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Overview

The paper has 5 parts:

Overall goal

Modeling and simulation

Modeling as optimization problems
Approximation algorithms for optimization problems

A S i

Results



Part |: Overall goal

* Let P denote the set of human agents and L denote the set of locations.
letn=|P UL|

Goal: Find a rate vector r = (r|1],7r|2], ..., r[n]), where r[v]denotes the
rate at which an “agent” v € P U L is monitored, that

* maximizes the probability of detecting an infection or

* moves the detection day forward in time as much as possible.

Notes: (a) r[v] is the probability that agent v will be monitored in a day.
(b) Monitoring could mean testing a stool sample or swabbing a surface.




Part |: Overall goal

* The problem would be trivial, if we were allowed to make the rate
vector as high as possible (e.g., 7 = (1,1, ..., 1)).

* There is a given cost vector ¢ = (c[1], c|2], ..., c|n]) that associates
with each agent v, a cost c[v] of monitoring that agent.

* Then
cl1]r[1] + c[2]r]|2] + ...+ c|n]r[n]

is the expected per day cost of monitoring agents according the chosen
rate vector 1.

* We are given a budget B and it is required that
c[1]r|1] + c[2]r[2] + ...+ c[n]r[n] < B



Questions on Part |

* Does this overall goal make sense to you?

* How should we take into account the fact that hospital population is
changing as patients get discharged and new patients are admitted?

e Should the rate vectors be dynamic, i.e., change over time for a
particular agent?

* Any other aspects you think should be modeled in this problem?



Part II: Modeling and simulation

(a) Contacts

Table 1. Summary statistics on the mobility log and the resulting social networks.

total no. of locations 72,146
total no. of agents 96,281
total no. of days 200
average no. of mobility entries per day 138,765.4 + 6384.15
average no. of visits per location 384.6 + 1949.22
average no. of nodes in social networks 6,924.8 + 96.51
average no. of edges in social networks 45,503.8 + 4267.97
average degree in social networks 13.2 + 1.44
average clustering co-efficients in social networks 0.4 £0.03

https://doi.org/10.1371/journal.pcbi.1007284.t1001

Questions: How is this table generated? What data is it based on?
What types of agents/locations are included?



Part II: Modeling and simulation

(b) Disease mode
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Fig 2. Human infection model for C. difficile. Each state in the finite state machine shown above indicates the stages
in the infection/recovery process. The arrows indicate possible transition in state and the weight on the arrows indicate
the transition probability. The dashed arrows represent transition under medication.

https://doi.org/10.1371/journal.pcbi.1007284.9002

Questions: Does this disease model for C.difficile make sense? What
data is it based on? How are the transition probabilities inferred?



Part II: Modeling and simulation
(c) Pathogen load model
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Fig 3. Fomite contamination model for C. difficile. Each state in the finite state machine shown above indicates the
stages in the contamination/decay process. The solid arrows indicate possible transition in state. The transition
between the states depend on number of infected people in the location. The dashed arrows represent transition

assuming cleaning.

https://doi.org/10.1371/journal.pcbi.1007284.9003

Questions: Does this model for pathogen load make sense? What data is it
based on? How does the transition probability depend on number of
infected people? Do they have to be severely infected? Asymptomatic?



Part Ill: Modeling as optimization problems

* Run a bunch of simulations. Each simulation instance i is the output
of a particular simulation, consisting of who got infected, when, and
pathogen load on locations over time.

* Let J be the set of all simulation instances. These form the input to
our optimization problem:s.

* Foranagent v € P U L and simulation instance i € 7, let (v, 1)
denote the number of days v was infected in simulation instance i.

* Then the probability of detecting v in a given simulation instance i,
given a rate vectorr, is

P,(wli,r) =1—- (1 —r[v])T®@Dd



Part Ill: Modeling as optimization problems

* Then the probability of detecting some infected human agent in
simulation instance i, given a rate vector r, is

P(i1)=1— 1_[ (1—P,(v]i, 7))

veEPUL

* Plugging in the expression for P, (v|i, 1), this simplifies to

Paimy=1- | [ a=rlopyres

vEPUL




Part Ill: Modeling as optimization problems

Maximizing Detection Probability (MDP) problem
Find r that maximizes

F(r) := z P,(i,T)

€]
subject to

Z clvlr[v] < B.

v=1

Questions: What is this problem saying? Is there a danger of “overfitting”
to the simulations? Are there other aspects that should be considered in
this problem formulation?

Note: The Early Detection (ED) problem is also formulated as an
optimization problem. Read about it.



