
223

Chapter 8
TRADITIONAL OPERATIONAL
SEMANTICS

In contrast to a semantics that describes only what a program does, the
purpose of operational semantics is to describe how a computation is
performed. An introduction to computers and programming languages is

usually presented in terms of operational concepts. For example, an assign-
ment statement “V := E” might be described by the steps that it performs:
Evaluate the expression E and then change the value bound to the variable V
to be this result. In another example, pointer assignments might be made
clearer by drawing boxes and arrows of the configurations before and after
the assignments.

Informal operational semantics illustrates the basic components of the op-
erational approach to meaning. A state or configuration of the machine is
described by means of some representation of symbols, such as labeled boxes,
values in the boxes, and arrows between them. One configuration assumes
the role of the initial state, and a function, determined by the program whose
meaning is being explained, maps one configuration into another. When the
program (or programmer) is exhausted or the transition function is unde-
fined for some reason, the process halts producing a “final” configuration
that we take to be the result of the program.

In this chapter we first discuss how earlier chapters have already presented
the operational semantics of languages. We then briefly describe a well-known
but seldom-used method of specifying a programming language by means of
formal operational semantics—namely, the Vienna Definition Language.

The main part of this chapter looks at the SECD abstract machine defined by
Peter Landin, an early method of describing expression evaluation in the
context of the lambda calculus. The chapter concludes with an introduction
to a formal specification method known as structural operational semantics.
This method describes semantics by means of a logical system of deductive
rules that model the operational behavior of language constructs in an ab-
stract manner.

224 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

The laboratory exercises for this chapter include implementing the SECD
machine for evaluating expressions in the lambda calculus following the pat-
tern used in Chapter 5 and implementing a prototype interpreter of Wren
based on its structural operational semantics using the scanner and parser
developed in Chapter 2.

8.1 CONCEPTS AND EXAMPLES

We have already considered several versions of operational semantics in this
text. For the lambda calculus in Chapter 5, the β-reduction and δ-reduction
rules provide a definition of a computation step for reducing a lambda ex-
pression to its normal form, if possible. A configuration consists of the cur-
rent lambda expression still to be reduced, and the transition function sim-
ply carries out reductions according to a predetermined strategy. The occur-
rence of a lambda expression in normal form signals the termination of the
computation. As with most operational semantics, the computation may con-
tinue forever.

One view of operational semantics is to take the meaning of a programming
language as the collection of results obtained by executing programs on a
particular interpreter or as the assembly language program produced by a
compiler for the language. This approach to meaning is called concrete op-
erational semantics. The translational semantics of a compiler, such as the
one discussed in Chapter 7 using an attribute grammar, can be understood
as a definition of a programming language. The diagram below shows the
structure of a translational system for a programming language.

Source
program

Target
program

Input
data

Target
interpreter

Program
output

Translator

The translational approach entails two major disadvantages as a formal speci-
fication tool:

1. The source language is defined only as well as the target language of the
translator. The correctness and completeness of the specification relies
on a complete understanding of the target language.

2258.1 CONCEPTS AND EXAMPLES

2. A translator can carefully describe the relation between a source pro-
gram and its translation in the target language, but it may at the same
time provide little insight into the essential nature of the source lan-
guage.

More commonly, concrete operational semantics refers to an interpreter ap-
proach in which a source language program is simulated directly. An inter-
pretive definition of a programming language is generally less complex than
following a translational method. The diagram below shows the basic struc-
ture of an interpretation system.

Source
program

Input
data

Interpreter

Program
output

Defining the meaning of a programming language in terms of a real inter-
preter also has shortcomings as a specification mechanism:

1. For complex languages, correct interpreters (as well as compilers) are
difficult to write. Moreover, these definitions are too machine dependent
to serve as formal specifications for a programming language.

2. Interpreters are written to provide practical program development tools,
and they do not provide the mathematical precision needed in a formal
definition.

The metacircular interpreters in Chapter 6 describe the operation of a Lisp
machine and a simplified Prolog machine using the languages themselves to
express the descriptions. These descriptions represent the configurations
directly as structures in the language being defined. John McCarthy’s defini-
tion of Lisp in Lisp [McCarthy65b] was an early landmark in providing the
semantics of a programming language. Although such meta-interpreters can
give insight into a programming language to someone who is already familiar
with the language, they are not suitable as formal definitions because of the
circularity.

Formal semantics demands a better approach, using a precisely defined hy-
pothetical abstract machine described in a formal mathematical or logical
language with no limitations on memory, word size, precision of arithmetic,
and other such implementation-dependent aspects of a language, and rigor-

226 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

ously defined rules that reveal the way the state of the machine is altered
when a program is executed.

