questions? 