Part IV: Approximation algorithms for optimization problems
 Both MDP and ED are NP-hard (no surprise there!)

* So we look for approximation algorithms (i.e., heuristics with
guarantees on error).

* For this we take a detour into submodular functions.

Definition: Let () be a finite set. A function f: 2% — R is a submodular
set function if it satisfies the following diminishing marginal returns
property:

Forevery X,Y € (), where X € Y,andeveryx € Q) —Y,

fX U = fX) = fYUuix)) = f(Y)




Part IV: Approximation algorithms for optimization problems

Example: The coverage function is submodular

letS; = {a,b,e}, S, ={c,d,e}, S; ={a,c}, S, =1{a,d,e},Ss = {a, f} be
arbitrary subsets of U = {a, b, c,d, e, f}.

Define f: 2112345} — Ras f(X) = | Ujex Sil.
Note: f(X) is the size of coverage of the subsets indexed by X.

So f(13,5}) = [S3 U S5| = [ta, ¢, f}| = 3.
So f(11,4}) = |S1 U 4| = [{a, b, d, e}| = 4.

Question: f is submodular. Why?



Part IV: Approximation algorithms for optimization problems

What do submodular functions have to do with anything?
For any submodular set function f, the problem

maximize f(X)
I X| <B

has a simple, greedy approximation algorithm.

Example: The MaxCoverage problem

Given a collection of sets S, S,,..., S;,, find a subcollection of B sets
Si»Si, Sig such that [§; US; U---US; [is maximized.

l1’




Part IV: Approximation algorithms for optimization problems

Cost-effective Outbreak Detection in Networks

Jure Leskovec Andreas Krause Carlos Guestrin
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Christos Faloutsos Jeanne VanBriesen Natalie Glance
Carnegie Mellon University Carnegie Mellon University Nielsen BuzzMetrics

* Appeared in KDD 2007

* They show that placing a few “sensors” in a network
* network of water pipes in a city
* network of blogs that link to each other

to maximize probability of detecting water contamination or a viral piece of
news is equivalent to the problem of maximizing a submodular function
subject to a budget constraint.

* This is the connection to disease-surveillance.



Part IV: Approximation algorithms for optimization problems

Simple, greedy algorithm?

X0
while |X| < B do

Pick an x € U — X that maximizes f(X U {x}) — f(X)
X <« X U{x}

* This algorithm guarantees a (1 — 1) ~ 0.632 approximation.

e

* In other words, even in the worst case this algorithm is guaranteed to
produce a set X such that f(X) is at least 63% as large as f(X™),
where X™is an optimal set.



Part IV: Approximation algorithms for optimization problems

Maximizing Detection Probability (MDP) problem

Find r that maximizes

F(r) := 2 P;(i,7r)

1€J

2 clvlr|v] < B.
v=1

subject to

* The objective function is a function of the rate vector r € R".

* The authors assume that each rate can take a discrete value, say,
B { 0 1 99 100}

100°100° 100100
* Sor € L" and F(r) is a function over a discrete lattice.




Part IV: Approximation algorithms for optimization problems

* The authors show that F (7)) has the diminishing returns property in the
following sense.

For every x, y, suchthat x < y, foreverye;, 1 < i < n,
F(x+e)—F(x)=F(y+e)—F(y)

Note: (i) x < y means every element of x is less than or equal to the
corresponding element in y. (ii) ¢; is the length-n vector with E atindex i
and O’s everywhere else.

» I is called a submodular lattice function.

* A simple, greedy approximation algorithm exists for maximizing
submodular lattice functions, subject to the budget constraint.




Part IV: Approximation algorithms for optimization problems

Algorithm 1 HaiDEeTECT
Require: I, budget B

1: for each feasible initial vector r; do

2: Initialize the rate vector r = r;

3: while ), r[v] - e¢[v] < B do

4: Find a node v and rate r maximizing average marginal gain

5: Let r[v] = r

6: Remove all candidate pairs of nodes and rates which are not
feasible

7: Return the best rate vector r

HaiDEeTecT has desirable properties in terms of both effectiveness and speed. The perfor-
mance guarantee of HAIDETECT is given by the following lemma.

Lemma 4. HaiDeTECT gives a (1-1/e) approximation to the optimal solution.

Questions: Try to understand this algorithm. What could they mean by “feasible
initial vector”? What does Step 4 mean? What about Step 6?



Part V: Results

* We will not discuss the results today.

* This part of the paper is for you to study carefully. We will discuss on
Tuesday.

Thanks for your attention...

Any final questions?