VDL

The most ambitious attempt at defining an abstract machine for operational
semantics was the Vienna Definition Language (VDL) developed at the Vienna
IBM laboratory in 1969. All the nonprimitive objects in VDL are modeled as
trees. This includes the program being interpreted (an abstract syntax tree),
memory, input and output lists, environments, and even the control mecha-
nism that performs the interpretation. Figure 8.1 shows a typical VDL con-
figuration that is represented as a collection of subtrees. A set of instruction
definitions, in effect a “microprogram”, interprets an abstract representation
of a program on the abstract machine defined by this tree structure.

… ……

Storage Input Output

Control tree

The nodes of the control tree
represent VDL instructions.

Figure 8.1: A VDL Configuration

Starting with an initial configuration or state that has all the components of
storage properly initialized (probably to “undefined”), input defined as a tree
representing the list of input values, output set as an empty tree, and the
control tree defined as a single instruction to execute the entire program, the
transition function given by the instructions of the VDL interpreter performs
the steps of a computation. One step consists of selecting a leaf node of the
control tree and evaluating it according to the microprogram, producing a

227

new state with a modified control tree. As the leaf nodes of the control tree
are evaluated, a sequence of configurations results:

configuration0 → configuration1 → configuration2 → configuration3 → ….

An interpretation of a program terminates normally when the control tree
becomes empty, signaling that the program has completed. The VDL inter-
preter also recognizes certain error conditions that may occur during an ex-
ecution, and the computation may execute forever.

The major accomplishment of the VDL effort was a specification of PL/I.
Unfortunately, the complexity of definitions in VDL hampers its usefulness.
The tree structures do not relate to any actual implementation, and the de-
tails of the representation can overwhelm the users of a VDL specification to
the point of raising questions about its correctness. Any hope of practical
application of formal semantics depends on providing a certain amount of
clarity and conciseness in language definitions.

Our venture into traditional operational semantics considers two examples
that are more accessible. The first technique illustrates the use of an ab-
stract machine, called the SECD machine, to interpret the lambda calculus.
Developed in the mid 1960s, it provides an elegant example of traditional
operation semantics that has become the basis for some implementations of
functional programming languages. The second method of language specifi-
cation, called structural operational semantics, finds its roots in logic deduc-
tion systems. It is a more abstract approach to operational specifications,
recently supporting applications in type theory.

Exercises

1. List several ways that programming languages are described to begin-
ners using informal operational semantics.

2. How well does the translational semantics of Chapter 7 provide a formal
definition of the programming language Wren? Can it be used to prove
the equivalence of language constructs?

3. Enumerate some of the advantages and disadvantages of using an ac-
tual interpreter or compiler as the definition of Pascal.

8.1 CONCEPTS AND EXAMPLES

228 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

8.2 SECD: AN ABSTRACT MACHINE

In 1964 Peter Landin proposed an abstract machine, called the SECD ma-
chine, for the mechanical evaluation of lambda expressions. This machine
has become a classic example of operational semantics, involving computa-
tional techniques that have been adopted in practical implementations of
functional programming languages. With the SECD machine, evaluation of a
function application entails maintaining an environment that records the
bindings of formal parameters to arguments in a way similar to the method
of implementing function application in some real implementations. The SECD
machine surpasses the efficiency of a lambda calculus evaluator based on β-
reductions, but it lends itself primarily to an applicative order evaluation
strategy. In fact, the SECD machine as described by Landin follows pass by
value semantics in the sense that combinations in the body of a lambda
expression are not reduced unless the lambda abstraction is applied to an
argument; so the evaluator stops short of normal form in some instances.

The states in the abstract machine consist of four components, all exhibiting
stack behavior. The names of these four stacks, S, E, C, and D, provide the
title of the machine.

S for Stack: A structure for storing partial results awaiting subsequent use.

E for Environment: A collection of bindings of values (actual parameters) to
variables (formal parameters).

C for Control: A stack of lambda expressions yet to be evaluated plus a
special symbol “@” meaning that an application can be performed; the top
expression on the stack is the next one to be evaluated.

D for Dump: A stack of complete states corresponding to evaluations in
progress but suspended while other expressions (inner redexes) are evalu-
ated.

In describing the SECD interpreter we represent a state, also called a con-
figuration, as a structured object with four components:

cfg(S, E, C, D).

Borrowing notation from Prolog and mixing it with a few functional opera-
tions, we depict the S and C stacks as lists of the form [a,b,c,d] with the top
at the left and define head and tail so that

head([a,b,c,d]) = a, and

tail([a,b,c,d]) = [b,c,d].

229

To push an item X onto the stack S, we simply write [X|S] for the new stack.
The empty list [] acts as an empty stack.

Environments, which provide bindings for variables, are portrayed as lists of
pairs, say [x|→3, y|→8], with the intention that bindings have precedence
from left to right. An empty environment is denoted by the atom “nil”. In
describing the SECD machine, we let E(x) denote the value bound to x in E,
and let [y|→val]E be the environment E1 that extends E with the property

E1(x) = E(x) if x≠y, and

E1(y) = val.

