
CS:3330 Exam 1, Fall 2015
Thursday, Sept 24 2015, 6:30 pm to 8:30 pm

1. Here are two problems on understanding the growth rate of functions that represent running
times of algorithms and the use of asymptotic notation.

(a) Take the following list of functions (from nonnegative integers to nonnegative integers)
and arrange them in ascending order of growth. Thus, if a function g immediately
follows f in the list, then f = O(g). Some of these functions are described in words
and some as summations. For every function described in words or as a summation,
write it in standard form first before placing it in the sorted list of functions. Show
your work in order to receive partial credit.

(i) 25 log2 n

(ii) The running time of the binarySearch algorithm.

(iii) 100n2 + 1000000

(iv)
√

2n

(v) (log2 n)2 ·
∑n

i=1 Θ(1)

(vi) n3/(log2 n)4

(vii) 2
√

log2 n

(viii) 100

Solution: The correct ordering of functions by asymptotic growth rate is:

(viii) 100

(ii) The running time of the binarySearch algorithm. This is Θ(log n) in the worst
case.

(vii) 2
√

log2 n. Note that this function is sublinear (i.e., grows more slowly than the
linear function) because 2log2 n = n.

(v) (log2 n)2 ·
∑n

i=1 Θ(1). The sum is Θ(n) and so this function is Θ(n log2 n).

(iii) 100n2 + 1000000

(vi) n3/(log2 n)4

(i) 25 log2 n. This can be rewritten as n5.

(iv)
√

2n. This can be rewritten as 2n/2.

(b) For each statement below, write down if it is True or False. Provide a 1-2 sentence
justification for your answer.

(i) 100n2 + 10n + 15 = Θ(n3).
Solution: False. It is true that 100n2 + 10n+ 15 = O(n3), but it is not true that
100n2 + 10n + 15 = Ω(n3). This is because no matter how small a constant we
multiply n3 with, it will eventually become larger than 100n2 + 10n + 15.

(ii) I prefer an algorithm running in Θ(
√

2n) time relative to an algorithm running
in Θ(2log2 n) because the first algorithm is more efficient.
Solution: False.

√
2n can be rewritten as 2n/2 = (21/2)n ≈ (1.44)n. This is an

exponential function, whereas Θ(2log2 n) can be simplified to Θ(n).
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(iii) Every algorithm known to us, for finding the median of a list of n numbers takes
time Ω(n2).
Solution: False. We can sort a list with n numbers in Θ(n log n) time and then
in an additional O(1) time, find the median.

(iv) log2 n = Θ(log3 n).
Solution: True. By the change of base formula, log2 n = log3 n/ log3 2. Since
log3 2 is just a constant, we get log2 n = Θ(log3 n).

(v) nlog2 n = Θ(2(log2 n)2).

Solution: True. 2(log2 n)2 can be rewritten as (2log2 n)log2 n = nlog2 n.

2. Write down the worst case running time of each of the following code fragments as a
function of n. Use the Θ notation to express your answers. Show your work to receive
partial credit.

(a) The arguments to this function are an element k and a list L of length n.

function scan(k, list L)
i← 1
while k 6= L[i] do

i← i + 1
return i

Solution: Θ(n). In the worst case, the entire list will be scanned.

(b) The arguments to this function are two n × n matrices A and B. The function
computes the matrix product A ·B and returns the resulting n× n matrix C.

function matrixMult(A, B)
for i← 1 to n do

for j ← 1 to n do
C[i, j]← A[i, 1] ·B[1, j] + A[i, 2] ·B[2, j] + · · ·+ A[i, n] ·B[n, j]

return C

Solution: Θ(n3). The statement that assigns a value to C[i, j] takes Θ(n) time to
execute. This statement is within nested loops that causes this statement to execute
n2 times.

(c) The arguments to this function are an element k and a list L of length n.

function fastScan(k, list L)
left← 1; right← n
while left ≤ right do

mid← (left + right)/2
if L[mid] = k then

return mid
else if L[mid] < k then

right← mid− 1
else if L[mid] > k then

left← mid + 1

return 0
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Solution: Θ(log n). This is essentially a “binary search” type algorithm with the
indices left and right start off at distance n from each other and come closer by a
factor of 2 in each iteration (which take O(1) time).

