
CS:3330 Exam 1, Fall 2015
Thursday, Sept 24 2015, 6:30 pm to 8:30 pm

1. Here are two problems on understanding the growth rate of functions that represent running
times of algorithms and the use of asymptotic notation.

(a) Take the following list of functions (from nonnegative integers to nonnegative integers)
and arrange them in ascending order of growth. Thus, if a function g immediately
follows f in the list, then f = O(g). Some of these functions are described in words
and some as summations. For every function described in words or as a summation,
write it in standard form first before placing it in the sorted list of functions. Show
your work in order to receive partial credit.

(i) 25 log2 n

(ii) The running time of the binarySearch algorithm.

(iii) 100n2 + 1000000

(iv)
√

2n

(v) (log2 n)2 ·
∑n

i=1 Θ(1)

(vi) n3/(log2 n)4

(vii) 2
√

log2 n

(viii) 100
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(b) For each statement below, write down if it is True or False. Provide a 1-2 sentence
justification for your answer.

(i) 100n2 + 10n + 15 = Θ(n3).

(ii) I prefer an algorithm running in Θ(
√

2n) time relative to an algorithm running
in Θ(2log2 n) because the first algorithm is more efficient.

(iii) Every algorithm known to us, for finding the median of a list of n numbers takes
time Ω(n2).

(iv) log2 n = Θ(log3 n).

(v) nlog2 n = Θ(2(log2 n)2).
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2. Write down the worst case running time of each of the following code fragments as a
function of n. Use the Θ notation to express your answers. Show your work to receive
partial credit.

(a) The arguments to this function are an element k and a list L of length n.

function scan(k, list L)
i← 1
while k 6= L[i] do

i← i + 1 if i = n + 1 then
return “not found”

return i

(b) The arguments to this function are two n × n matrices A and B. The function
computes the matrix product A ·B and returns the resulting n× n matrix C.

function matrixMult(A, B)
for i← 1 to n do

for j ← 1 to n do
C[i, j]← A[i, 1] ·B[1, j] + A[i, 2] ·B[2, j] + · · ·+ A[i, n] ·B[n, j]

return C
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(c) The arguments to this function are an element k and a list L of length n.

function fastScan(k, list L)
left← 1; right← n
while left ≤ right do

mid← (left + right)/2
if L[mid] = k then

return mid
else if L[mid] < k then

left← mid + 1
else if L[mid] > k then

right← mid− 1

return 0

(d) for i← 1 to n do
for j ← n downto i do

print("hello")
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3. Given a list L of length n (n ≥ 3), an element L[i], 1 < i < n, is a local minimum if
L[i− 1] ≥ L[i] and L[i] ≤ L[i+ 1]. For example, if L = [3, 1, 7, 7, 7, 2, 11] then the elements
1, 7 (the middle one), and 2 are all local minima.

(a) A length-n list L is called good if L[1] ≥ L[2] and L[n − 1] ≤ L[n]. Argue (in 2-3
sentences) that any good list has a local minimum.

(b) Describe an algorithm (using clear pseudocode) that takes as input a good list L
and returns the index of a local minimum in L. If L has several local minima, your
algorithm can return the index of any of these. It is required that your algorithm run
in time that is asymptotically faster than Θ(n).
Hint: Start by looking at the middle element of L and its neighbors on either side.
Depending on how the middle element of L compares to its neighbors, your algorithm
can determine if (i) the middle element is a local minimum or (ii) which of the two
halves of L is guaranteed to contain a local minimum.

(c) Express the worst case running time of your algorithm as a function of n (in Θ
notation). Here n is the size of the input list L.
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4. We want to determine if a given list L with n elements has a majority element and if so
return it. (Recall that a majority element in a length-n list L is one that occurs more than
n/2 times.)

Here is a simple randomized algorithm for this problem that runs in Θ(n) time.

function majority(L)
n← length(L)
Comment: pick a random index i between 1 and n
i← random(1, n)

Comment: Count the number of time L[i] occurs in the list
count← 0
for j ← 1 to n do

if L[i] = L[j] then
count← count + 1

Comment: Check if count is more than n/2
if count > n/2 then

return L[i]
else

return “no majority”

(a) This algorithm does not always produce the correct answer. Explain the circumstances
under which it produces an incorrect answer (1-2 sentences). Specifically, discuss
whether the algorithm can produce an incorrect answer for each of the two cases: (i)
L has a majority element and (ii) L does not have a majority element.

(b) What is the maximum probability that the algorithm produces an incorrect answer?

6



(c) Let us suppose that we want to reduces the probability of this algorithm producing an
incorrect output to at most 1/10. What changes would you make to the algorithm?
You can describe your changes in words, no need for pseudocode.

5. Here are two problems on the stable marriage problem.

(a) Show the execution of the Gale-Shapley algorithm on an input with 3 men and 3
women having the following preferences:

m1 : w2 > w1 > w3 m2 : w2 > w1 > w3 m3 : w1 > w2 > w3

w1 : m2 > m1 > m3 w2 : m3 > m1 > m2 w3 : m3 > m2 > m1

Let us suppose that whenever your algorithm has choice of “free” men to pick for
making a proposal, it picks the man with lowest index.
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(b) Consider the stable roommate problem in which we are given n individuals (for even
n) and each individual has preferences over the remaining n − 1 individuals. (So
in this problem, the individuals are not divided into two groups, as in the stable
marriage problem.) Unlike the stable marriage problem, there are instances of the
stable roommate problem for which no solution exists. Consider the following example
with 4 individuals A, B, C, and D with the following preferences:

A : B > C > D, B : C > A > D, C : A > B > D, D : A > B > C.

Prove that for this input, there is no solution.
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