So if E = [y|→5][x|→3, y|→8] = [y|→5, x|→3], E(y) = 5. If an identifier x has not
been bound in E, the application E(x) returns the variable x itself.

The D stack is represented as a structure. Since a dump is a stack of con-
figurations (states), we display it using notation with the pattern

cfg(S1,E1,C1,cfg(S2,E2,C2,cfg(S3,E3,C3,nil)))

for a dump that stacks three states. An empty dump is also given by “nil”.

When a lambda abstraction (λV . B) appears on the top of the control stack,
it is moved to the partial result stack while its argument is evaluated. The
object that is placed on the stack is a package containing the bound variable
V and body B of the abstraction, together with the current environment Env,
so that the meaning of the free variables can be resolved when the abstrac-
tion is applied. This bundle of three items is known as a closure since the
term represented is a closed expression in the sense that it carries along the
meanings of its free variables. We represent such a closure by the structure
“closure(V,B,Env)”, which we abbreviate as “cl(V,B,Env)” when space is short.

To evaluate a lambda expression expr, the SECD machine starts with the
initial configuration cfg([],nil,[expr],nil) that has empty stacks for S, E, and
D. The one item on the control stack is the expression to be evaluated. The
SECD machine is defined by a transition function,

transform : State → State,

that maps the current configuration to the next configuration until a final
state results, if it ever does. A final state is recognized by its having an empty
control stack and an empty dump, indicating that no further computation is
possible. Figure 8.2 gives a definition of the transform function as a condi-
tional expression returning a new configuration when given the current con-
figuration.

8.2 SECD: AN ABSTRACT MACHINE

230 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

 transform cfg(S, E, C, D) =

(1) if head(C) is a constant

then cfg([head(C)|S], E, tail(C), D)

(2) else if head(C) is a variable

then cfg([E(head(C))|S], E, tail(C), D)

(3) else if head(C) is an application (Rator Rand)

then cfg(S, E, [Rator,Rand,@|tail(C)], D)

(4) else if head(C) is a lambda abstraction λV . B

then cfg([closure(V,B,E)|S], E, tail(C), D)

(5) else if head(C) = @ and head(tail(S)) is a predefined function f

then cfg([f(head(S))|tail(tail(S))], E, tail(C), D)

(6) else if head(C) = @ and head(tail(S)) = closure(V,B,E1)

then cfg([], [V|→head(S)]E1, [B], cfg(tail(tail(S)),E,tail(C),D))

(7) else if C = []

then cfg([head(S)|S1], E1, C1, D1) where D = cfg(S1,E1,C1,D1)

Figure 8.2: Transition Function for the SECD Machine

In order to explain the SECD machine, we will discuss each case in the defi-
nition of the transition function. The cases are determined primarily by the
top element of the control stack C.

1. If the next expression to be evaluated is a constant, move it as is from the
control stack to the partial result stack S.

2. If the next expression is a variable, push its binding in the current envi-
ronment onto S. If no binding exists, push the variable itself.

3. If the next expression is an application (Rator Rand), decompose it and
reenter the parts onto the control stack C with the Rator at the top, the
Rand next, and the special application symbol @ following the Rand.
(In his original machine, Landin placed the Rand above the Rator to be
evaluated first, but that results in rightmost-innermost evaluation in-
stead of leftmost-innermost—redexes in the Rator before the Rand—that
we described for applicative order evaluation in Chapter 5.)

4. If the next expression is a lambda abstraction, form a closure incorporat-
ing the current environment and add that closure to the partial result
stack. The use of a closure ensures that when the lambda abstraction is
applied, its free variables are resolved in the environment of its defini-
tion, thereby providing static scoping.

231

5. If the next expression is @ and the function in the second place on the S
stack is a predefined function, apply that function to the evaluated argu-
ment at the top of the S stack and replace the two of them with the result.

6. If the next expression is @ and the function in the second place of the S
stack is a closure, after popping @ and the top two elements of S, push
the current configuration onto the dump. Then initiate a new computa-
tion to evaluate the body of the closure in the closure’s environment aug-
mented with the binding of the bound variable in the closure, the formal
parameter, to the argument at the top of the partial result stack.

7. If the control stack is empty, that means the current evaluation is com-
pleted and its result is on the top of the partial result stack. Pop the
configuration on the top of the dump, making it the new current state
with the result of the previous computation appended to the top of its
partial result stack.

If the control stack and the dump are both empty, the transition function is
undefined, and the SECD machine halts in a final state. The value at the top
of the partial result stack is the outcome of the original evaluation.

Example

Shown below are the state transitions as the lambda expression

((λx . (mul x ((λy . sqr y) 5))) 3)

is evaluated by the SECD machine. The numbers at the far right identify
which alternative of the definition by cases is employed at each step. Clo-
sures are represented as cl(V,B,E), and g stands for (λy.sqr y) to save space in
describing the computation.