(d) for i← 1 to n do
for j ← n downto i do

print("hello")

Solution: Θ(n2). For every execution of the outer loop, the inner loop executes at most
n times. Thus the running time is O(n2). Now consider values of i from 1 to n/2. For
these values of i, the inner loop executes at least n/2 for every execution of the outer loop.
Thus the number of executions of the print-statement is at least n2/4 = Ω(n2). Thus the
running time is also Ω(n2). Since the running time is O(n2) and Ω(n2), it is Θ(n2).

3. Given a list L of length n (n ≥ 3), an element L[i], 1 < i < n, is a local minimum if
L[i− 1] ≥ L[i] and L[i] ≤ L[i+ 1]. For example, if L = [3, 1, 7, 7, 7, 2, 11] then the elements
1, 7 (the middle one), and 2 are all local minima.

(a) A length-n list L is called good if L[1] ≥ L[2] and L[n − 1] ≤ L[n]. Argue (in 2-3
sentences) that any good list has a local minimum.

Solution: If n = 3, then L[2] is a local minima since L is good. Proceeding induc-
tively, consider a length-n list L with n > 3. If L[2] is a local minimum, we are done.
Otherwise, L[2] > L[3] and therefore the sublist L[2, . . . , n] is good and applying the
inductive hypothesis to this smaller list, we see that it has a local minimum.

(b) Describe an algorithm (using clear pseudocode) that takes as input a good list L
and returns the index of a local minimum in L. If L has several local minima, your
algorithm can return the index of any of these. It is required that your algorithm run
in time that is asymptotically faster than Θ(n).
Hint: Start by looking at the middle element of L and its neighbors on either side.
Depending on how the middle element of L compares to its neighbors, your algorithm
can determine if (i) the middle element is a local minimum or (ii) which of the two
halves of L is guaranteed to contain a local minimum.

Solution: Pseudocode is given below. Since the input L is good, we know that it
will contain a local minimum and so the only way of exiting from the function is via
the return L[mid] statement.

function localMinimum(list L)
left← 1; right← n
while True do

mid← (left + right)/2
if (L[mid] ≤ L[mid− 1]) and (L[mid] ≤ L[mid + 1]) then

return L[mid]
else if L[mid] > L[mid− 1] then

right← mid
else if L[mid] > L[mid + 1] then

left← mid

(c) Express the worst case running time of your algorithm as a function of n (in Θ
notation). Here n is the size of the input list L.

Solution: The worst case running time if Θ(log n) since the algorithm is essentially
binary search.
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4. We want to determine if a given list L with n elements has a majority element and if so
return it. (Recall that a majority element in a length-n list L is one that occurs more than
n/2 times.)

Here is a simple randomized algorithm for this problem that runs in Θ(n) time.

function majority(L)
n← length(L)
Comment: pick a random index i between 1 and n
i← random(1, n)

Comment: Count the number of time L[i] occurs in the list
count← 0 Comment: Fixed a typo here; see more on this below.
for j ← 1 to n do

if L[i] = L[j] then
count← count + 1

Comment: Check if count is more than n/2
if count > n/2 then

return L[i]
else

return “no majority”

(a) This algorithm does not always produce the correct answer. Explain the circumstances
under which it produces an incorrect answer (1-2 sentences). Specifically, discuss
whether the algorithm can produce an incorrect answer for each of the two cases: (i)
L has a majority element and (ii) L does not have a majority element.

Solution: If L does have a majority, but contains some elements distinct from the
majority, then there is a chance that the random index i picked by the algorithm points
to a non-majority element. In this case, the algorithm would output “no majority”
despite their being one. If L does not have a majority, then no matter what random
value is assigned to i, the algorithm will correctly output “no majority.”

(b) What is the maximum probability that the algorithm produces an incorrect answer?

Solution: Suppose that L has a majority and this occurs t times in the list. (Note:
t > n/2.) The probability that the algorithm will pick a non-majority element is
n− t/n and since t > n/2, we see that

n− t

n
<

n− n/2

n
=

1

2
.

(c) Let us suppose that we want to reduces the probability of this algorithm producing an
incorrect output to at most 1/10. What changes would you make to the algorithm?
You can describe your changes in words, no need for pseudocode.

