
CS:3330 Homework 7, Spring 2017
Due in class on Thursday, March 30th

1. Consider the GenericSSSP algorithm on Page 4 of Lecture 21 (from Prof. Jeff Erickson’s
notes). (In class, I have been calling this the Dantzig-Ford algorithm (version 2)). As
you know, when all edge weights are non-negative, if we use a min-heap priority queue
implementation of the bag data structure, we get Dijkstra’s algorithm and this runs in
O(m log n) time on graphs with n vertices and m edges. So we have a pretty efficient
algorithm, when edge weights are all non-negative.

What about when some edge weights can be negative, but there are no negative cycles?
Section 21.6 in Prof. Erickson’s notes describes an algorithm that he calls Shimbel’s algo-
rithm that runs in O(m · n) time, solving the SSSP problem even when there are negative
edge weights, provided there are no negative cycles. This algorithm is more commonly
known as the Bellman-Ford algorithm.

s

a

b

c

d

e

4

5

−3
3

2

−1

1

−1

2

(a) Execute Shimbel’s algorithm on the graph given above. As in the figure at the top of
Page 7, after each phase (i) show all the dist(·) values, (ii) all the vertices that were in
the queue during the phase that just ended, and (iii) all the edges that were relaxed
in the phase that just ended.

(b) Use induction to prove the following claim that appears in the box on Page 6: After
i phases of the algorithm, dist(v) is at most the length of the shortest walk from s to
v consisting of at most i edges.

2. Let G be a directed, edge-weighted graph such that every edge has a weight that belongs
to the set {0, 1, . . . ,W}, where W is a non-negative integer. Think of W as being a small
constant, say 10. This problem asks you to take advantage of this special property of
the edge weights to make Dijkstra’s algorithm run faster than its current running time of
O(m log n)? Specifically, modify the implementation of Dijkstra’s algorithm so that the
SSSP problem can be solved in O(n ·W +m) time for a graph with n vertices and m edges.
After presenting your new algorithm present an analysis showing that its running time is
O(n ·W + m). Hint: Instead of using a min-heap to implement a priority queue, think
about how to take advantage of the fact that dist(·) values are going to be integers in the
range 0 through W · (n− 1).

3. Describe an algorithm with running time O(m log n) that computes a maximum spanning
tree of an n-vertex m-edge graph.

4. A graph with n vertices and m edges is dense if m = Θ(n2). Since Prim’s algorithm
runs in time O(m log n) time, on dense graphs it runs in O(n2 log n) time. By not using a
min-heap implementation of a priority queue and using a different (and very simple) data
structure instead, it is possible to improve the running time of Prim’s algorithm to O(n2)
for dense graphs. Describe this data structure and how it is used by Prim’s algorithm and
then argue that with this new data structure, Prim’s algorithm runs in O(n2) time.

1