S E C D

[] nil [((λx.(mul x ((λy.sqr y) 5))) 3)] nil

[] nil [(λx.(mul x (g 5))), 3, @] nil (3)

[cl(x,(mul x (g 5)),nil)] nil [3, @] nil (4)

[3, cl(x,(mul x (g 5)),nil)] nil [@] nil (1)

[] [x|→3] [(mul x (g 5))] d1 (6)

where d1 = cfg([],nil,[],nil)

[] [x|→3] [(mul x), (g 5), @] d1 (3)

8.2 SECD: AN ABSTRACT MACHINE

232 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

[] [x|→3] [mul, x, @, (g 5), @] d1 (3)

[mul] [x|→3] [x, @, (g 5), @] d1 (1)

[3, mul] [x|→3] [@, ((λy.sqr y) 5), @] d1 (2)

[mul3] [x|→3] [((λy.sqr y) 5), @] d1 (5)

where mul3 is the unary function that multiplies its argument by 3

[mul3] [x|→3] [(λy.sqr y), 5, @, @] d1 (3)

[cl(y,(sqr y),E1), mul3] [x|→3] [5, @, @] d1 (4)

where E1 = [x|→3]

[5, cl(y,(sqr y),E1), mul3] [x|→3] [@, @] d1 (1)

[] [y|→5, x|→3] [(sqr y)] d2 (6)

where d2 = cfg([mul3],[x|→3],[@],d1)

[] [y|→5, x|→3] [sqr, y, @] d2 (3)

[sqr] [y|→5, x|→3] [y, @] d2 (1)

[5, sqr] [y|→5, x|→3] [@] d2 (2)

[25] [y|→5, x|→3] [] d2 (5)

[25, mul3] [x|→3] [@] d1 (7)

[75] [x|→3] [] d1 (5)

[75] nil [] nil (7)

The transition function has no definition when both the control stack and
the dump are empty. The result of the evaluation is the value 75 at the top of
the S stack.

Parameter Passing

As mentioned earlier, the SECD machine evaluates redexes following a leftmost-
innermost strategy but fails to continue reducing in the body of a lambda ex-
pression. The next example illustrates this pass by value approach to the
lambda calculus by evaluating the lambda expression ((λf . λx . f x)(λy . y)).

233

S E C D

[] nil [((λf.λx.f x)(λy.y))] nil

[] nil [(λf.λx.f x), (λy.y), @] nil (3)

[cl(f,(λx.f x),nil)] nil [(λy.y), @] nil (4)

[cl(y,y,nil), cl(f,(λx.f x),nil)] nil [@] nil (4)

[] [f|→cl(y,y,nil)] [(λx.f x)] d1 (6)

where d1 = cfg([],nil,[],nil)

[cl(x,(f x),[f|→cl(y,y,nil)])] [f|→cl(y,y,nil)] [] d1 (4)

[cl(x,(f x),[f|→cl(y,y,nil)])] nil [] nil (7)

This final state produces the closure cl(x,(f x),[f|→cl(y,y,nil)]) as the result of
the computation. Unfolding the environment that binds f to cl(y,y,nil) in the
closure and extracting the lambda abstraction (λx . f x) from the closure, we
get (λx . ((λy . y) x)) as the final result following a pass by value reduction. In
true applicative order evaluation, the reduction continues by simplifying the
body of the abstraction giving the lambda expression (λx . x), which is in
normal form, but pass by value reduction does not reduce the bodies of
abstractions that are not applied to arguments.

Static Scoping

The easiest way to see that lambda calculus reduction adheres to static scoping
is to review let-expressions, which we discussed briefly at the end of section
5.2. For example, consider the following expression:

let x=5

in let f = λy . (add x y)

in let x = 3

in f x

Here the variable x is bound to two different values at different points in the
expression. When the function f is applied to 3, to which value is 3 added? By
translating the let-expression into a lambda expression

(λx . (λf . ((λx . f x) 3)) (λy . (add x y))) 5

and reducing, following either a normal order or an applicative order strat-
egy, we get the value 8 as the normal form. To match this behavior in the
SECD machine, the function f must carry along the binding of x to 5 that is

8.2 SECD: AN ABSTRACT MACHINE

234 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

in effect when f is bound to (λy . (add x y)). That is precisely the role of
closures in the interpretation.

In contrast, a slight change to the definition of the transition function turns
the SECD machine into an adherent to dynamic scoping. Simply change
case 6 to read:

else if head(C) = @ and head(tail(S)) = closure(V,B,E1)

then cfg([], [V|→head(S)]E, [B], cfg(tail(tail(S)),E,tail(C),D))

Now the body of the lambda abstraction is evaluated in the environment in
effect at the application of f to x—namely, binding x to 3, so that the compu-
tation produces the value 6. With dynamic scoping, closures can be dis-
pensed with altogether, and case 4 need only move the lambda abstraction
from the top of the control stack to the top of the partial result stack S.

