
CS:3330 Exam 2, Spring 2017
Tuesday, April 4 2017, 6:30 pm to 8:30 pm

1. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling path
if the intervals in Y cover the intervals in X, that is, any real value that is contained in some
interval in X is also contained in some interval in Y . The size of a tiling path is just the number
of intervals in the tiling path.
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In the above example, you are given an input with 16 intervals and the intervals shown in gray
form a tiling path. This is because every point (on the real line) contained in any interval (black
or gray) is contained in a gray interval. However, this tiling path with 8 intervals is not the tiling
path with smallest size.

(a) Write down a smallest size tiling path for the above example. Use the provided labels 1
through 16 to present your answer.

(b) Describe a polynomial-time greedy algorithm to compute the smallest tiling path of X. Your
input consists of an array I[1, . . . , n], where for each j, 1 ≤ j ≤ n, I[j] represents an interval
(sj , fj) with start time sj and finish time fj . You can write your answer in pseudocode or
plain English. In either case, your algorithm should be super-clear. Since this is a greedy
algorithm, it should be fairly easy to describe.

(c) Prove that your algorithm in (b) is correct. You might want to mimic the “exchange argument”
that was used in the proof of correctness of the “Earliest Finish Time First” algorithm for the
Interval Scheduling problem.

2. This problem is on Huffman codes.

(a) What is the optimal binary Huffman encoding for the following set of frequencies, based on
the first 8 Fibonacci numbers?

a : 1, b : 1, c : 2, d : 3, e : 5, f : 8, g : 13, h : 21.

Your answer should consist of a binary string code for each letter “a” through “h.”

(b) Suppose that you are given n letters whose frequencies are the first n Fibonacci numbers.
Generalizing your answer in (a), write down the encoding of the two letters with frequency 1,
in the optimal binary Huffman encoding.

(c) The Huffman encoding algorithm naturally generalizes to ternary codewords, i.e., codewords
that use symbols 0, 1, and 2. Given frequencies:

a : 45, b : 13, c : 12, d : 16, e : 9, f : 5

find an optimal ternary Huffman encoding for these letters.

3. Execute the Dantzig-Ford algorithm (version 2) on the graph shown below.

1



s

a

b

c

d

e

4

−3

6
−3

2

12

5

−1

2

Assume that the “bag” data structure has been implemented as a stack (“Last In First Out” data
structure.) For every iteration of the while-loop show:

(a) the contents of the stack at the start of the while-loop iteration,

(b) the vertex that is taken out of the stack during the while-loop iteration,

(c) the edges that are relaxed in the while-loop iteration, and

(d) the new dist(·) values that result due the relax operations in (c).

After writing down the information mentioned above, write down all of the final dist(·) and pred(·)
values after the algorithm completes execution.

4. When there is more than one shortest path from one node s to another node t, it is often convenient
to choose a shortest path with the fewest edges; call this the best path from s to t. Suppose we
are given a directed graph G with positive edge weights and a source vertex s in G. Describe an
algorithm to compute best paths in G from s to every other vertex. Your algorithm should be a
simple modification to Dijkstra’s algorithm; you just have to tell us the modification and this may
take no more than 3-4 sentences. You do not have to prove correctness or analyze the running
time.
(Note: If this problem seems familiar, it is because you have already seen it in a homework.)

5. Suppose that we are given a connected, edge-weighted graph G = (V,E) in which all edge weights
are in the range {1, 2, . . . , 10}. We can take advantage of the fact that all edge-weights are in
this range, to improve the asymptotic running time of MST algorithms. This is illustrated in the
following problems.

(a) In 3-4 sentences, describe the modifications you would make to the implementation of Prim’s
algorithm so that it runs in O(m) time. Then present a brief running time analysis of your
modified algorithm showing that it runs in O(m) time.

(b) In 3-4 sentences, describe the modifications you would make to the implementation of Kruskal’s
algorithm so that it runs in O(m + n log n) time. Then present a brief running time analysis
of your modified algorithm showing that it runs in O(m + n log n) time.

6. Recall that a standard (First In First Out) queue maintains a sequence of items subject to the
following operations.

• Push(x): Add item x to the end of the sequence.

• Pull(): Remove and return the item at the beginning of the sequence.

• Size(): Return the current number of items in the sequence.

It is easy to implement a queue using a doubly-linked list, so that it uses O(n) space (where n is
the number of items in the queue) and the worst-case time for each of these operations is O(1).

Consider the following new operation, which removes every tenth element from the queue, starting
at the beginning, in Θ(n) worst-case time.
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Decimate():
n← Size()
for i← 0 to n− 1

if i mod 10 = 0 then
Pull() (Comment:the result is discarded)

else
Push(Pull())

Prove that in any intermixed sequence of Push, Pull, and Decimate operations, the amortized cost
of each operation is O(1).
(Hint: Use a “charging argument” in your proof, where the total cost of each operation is “charged”
in some appropriate way to the elements in the queue. The prove that each element is charged at
most a constant amount. From here it is just one step to the claim you need to prove.)
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