
CS:3330 Homework 3, Spring 2017
Due at the start of class on Thu, Feb 9

1. About a year ago, the University of Chicago computer scientist, László Babai posted
a paper that was considered a “breakthrough” in the algorithms research community.
His paper presented an algorithm for the Graph Isomorphism (GI) problem – this was a
problem that no one had been able to solve in polynomial time. You don’t have to know
anything about the GI problem to answer the following questions.

(a) Babai’s paper claimed to have solved GI in time f1(n) = 2(logn)c , where n is the input
size and c > 1 is a constant. Compare the asymptotic growth rate of the function f1
to the classes of polynomial and exponential functions. Provide explanation for any
claims you make. For example, if you claim that f1 grows faster than any polynomial
function, you should be able to argue why.

(b) Last month Babai posted an update. He had a slightly modified algorithm for the

GI problem and roughly speaking, this ran in f2(n) = 22
O(

√
log n)

time. Compare the
asymptotic growth rate of the function f2 to f1 and to the classes of polynomial and
exponential functions. Provide explanation for any claims you make.

(c) Based on what you learned from thinking about (a) and (b), do you think we now
know how to solve GI in polynomial time? Alternately, do you think it would take
an exponential-time algorithm to solve GI?

2. We want to multiply two n× n matrices A and B. As you know, A ·B is an n× n matrix
C, where ci,j =

∑n
k=1 ai,k · bk,j . Here ci,j refers to the entry in matrix C that is in row

i and column j. Similarly, ai,k refers to the row i, column k entry in matrix A and bk,j
refers to the row k, column j entry in matrix B.

(a) Describe (in pseudocode) an algorithm for multiplying two n× n matrices.

(b) State the running time of your algorithm as a function of the input size, using Θ
notation. Note that input size need not be n.

3. A set D ⊆ V of vertices of a graph G = (V,E) is a dominating set if for every vertex
v ∈ V , either v is in D or has a neighbor in D. Think of D as a set of “dominators,” each
of which “dominates” itself and all of its neighbors; thus every vertex is “dominated” by a
dominating set.

A well known optimization problem is the minimum dominating set problem in which we
are given a graph and asked to find a dominating set with fewest vertices. The minimum
dominating set problem is often used to abstract problems that arise in wireless networks
– routing and saving on battery power.

A simple, natural greedy algorithm for the problem would be to repeatedly pick a vertex
(as a dominator) that can dominate the most, as yet, undominated vertices. (Note: a
vertex dominates itself.) Here is pseudocode that implements this idea.

1. Initialize all vertices in the graph to have the color white
2. while the graph contains white vertices do
3. pick a vertex v that dominates the highest number of white vertices
4. color v black

5. color gray any neighbor of v that is not black

1

Here is a brief explanation of this algorithm. At any point in the algorithm, the vertices
have one of three colors: white, gray, and black. The black vertices are in the solution (the
dominating set). The gray vertices are not in the solution, but they have been “dominated”
by some vertex in the solution. Finally, the white vertices are the ones that have not yet
been dominated and need to be. So at every step in the algorithm, we make a natural
greedy choice of picking a vertex (to add to the solution) that dominates the maximum
number of white vertices.

(a) Show the execution of the above-described greedy algorithm on the following input
graph. Make sure to clearly show the color of each vertex after each iteration of
the while-loop. When there are ties (i.e., two or more vertices dominating the most
number of white vertices) then your algorithm should pick a vertex whose name
appears earliest in alphabetical order. Finally, write down the dominating set chosen
by your algorithm.

(b) As you might expect, the greedy algorithm described above does not always return
a minimum dominating set. Here I describe a family of graphs Gn for n = 1, 2,
Start with subsets of vertices L1, L2, . . . , Ln, where |Li| = 2i for each i = 1, 2, . . . , n.
Now add vertices vi, i = 1, 2, . . . , n to the graph and connect each vi to all the vertices
in Li. Then connect all the n vi’s to each other. Next add two vertices vR and vB
to the graph. Connect vR to vB and all the vi’s; similarly, connect vB to all the vi’s.
Finally, for each i = 1, 2, . . . , n, pick half the vertices in Li and connect to vR and
pick the other half and connect to vB .

Carefully draw G3. Describe the execution of the above-described greedy algorithm
on G3. What is the size of the dominating set returned by your algorithm? And what
is the size of a minimum dominating set on G3?

(c) In general, what is the size of a minimum dominating set in Gn? What is the size of
the dominating set returned by the greedy algorithm on Gn?

(d) Suppose that someone claimed that the greedy algorithm is a 10-approximation al-
gorithm for the minimum dominating set problem. What graph would serve as a
counterexample to this claim?

4. To implement the above greedy algorithm efficiently, we need a data structure that permits
us to efficiently (and repeatedly) pull out a vertex that dominates the maximum number of
white vertices. This needs to be done as the number of white vertices falls in each iteration.
For now imagine that we have a data structure that maintains a collection of (key, value)
pairs (with no two elements having the same key) supporting the following operations:

• getMax(): This deletes and returns a (key, value) pair with the maximum value
among all elements in the collection.

2

• insert(k, v): This inserts an element (k, v) into the collection, assuming that there
are no elements already in the collection with key equal to k.

• decreaseValue(k, d): The modifies the (key, value) pair with key equal to k, re-
placing value by value− d.

Now here is the problem.

(a) Restate the greedy algorithm from Problem 2 using pseudocode, but now in a way
that allows us to do a run-time analysis of the pseudocode. Specifically, assume that
the graph is represented as an adjacency list. Also, maintain a collection of non-black
vertices and the number of white vertices they dominate as a collection of (key, value)
pairs using the data structure mentioned above. Thus, your pseudocode will be mak-
ing repeated calls to the operations getMax(), insert(k, v), and decreaseValue(k,
d) described above.

(b) Suppose that there is a way implement the above-mentioned data structure so that
getMax() runs in O(1) rounds and insert(k, v) and decreaseValue(k, d) run in
O(log s) time each, where s is the number of elements in the collection. Given this,
what is the running time of your implementation in (a), as a function of m (number
of edges) and n (number of vertices) of the input graph. As usual, I am looking for
an asymptotic running time.

(c) Think back to your class on data structures. What is the name of the data structure
that can be implemented in a manner satisfying what we’ve supposed in (b).

3