Exercises

1. Trace the execution of the SECD machine on the following lambda ex-
pressions in the applied lambda calculus that we have defined:

a) (succ 4)

b) (λx . (add x 2)) 5

c) (λf . λx . (f (f x))) sqr 2

d) (λx . ((λy . λz . z y) x)) p (λx . x)

2. In the pure lambda calculus, both the successor function and the nu-
meral 0 are defined as lambda expressions (see section 5.2). The expres-
sion (succ 0) takes the form

(λn . λf . λx . f (n f x)) (λf . λx . x)

in the pure lambda calculus. Use the SECD machine and β-reduction to
evaluate this expression. Explain the discrepancy.

3. Trace the execution of the SECD machine on the lambda expression
that corresponds to the let-expresssion discussed in the text:

(λx . (λf . ((λx . f x) 3)) (λy . (add x y))) 5

4. Trace a few steps of the SECD machine when evaluating the lambda
expression (λx . x x) (λx . x x).

5. Modify the SECD machine so that it follows a normal order reduction
strategy. Use a new data structure, a suspension, to model unevaluated
expressions. See [Field88] or [Glaser84] for help on this exercise.

235

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

If we use the scanner and parser from the lambda calculus evaluator in
Chapter 5, the implementation of the SECD machine is a simple task. We
already use Prolog structures for some of the components of a configuration.
All we need to add is a Prolog data structure for environments. We design the
SECD interpreter to be used in the same way as the evaluator, prompting for
the name of a file that contains one lambda expression. The transcript below
shows the SECD machine as it evaluates the lambda expression from the
example in section 8.2.

>>> SECD: Interpreting an Applied Lambda Calculus <<<
Enter name of source file: text
 ((L x (mul x ((L y (sqr y)) 5))) 3)
Successful Scan
Successful Parse
Result = 75
yes

We represent the stack S and control C using Prolog lists, as in the definition
of the transition function in the previous section, but now we implement
head and tail by pattern matching.

Environments are implemented as structures of the form env(x, 3, env(y, 8,
nil)) for the environment [x|→3, y|→8]. An empty environment is given by nil. A
predicate extendEnv(Env,X,Val,NewEnv) appends a new binding to an existing
environment, producing a new environment. A single Prolog clause defines
this predicate:

extendEnv(Env,Ide,Val,env(Ide,Val,Env)).

For example, if Env is bound to the structure env(x, 3, env(y, 8, nil)) and we
execute extendEnv(Env,z,13,NewEnv), NewEnv will be bound to the structure
env(z, 13, env(x, 3, env(y, 8, nil))).

The predicate applyEnv(Env,Ide,Val) performs the application of an environ-
ment to a variable to find its binding. Three clauses define this predicate, the
first clause tries to match the binding at the top of the environment:

applyEnv(env(Ide,Val,Env),Ide,Val).

If the first clause fails, the second continues the search in the “tail” of the
environment:

applyEnv(env(Ide1,Val1,Env),Ide,Val) :- applyEnv(Env,Ide,Val).

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

236 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Finally, the third clause applies to an empty environment signaling a failed
search for the variable. In this case the value returned is the variable itself
marked with a tag:

applyEnv(nil,Ide,var(Ide)).

In agreement with the conventions of Chapter 5, variables and constants
have tags (var and con) provided by the parser to make the pattern matching
easier to understand. Dumps are implemented as Prolog structures follow-
ing the pattern used in the previous section:

cfg(S1,E1,C1,cfg(S2,E2,C2,cfg(S3,E3,C3,nil))).

The transition function for the SECD machine is embodied in a Prolog predi-
cate transform(Config, NewConfig) that carries out one step of the interpreter
each time it is invoked. Seven clauses implement the seven cases in Figure
8.2.

transform(cfg(S,E,[con(C)|T],D), cfg([con(C)|S],E,T,D)). % 1

transform(cfg(S,E,[var(X)|T],D), cfg([Val |S],E,T,D)) :- applyEnv(E,X,Val). % 2

transform(cfg(S,E,[comb(Rator,Rand)|T],D), cfg(S,E,[Rator,Rand,@|T],D)). % 3

transform(cfg(S,E,[lamb(X,B)|T],D), cfg([closure(X,B,E)|S],E,T,D)). % 4

transform(cfg([con(Rand),con(Rator)|T],E,[@|T1],D), cfg([Val|T],E,T1,D)) :- % 5
compute(Rator,Rand,Val).

transform(cfg([Rand,closure(V,B,E1)|T],E,[@|T1],D), % 6
cfg([],E2,[B],cfg(T,E,T1,D))) :-

extendEnv(E1,V,Rand,E2).

transform(cfg([H|S],E,[],cfg(S1,E1,C1,D1)), cfg([H|S1],E1,C1,D1)). % 7

Recall the abstract syntax and the associated tags for the lambda calculus.
Each lambda expression is a variable (var), a constant (con), a lambda ab-
straction (lamb), or a combination (comb). The compute predicate used in step
5 is identical to the one in the evaluator in Chapter 5. Notice how well pattern
matching performs tests such as the one in step 6

if head(C) = @ and head(tail(S)) = closure(V,B,E1),
becomes

transform(cfg([Rand,closure(V,B,E1)|T],E,[@|T1],D), …).

