
CS:3330 Homework 9, Spring 2017
Due at the start of class on Thursday, April 27th

1. In Problem 11, Lecture 1 from Jeff Erickson’s notes, there is pseudocode for a recursive
function called StoogeSort.

(a) Write down the recurrence relation for the running time of StoogeSort. You are
welcome to ignore floors and ceilings, but make sure you write the base case also,
expicitly.

(b) Solve the recurrence using the Master Theorem and find the running time of Stooge-
Sort.

2. In Problem 12, Lecture 1 from Jeff Erickson’s notes, there is pseudocode for a recursive
function called Unusual.

(a) Write down the recurrence relation for the running time of Unusual. You are wel-
come to ignore floors and ceilings, but make sure you write the base case also, expicitly.

(b) Solve the recurrence using the Master Theorem and find the running time of Stooge-
Sort.

3. Solve the following recurrences by using the unroll, guess, confirm method. You can skip
the inductive proof needed for the cofirm step.

(a) T (n) = T (n− 2) + 2n for n ≥ 2, T (1) = 1, T (0) = 0.

(b) T (n) = (T (n− 2))2 for n ≥ 1, T (0) = 2.

(c) T (n) = T (n/2) + n for n ≥ 2, T (1) = 1.

4. Consider the following recursive function that takes as arguments an array L and two non-
negative integers first and last, that serve as indices into L. Therefore, if L has length
n, then first and last are guaranteed to be in the range 0 through n− 1.

function strangeSum(L, first, last)
if (last < first) then

return 0
if (last = first) then

return L[first]
if (last = first + 1) then

return L[first] + L[first+1]
else

m ← last - first + 1
leftSum ← strangeSum(L, first, first + m/2 - 1)
midSum ← strangeSum(L, first + m/4, first + 3 * m/4 - 1)
rightSum ← strangeSum(L, first + m/2, last)
return leftSum + midSum + rightSum

(a) What is the value returned by the function call strangeSum(L, 0, 3) where L is the
array [1, 4, 2, 3].

(b) Write a recurrence relation describing the running time the function call strangeSum(L,
0, n-1) on an array L of length n.

(c) Solve the recurrence in (b) to obtain the running time of the function call strangeSum(L,
0, n-1), in terms of n, the length of the given array L.
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5. Suppose that we want to compute the value of the expression

ad mod n

for positive integers a, d, and n, where a and d are guaranteed to belong to {1, 2, . . . , n−1}.
Since a and d are both guaranteed to be less than n, we know that the input size is Θ(log n).
Therefore, an efficient (i.e., polynomial time) algorithm for the problem is one that runs in
O(logc n) for some constant c. In this problem you are required to design and implement an
O(log3 n)-time algorithm. In practical terms, I want your function to be able to run very
fast (essentially instantaneously) on pretty large numbers, e.g., numbers with roughly 100
digits. You can use your favorite high level language (e.g., Java, C, C++, Python, Scala,
etc.). Specifically, I want you to implement a function – let us call it bigPowerMod – that
takes as arguments a, d, and n and returns ad mod n.

There are two efficiency-related issues to pay attention to.

(i) It is possible to compute ad by performing d−1 multiplications. But, this is too many
because d−1 can be as large as n−2 and therefore performing so many multiplications
would take Θ(n) time. For another way of seeing how inefficient this would be suppose
that n is a 100-digit number, then your program would be performing, roughly 10100

multiplications, which would literally take forever!

(ii) While your final answer is an integer in the range [0, n− 1] (because of the mod n),
you have to watch out for the size of intermediate answers. When we mutiply a
number with b bits with another number with b′ bits, the answer can have answer
many as b+b′ bits. This means that if a has log2 n bits, then a2 can have 2 log2 n bits,
a3 can have 3 log2 n bits, and so on. Thus ad can have d log n bits, which is Θ(n log n)
in the worst case. Again, if n is a 100-digit number, this amounts to more that 10100

bits (which is more than the number of atoms in the universe!). Of course, carrying
such large intermediate answers around also means that each multiplication will take
forever.

You can use divide-and-conquer to solve the first problem. Here is a hint: to compute
ad, you can (recursively) compute ad/2 and after that it takes one or two multiplications,
depending on whether d is even or odd, to compute ad. This approach allows you to
compute ad mod n using O(log d) multiplications. To solve the second problem, you should
note that you can perform mod n as soon as you get intermediate answers rather than wait
to compute mod n at the very end. This is because of the following property of mod :
(a · b · c) mod n = (((a · b) mod n) · c) mod n.

(a) Print and submit your code. No matter what programming language you use, I expect
that your function will be no more than 10 lines long. Make sure your code is well
documented.

(b) Let n be the following 100-digit number.

29085119528125578724347048203972299284505302539901

58990550731991011846571635621025786879881561814989

Use the function bigPowerMod to compute (n − 100)n−1 mod n. Report the answer
you get.

(c) Provide an argument for why the running time of your algorithm/code is O(log3 n).

6. Like mergeSort, quickSort is a sorting algorithm based on the divide-and-conquer paradigm.
As we have seen, the worst case running time of mergeSort is Θ(n log n), as was shown
by solving the mergeSort recurrence relation. The situation with the running time of
quickSort is a bit murkier, and more interesting. Here is Python code for quickSort that
I wrote a few years ago:
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def partition(L, first, last):

# Pick L[first] as the "pivot" around which we partition the list

p = first

for current in range(p+1, last+1):

if L[current] < L[p]:

swap(L, current, p+1)

swap(L, p, p+1)

p = p + 1

return p

def generalQuickSort(L, first, last):

# Base case: if first == last, there is nothing to do

# Recursive case: 2 or more elements in the slice L[first..last]

if first < last:

# Divide step

p = partition(L, first, last)

# Conquer step

generalQuickSort(L, first, p-1)

generalQuickSort(L, p+1, last)

# Combine step: there is nothing left to do!

Suppose that L is an already-sorted list (in increasing order) of length n. This problem asks
you to figure out the worst case running time of the function call generalQuickSort(L,
0, n− 1). Start by writing a recurrence relation and then solve it.
Hint: The complication with quickSort is that the choice of the “pivot” in the partition
function affects the sizes of the two subproblems that are solved by the recursive calls. This
in turn affects the overall running time quite significantly.

7. I want you to now remember the following partitioning problem we considered a while ago.
You are given a list L of length n and asked to partition the elements of L into two sublists
L1 and L2 such that (i) n/3 ≤ |L1|, |L2| ≤ 2n/3 and (ii) all elements in L1 are less than or
equal to all elements in L2.

We designed a simple, randomized (Las Vegas) algorithm for this problem that ran in
O(n) expected time. Let us replace the call to partition in the code for quickSort given
above by a call this Las Vegas algorithm. After we obtain a partition (L1, L2) by calling
this Las Vegas algorithm, we can simply call quickSort on L1 and then on L2. Now we
have a randomized (Las Vegas) version of quickSort. I would like to analyze the expected
running time of this algorithm.

(a) Write down a recurrence relation for the expected running time of this randomized
version of quickSort.

(b) Solve this recurrence to obtain an upper bound on the expected running time of this
randomized version of quickSort.
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