
CS:3330 Exam 1, Spring 2017
Tuesday, Feb 21 2017, 6:30 pm to 8:30 pm

1. This problem is on understanding the growth rate of functions that represent running times of
algorithms and the use of asymptotic notation.

(a) Take the following list of functions (from nonnegative integers to nonnegative integers) and
arrange them in ascending order of growth. Thus, if a function g immediately follows f in the
list, then f = O(g). Some of these functions are described in words and some as summations.
For every function described in words or as a summation, write it in standard form first before
placing it in the sorted list of functions. Show your work in order to receive partial credit.

(i) 22.5 log2 n

(ii) The running time of the MergeSort algorithm.

(iii) 100n2 + 1000000

(iv) (log2 n)2 ·
∑n

i=1 Θ(1/2i)

(v) n1.5/(log2 n)4

(vi) 27
√

log2 n

(b) For each statement below, write down if it is True or False. Provide a 1-2 sentence justification
for your answer.

(i) 100n3 + 10n2 + 15 = Θ(n2).

(ii) I prefer an algorithm running in Θ(
√

2n) time relative to an algorithm running in Θ(3log2 n)
because the first algorithm is more efficient.

(iii) There is an algorithm that solves MVC (i.e., produces an optimal solution for every input)
in O((m+ n) log n) time.

(iv) nlog2 n = Θ(2(log2 n)3).

2. Write down the worst case running time of each of the following code fragments. Use the Θ notation
to express your answers and show your work to receive partial credit.

(a) Express your answer as a function of n

function printHello(n)
for i← 1 to n do

B ← 1
while (B < n) do

print("hello")
B ← 2 ∗B

(b) Express the running time as a function of n and ε.

for i← 1 to n do
j ← n
while j > 0 do

print("hello")
j ← j − 2 · ε

(c) The arguments to this function are a length-n list S of positive integers and a positive integer
target weight W . Express the running time as a function of n and W .

1

function subsetSum(list S[1, . . . , n], W)
M ← Array(n+ 1,W + 1) // an empty 2-dimensional (n+1) by (W+1) array

for w ← 0 to W do
M [0, w]← 0

for i← 1 to n do
for w ← 0 to W do

if w < S[i] then
M [i, w]←M [i− 1, w]

else
M [i, w]← max{M [i− 1, w], 1 +M [i− 1, w − S[i]]}

return M [n,W]

3. The Stable Matching Problem, as discussed in class, assumes that all men and women have a fully
ordered list of preferences. In this problem we will consider a version of the problem in which men
and women can be indifferent between certain options. As before we have a set M of n men and a
set W of n women. Assume each man and each woman ranks the members of the opposite gender,
but now we allow ties in the ranking. For example (with n = 4), a woman could say that m1

is ranked in first place; second place is a tie between m2 and m3 (she has no preference between
them); and m4 is in last place. We will say that w prefers m to m′ if m is ranked strictly higher
than m′ on her preference list (i.e., they are not tied). With indifferences in the rankings, there
could be two natural notions for stability. And for each, we can ask about the existence of stable
matchings, as follows.

(a) A strong instability in a perfect matching S consists of a man m and a woman w (who are
not matched in S), such that each of m and w prefers the other to their current partner in S.
Does there always exist a perfect matching with no strong instability? Either give an example
of a set of men and women with preference lists for which every perfect matching has a strong
instability; or give an algorithm that is guaranteed to find a perfect matching with no strong
instability.

(b) A weak instability in a perfect matching S consists of a man m and a woman w, such that
their partners in S are w′ and m′, respectively, and one of the following holds:

– m prefers w to w′, and w either prefers m to m′ or is indifferent between these two choices;
or

– w prefers m to m′, and m either prefers w to w′ or is indifferent between these two choices.

In other words, the pairing between m and w is either preferred by both, or preferred by
one while the other is indifferent. Does there always exist a perfect matching with no weak
instability? Either give an example of a set of men and women with preference lists for which
every perfect matching has a weak instability; or give an algorithm that is guaranteed to find
a perfect matching with no weak instability.

4. For each k = 2, 3, . . ., we define a graph Gk as follows. Let n = k!. Start with a subset U
containing n vertices labeled u1, u2, . . . , un. We will add to the graph other vertices and edges so
that the degree of each vertex in U ends up being k. Now add to the graph, k subsets of vertices
V1, V2, . . . , Vk, where |Vj | = n/j for each j, 1 ≤ j ≤ n. Now we will describe the edges incident on
each vertex in Vj . Consider the n/j vertices in Vj in some order. Connect the first vertex in Vj to
vertices u1, u2, . . . , uj , then the second vertex in Vj to uj+1, uj+2, . . . , u2j , then the third vertex in
Vj to u2j+1, u2j+2, . . . , u3j , and so on. Thus every vertex in Vj has degree j and every vertex in U
is connected to exactly one vertex in Vj , for any j.

(a) Carefully draw and label the graph G3.

2

(b) Now consider the GreedyDegreeBased algorithm for the Minimum Vertex Cover (MVC).
(Recall this algorithm from lectures and HW4.) Execute this algorithm on G3 with the
following tie-breaking rule: whenever there is a tie between two or more vertices of maximum
degree, your algorithm should choose a vertex from ∪kj=1Vj , rather than a vertex from U . It

does not matter how ties are broken between pairs of vertices in ∪kj=1Vj or between pairs of
vertices in U . What is the vertex cover produced by the algorithm in G3? What is an optimal
vertex cover for G3?

(c) Your friend claims that the GreedyDegreeBased algorithm is a 3-approximation algorithm.
What is the smallest member of the family of graphs Gk defined above that you could use as
a counterexample to disprove your friend’s claim? Justify your answer in 1-2 sentences.
Note: Here it may help you to know that

∑10
i=1 1/i is approximately 2.93 and

∑11
i=1 1/i is

approximately 3.02.

5. We are given a length-n binary list L. In other words, L[j] ∈ {0, 1} for all j = 1, 2, . . . , n. Our
problem is to count the number of 0’s in L. We could of course solve this problem in Θ(n) time by
simply scanning L, but we want to solve it faster and so we turn to randomization. The randomized
algorithm we use is the following.

function CountZeroes(L)
n← length(L)
count← 0

for j ← 1 to 100 do
Comment: pick a random index i between 1 and n
i← random(1, n)
if L[i] = 0 then

count← count+ 1

return n · count/100

(a) What is the running time of this algorithm?

(b) Suppose that n = 106 and exactly a quarter of the elements in L are 0. What is the probability
that the CountZeroes function returns 0?

(c) A random variable X has binomial distribution with parameters m (a positive integer) and p
(a real number between 0 and 1) if

Pr[X = k] =

(
m

k

)
· pk · (1− p)m−k. (1)

The way to think about X being binomially distributed is that we perform m independent
random trials and each trial can either succeed or fail. The “success” probability of a trial is
p and so the failure probability of a trial is 1− p. Then the random variable X represents the
number of successful trials, out of m total random trials. To understand the formula in (1)
note that the probability of k successful trials is pk, the probability of (m − k) unsuccessful
trials is (1− p)m−k, and there are

(
m
k

)
ways of distributing the k successful trials among the

m random trials.

As in (b) suppose that n = 106 and exactly a quarter of the elements in L are 0. Using the
above expression for a binomial distribution, write down the expression for the probability
that CountZeroes returns the correct answer, namely 106/4.

3