The SECD interpreter is driven by a predicate interpret(Config,Result) that
watches for a final state to terminate the machine:

interpret(cfg([Result|S],Env,[],nil), Result).

237

Otherwise it performs one transition step and calls itself with the new con-
figuration:

interpret(Config,Result) :- transform(Config,NewConfig),
interpret(NewConfig,Result).

If the parser produces a structure of the form expr(Exp), the SECD machine
can be invoked using the query:

interpret(cfg([],nil,[Exp],nil), Result), nl, write('Result = '), pp(Result), nl.

where cfg([],nil,[Exp],nil), Result) serves as the initial configuration and the
predicate pp prints the result (see Chapter 5).

Exercises

1. Following the directions above, implement the SECD machine in Prolog
and test it on some of the lambda expressions in the exercises for sec-
tion 8.2.

2. Change the Prolog implementation of the SECD machine so that it fol-
lows the semantics of dynamic scoping instead of static scoping. Illus-
trate the difference between static and dynamic scoping by evaluating
the lambda expression that corresponds to the following let expression:

let a = 7 in let g = λx . (mul a x) in let a = 2 in (g 10)

3. Add a conditional expression (if E1 E2 E3) to the interpreter. Since the
SECD machine follows an applicative order evaluation strategy, “if” can-
not be handled by compute, which expects its arguments to be evaluated
already. A new case can be added to the definition of transform that ma-
nipulates the top few items on the control stack. Test the machine on
the following lambda expressions:

((L x (if (zerop x) 5 (div 100 x))) 0)

((L x (if (zerop x) 2 ((L x (x x)) (L x (x x))))) 0)

4. Extend the lambda calculus to include a “label” expression of the form

<expression> ::= … | (label <variable> <expression>)

whose semantics requires that the expression be bound to the variable
in the environment before the expression is evaluated. This mechanism
allows recursive functions to be defined (the original approach in Lisp).
This definition of the factorial function exemplifies the use of a label
expression:

((label f (L n (if (zerop n) 1 (mul n (f (pred n)))))) 8)

8.3 LABORATORY: IMPLEMENTING THE SECD MACHINE

238 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

5. Compare the efficiency of the lambda calculus evaluator in Chapter 5
with the SECD machine in this chapter. Use combinations of “Twice”
and “Thrice” as test expressions, where

Twice = λf . λx . f (f x) and
Thrice = λf . λx . f (f (f x)).

For example, try Twice (λz . (add z 1))
Thrice (λz . (add z 1))
Twice Thrice (λz . (add z 1))
Thrice Twice (λz . (add z 1))
Twice Twice Thrice (λz . (add z 1))
Twice Thrice Twice (λz . (add z 1)) and so on.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

Proving properties of programs and the constructs of programming languages
provides one of the main justifications of formal descriptions of languages.
Operational semantics specifies programming languages in terms of program
execution on abstract machines. Structural operational semantics, devel-
oped by Gordon Plotkin in 1981, represents computation by means of de-
ductive systems that turn the abstract machine into a system of logical infer-
ences. Since the semantic descriptions are based on deductive logic, proofs
of program properties are derived directly from the definitions of language
constructs.

With structural operational semantics, definitions are given by inference
rules consisting of a conclusion that follows from a set of premises, possibly
under control of some condition. The general form of an inference rule has
the premises listed above a horizontal line, the conclusion below, and the
condition, if present, to the right.

conclusion

premise1 premise2 … premisen condition

If the number of premises is zero, n=0 in the example, the line is omitted, and
we refer to the rule as an axiom. This method of presenting rules evolved
from a form of logic called natural deduction. As an example in natural
deduction, three inference rules express the logical properties of the con-
junction (and) connective:

239

p

p ∧ q

q

p ∧ q

p ∧ q

p q

The principle that allows the introduction of a universal quantifier exhibits a
rule with a condition:

∀ xP(x)

P(a) a does not occur in P(x) or in any
assumption on which P(a) depends.

For more on natural deduction, see the further readings at the end of this
chapter.

Rather than investigate this method of expressing logical deductions, we con-
centrate on the use of inference rules of this form in structural operational
semantics. But before we consider the semantics of Wren, we see how an
inference system can be used to describe the syntax of Wren.