Solution: We call the majority function 4 times and if the majority function returns
an element in any one of the calls, we return that element (Note: if more than one call
returns an element, then the elements returned by different calls will be identical).
Otherwise, if “no majority” is returned by every call, then that is what is returned.

As we have seen, the probability that L contains a majority, but the call to majority

outputs “no majority” is less than 1/2. The probability that this happens for all 4
independent attempts is 1/(24) = 1/16 < 1/10.
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Comments: Most students understood the source of possible incorrect output (part (a)).
Most students also understood that the error probability (in part (b)) is bounded above
by 1/2. However, a fairly large fraction of students presented complicated (and incorrect)
solutions to (c) forgetting that one can drive the error probability down by simply repeating
the randomized algorithm a few times. In general, this is the first idea one should try
when faced with the problem of reducing error probability or a randomized algorithm. As
mentioned in class, this technique is called probability amplification.

A small number of students assumed that my typo (see pseudocode above) was a delib-
erate attempt at trickery. You may remember that in the exam, count was (incorrectly)
initialized to 1. I was quite lenient in my grading when I read solutions that took this at
face value. It is worth noting that the question does make sense even with this typo. Now,
even when L has no majority, the algorithm could behave erroneously. As a particularly
bad example, consider a situation in which L has an even number of elements, half of which
are 1 and the other half are 2. L has no majority, but no matter whan random choice is
made, the algorithm outputs an element (1 or 2). Thus in these circumstances, the error
probability is 1.

5. Here are two problems on the stable marriage problem.

(a) Show the execution of the Gale-Shapley algorithm on an input with 3 men and 3
women having the following preferences:

m1 : w2 > w1 > w3 m2 : w2 > w1 > w3 m3 : w1 > w2 > w3

w1 : m2 > m1 > m3 w2 : m3 > m1 > m2 w3 : m3 > m2 > m1

Let us suppose that whenever your algorithm has choice of “free” men to pick for
making a proposal, it picks the man with lowest index.

Solution: Here is the execution of the algorithm shown as a sequence of proposals
by men and responses by women.

(a) m1 proposes to w2; w2 is free and accepts

(b) m2 proposes to w2; w2 prefers current partner m1 and rejects

(c) m2 proposes to w1; w1 is free and accepts

(d) m3 proposes to w1; w1 prefers current partner m2 and rejects

(e) m3 proposes to w2; w2 accepts m3 and releases m1

(f) m1 proposes to w1; w1 prefers current partner m2 and rejects

(g) m1 proposes to w3; w3 is free and accepts

The resulting marriage is {(m1, w3), (m2, w1), (m3, w2)}.
Comment: Most students got this problem completely correct. A few students lost
a small number of points for ignoring my instruction on the order in which “free” men
are processed by the algorithm.

(b) Consider the stable roommate problem in which we are given n individuals (for even
n) and each individual has preferences over the remaining n − 1 individuals. (So
in this problem, the individuals are not divided into two groups, as in the stable
marriage problem.) Unlike the stable marriage problem, there are instances of the
stable roommate problem for which no solution exists. Consider the following example
with 4 individuals A, B, C, and D with the following preferences:

A : B > C > D, B : C > A > D, C : A > B > D, D : A > B > C.

Prove that for this input, there is no solution.

Solution: There are three matchings to consider: {(A,B), (C,D)}, {(A,C), (B,D)},
and {(A,D), (B,C)}. For each of these matchings, there is an unstable pair. Below,
I identify the unstable pair for each matching and provide an explanation for the
instability.
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{(A,B), (C,D)}: (B,C) is unstable because B prefers C to A and C prefers B to D.

{(A,C), (B,D)}: (A,B) is unstable because A prefers B to C and B prefers A to D.

{(A,D), (B,C)}: (A,C) is unstable because C prefers A to B and A prefers C to D.

Since every possible matching has an instability, there is no solution to this instance
of the stable roommate problem.

Comment: A lot of students lost points for this problem because they were trying to
show that the Gale-Shapley algorithm would not work for this instance. The question
was not asking about the Gale-Shapley algorithm or whether any algorithm would be
able to find a stable matching for this input. The question was more basic: is there
even a stable matching for this input?
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