
CS:3330 Homework 5, Spring 2017
Due at the start of class on Thu, March 2

Since you have less than a week to complete this homework, the number of problems in this
homework are fewer than usual and all three problems are familiar to you.

1. Consider the “Shortest Interval first” greedy algorithm for the Interval Scheduling problem.
In this algorithm, we repeatedly pick a shortest interval to include in our solution and as
usual when an interval I is picked, then I and any overlapping intervals still present are
deleted. The algorithm breaks ties arbitrarily; in other words, if there are multiple shortest
intervals present, the algorithms picks one arbitrarily.

(a) Show that this algorithm does not solve the Interval Scheduling problem. In other
words, even though the algorithm returns a non-overlapping set of intervals, the set
it returns need not be the largest possible set. (We have discussed a counterexample
for this algorithm in class.)

(b) Let A be the set of intervals returned by the algorithm for some input and let O be
an optimal solution for this input. Prove that every interval in A overlaps at most
two intervals in O.
Note: This is not a long proof, but requires care.

(c) Consider an arbitrary input and let A be the set of intervals returned by the algorithm
for this input and let O be an optimal solution for this input. Now for each interval x
in O, charge $1 to an interval y in A that overlaps x. Note that y could be identical
to x. Also, note that y has to exist; otherwise the greedy algorithm would have added
x to the set A. Thus the number of dollars charged is exactly equal to |O|. Now
answer the following questions: (i) what is the maximum number of dollars that an
interval in A is charged? (ii) what does this tell us about the relative sizes of A and
O? (Express your answer as an inequality connecting |A| and |O|.), and (iii) what
does this tell us about the “shortest interval first” algorithm being an approximation
algorithm for Interval Scheduling?

2. The Bin Packing problem takes as input an infinite supply of bins B1, B2, B3, . . ., each bin
of size 1 unit. We are also given n items a1, a2, . . . , an and each item aj has a size sj that
is a real number in the interval [0, 1]. The Bin Packing problem seeks to find the smallest
number of bins such that all n items can be packed into these bins.

For example, suppose that we are given 4 items a1, a2, a3 and a4 of sizes 0.5, 0.4, 0.6, and
0.5 respectively. We could pack a1 and a2 in bin B1 because s1 + s2 = 0.9 ≤ 1. We could
then pack a3 into bin B2, but we could not also add a4 to bin B2, because s3+s4 = 1.1 > 1.
So a4 would have to be packed in bin B3. This gives us a bin packing of the 4 items into
three bins. An alternate way of packing items that would lead to the use of just two bins
is to pack a1 and a4 into bin B1 and a2 and a3 into bin B2. This packing that uses only
two bins is an optimal solution to the Bin Packing problem.

The First Fit greedy algorithm processes items in the given order a1, a2, . . . , an and it
considers the bins in the order B1, B2, . . .. For each item aj being processed, the algorithm
packs aj into the first bin that has space for it. It turns out that this very simple algorithm
is a 2-approximation algorithm for Bin Packing. The following problems will help you prove
this.

(a) Suppose that the First Fit algorithm packs the given items into t bins. Prove that at
most one of these bins is more than half-empty. Use this to deduce that the total size
of the n input items is at least (t− 1)/2.

(b) Use what you showed in (a) to then show that if an optimal bin packing uses b∗ bins,
then the First Fit algorithm uses at most 2b∗ + 1 bins.
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3. We are given a length-n binary list L. In other words, L[j] ∈ {0, 1} for all j = 1, 2, . . . , n.
Our problem is to count the number of 0’s in L. We could of course solve this problem
in Θ(n) time by simply scanning L, but we want to solve it faster and so we turn to
randomization. The randomized algorithm we use is the following.

function CountZeroes(L)
n← length(L)
count← 0

Comment: Here C is a positive integer constant
for j ← 1 to C do

Comment: pick a random index i between 1 and n
i← random(1, n)
if L[i] = 0 then

count← count + 1

return n · count/C

A random variable X has binomial distribution with parameters m (a positive integer) and
p (a real number between 0 and 1) if

Pr[X = k] =

(
m

k

)
· pk · (1− p)m−k. (1)

The way to think about X being binomially distributed is that we perform m independent
random trials and each trial can either succeed or fail. The “success” probability of a
trial is p and so the failure probability of a trial is 1 − p. Then the random variable X
represents the number of successful trials, out of m total random trials. To understand
the formula in (1) note that the probability of k successful trials is pk, the probability of
(m − k) unsuccessful trials is (1 − p)m−k, and there are

(
m
k

)
ways of distributing the k

successful trials among the m random trials. A fact that is well known about the binomial
distribution is that a random variable X that has binomial distribution with parameters
m and p has expectation m · p.

(a) Suppose that n = 106 and exactly a quarter of the elements in L are 0, i.e., the number
of 0’s in L is 106/4. What is the expected answer returned by CountZeroes?

(b) As you know, we would like CountZeroes to return a number close to 106/4. Specif-
ically, suppose that we want CountZeroes to return an answer that is within 10%
of the correct answer, i.e., in the range [106/4− 105/5, 106/4 + 105/4]. Intuitively it
seems that as C (which is the number of times we sample from L) increases it becomes
more likely that CountZeroes will produce an answer in this range. This problem
asks that you calculate the probability that CountZeroes returns a answer in the
range [106/4− 105/5, 106/4 + 105/4], as a function of C. Since it seems a bit difficult
to find a exact, closed-form formula for this probability, we want you to implement
a small function that takes as input a positive integer C and returns the probability
that CountZeroes returns an answer in the range [106/4 − 105/5, 106/4 + 105/4].
Use this function to compute this probability for C = 100, 200, 300, . . . , 1000. Show
your answers in a table and discuss (in 1-2 sentences) whether your results support
our intuition that as C increases the probability we’re interested in also increases.
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