Specifying Syntax

For the present, we ignore the declarations in a Wren program, assuming
that any program whose semantics is to be explained has been verified as
syntactically correct (including the context-sensitive syntax), and that all in-
teger identifiers in the program are included in a set Id and Boolean identifi-
ers in a set Bid. Furthermore, we concern ourselves only with abstract syn-
tax, since any program submitted for semantic analysis comes in the form of
an abstract syntax tree.

The abstract syntax of these Wren programs is formed from the syntactic
sets defined in Figure 8.3. The elements of the sets are identified by the
designated metavariables, possibly with subscripts, attached to each syntac-
tic category.

When describing the abstract syntax of a programming language, we strive
to fit the description to the structure of the semantic formalism that uses it.
The precise notational form of abstract syntax is not intrinsic to a language,
as is the concrete syntax. We simply need to give the patterns of the struc-
tures that capture the essential components of constructs in the language.
For instance, the fundamental property of an assignment is that it consists
of an identifier and an expression of the same type.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

240 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

n ∈ Num = Set of numerals

b ∈ { true, false } = Set of Boolean values

id ∈ Id = Set of integer identifiers

bid ∈ Bid = Set of Boolean identifiers

iop ∈ Iop = { +, –, *, / }

rop ∈ Rop = { <, ≤, =, ≥, >, <> }

bop ∈ Bop = { and, or }

ie ∈ Iexp = Set of integer expressions

be ∈ Bexp = Set of Boolean expressions

c ∈ Cmd = Set of commands

Figure 8.3: Syntactic Categories

Figure 8.4 gives a version of the abstract syntax of Wren specially adapted to
a structural operational semantic description. In particular, the patterns that
abstract syntax trees may take are specified by inference rules and axioms,
some with conditions. The statements that make up the premises and con-
clusions have the form of type assertions; for example,

n : iexp with the condition n∈ Num

asserts that objects taken from Num may serve as integer expressions. In
this context, “n : iexp” states that n is of type iexp, the sort of objects corre-
sponding to the set Iexp defined in Figure 8.3. The types iexp, bexp, and cmd
correspond to the sets Iexp, Bexp, and Cmd, respectively.

The biggest difference between this specification of abstract syntax and that
in Chapter 1 is the way we handle lists of commands. The inference rule that
permits a command to be a sequence of two commands enables the type
“cmd” to include arbitrary finite sequences of commands. Since we ignore
declarations in this presentation, a Wren program may be thought of simply
as a command. Moreover, a combination of symbols c is a command if we can
construct a derivation of the assertion “c : cmd”. In fact, the derivation paral-
lels an abstract syntax tree for the group of symbols. Later we give semantics
to Wren programs by describing the meaning of a command relative to this
specification of abstract syntax.

Assuming that the identifier x is a member of Id because of a declaration that
has already been elaborated, a deduction showing the abstract structure of
the command “x := 5 ; while not(x=0) do x := x-1 ; write x” is displayed in
Figure 8.5. Conditions have been omitted to save space, but each condition
should be obvious to the reader. Compare this deduction in the inference
system with a derivation according to an abstract syntax given by a BNF-
type specification.

241

ie1 rop ie2 : bexp

ie1 : iexp ie2 : iexp
rop∈ Rop

be1 bop be2 : bexp

be1 : bexp be2 : bexp
bop∈ Bop

not(be) : bexp

be : bexp

be : bexp c : cmd

if be then c : cmd

be : bexp c1 : cmd c2 : cmd

if be then c1 else c2 : cmd

skip : cmd

read id : cmd id∈ Id
ie : iexp

write ie : cmd

 c1 : cmd c2 : cmd

c1 ; c2 : cmd

ie : iexp

id := ie : cmd
id∈ Id

ie1 : iexp ie2 : iexp

ie1 iop ie2 : iexp
iop∈ Iop

be : bexp

bid := be : cmd
bid∈ Bid

while be do c : cmd

be : bexp c : cmd

– ie : iexp

ie : iexp

n : iexp n∈ Num

id : iexp id∈ Id

b : bexp b∈ {true,false}

bid : bexp bid∈ Bid

Figure 8.4: Abstract Syntax for Wren

As with most definitions of abstract syntax, this approach allows ambiguity.
For the derivation in Figure 8.5, the command sequence can be associated to
the left instead of to the right. The choice of grouping command sequences is
known as an inessential ambiguity since it has no effect on the semantics
of the language. Essential ambiguities, such as those in expressions (asso-
ciativity of minus) and if commands (dangling else), are handled by the con-
crete syntax that is used to construct abstract syntax trees from the program
text. Since we represent these tree structures with a linear notation, we in-
sert (meta-)parentheses in abstract syntax expressions whose structure is
not obvious.

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

242 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

 x := 5 : cmd while not(x=0) do x := x-1 ; write x : cmd

x := 5 ; while not(x=0) do x := x-1 ; write x : cmd

while not(x=0) do x := x-1 : cmd write x : cmd

not(x=0) : bexp x := x-1 : cmd x : iexp

5 : iexp

x=0 : bexp x-1 : iexp

x : iexp 0 : iexp x : iexp 1 : iexp

Figure 8.5: Derivation in the Abstract Syntax

Inference Systems and Structural Induction

The abstract syntax for Wren presented in Figure 8.4 can be defined just as
well using a BNF specification or even other notational conventions (see
[Astesiano91]). The common thread between these presentations of syntax is
the inductive nature of the definitions. A set of objects, say Iexp, is specified
by describing certain atomic elements—n∈ Iexp for each n∈ Num and id∈ Iexp
for each id∈ Id—and then describing how more complex objects are constructed
from already existing objects,

{ie1,ie2∈ Iexp and iop∈ Iop} implies {(ie1 iop ie2)∈ Iexp}.

The fundamental structure remains the same whether the set is defined by
inference rules or by BNF rules:

iexp ::= n | id | ie1 iop ie2 and

iop ::= + | – | * | / where n∈ Num, id∈ Id, and ie1,ie2∈ Iexp.

Structured objects described using inductive definitions support a proof
method, a version of mathematical induction, known as structural induc-
tion. This induction technique depends on the property that each object in
some collection is either an atomic element with no structure or is created
from other objects using well-defined constructor operations.

Principle of Structural Induction: To prove that a property holds for all
phrases in some syntactic category, we need to confirm two conditions:

1. Basis: The property must be established for each atomic
(nondecomposable) syntactic element.

2. Induction step: The property must be proved for any composite element
given that it holds for each of its immediate subphrases (the induction
hypothesis). ❚

243

For objects defined by a system of inference rules, the axioms create atomic
items that are handled by the basis of the induction, and the rules with
premises correspond to the induction step. The induction hypothesis as-
sumes that the property being proved holds for all the objects occurring in
premises, and we must show that the property holds for the object in the
conclusion of the rule.

The syntactic categories defined for the abstract syntax of Wren are so gen-
eral that few interesting properties can be proven about them. For a simple
example, consider the set of all expressions, Exp = Iexp ∪ Bexp. The elemen-
tary components of expressions can be divided into two classes:

1. The operands, Rand = Num ∪ {true,false} ∪ Id ∪ Bid.

2. The operators, Rator = Iop ∪ Rop ∪ Bop ∪ {not}.

We can prove a lemma about the number of operands and operators in any
Wren expression using structural induction.

Lemma: For any expression e∈ (Iexp ∪ Bexp) containing no unary operations
(without not and unary minus), the number of operands in e is greater than
the number of operators in e. Write #rand(e) > #rator(e) to express this rela-
tion.

Proof: These expressions are defined by the first seven rules in Figure 8.4.

Basis: Atomic expressions are formed by the four axioms corresponding to
numerals, Boolean constants, integer identifiers, and Boolean identifiers. In
each case the expression defined has one operand and zero operators, satis-
fying the property of the lemma.

Induction Step: We consider three cases corresponding to the three infer-
ence rules that create structured expressions using a binary operator.

Case 1: e = ie1 iop ie2 for some iop∈ Iop where ie1,ie2 : iexp. By the induction
hypothesis, #rator(ie1) < #rand(ie1) and #rator(ie2) < #rand(ie2). It follows that
#rator(ie2)+1 ≤ #rand(ie2). But #rator(ie1 iop ie2) = #rator(ie1) + #rator(ie2) + 1
and #rand(ie1 iop ie2) = #rand(ie1) + #rand(ie2). Therefore, #rator(ie1 iop ie2)
= #rator(ie1) + #rator(ie2) + 1 < #rand(ie1) + #rand(ie2) = #rand(ie1 iop ie2).

Case 2: e = ie1 rop ie2 for some rop ∈ Rop where ie1,ie2 : iexp.
This case is similar to case 1.

Case 3: e = be1 bop be2 for some bop∈ Bop where be1,be2 : bexp.
This case is also similar to case 1.

Therefore, by the principle of structural induction, the property
#rator(e) < #rand(e) holds for all expressions e∈ (Iexp ∪ Bexp) containing no
unary operations. ❚

8.4 STRUCTURAL OPERATIONAL SEMANTICS: INTRODUCTION

244 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Exercises

1. Construct derivations of these Wren constructs using the abstract syn-
tax inference system in Figure 8.4. Refer to the concrete syntax to re-
solve ambiguities. Meta-parentheses have been added where the con-
crete syntax cannot be inferred. Assume that all identifiers have been
properly declared.

a) a*b + c*d

b) -n-k-5 = n/2*k

c) n>0 and not(switch)

d) if a>=b then while (a>=c do write a ; a := a-1) else skip

2. Define (part of) the concrete syntax of Wren using inference rules and
axioms in a manner similar to the definition of the abstract syntax of
Wren in Figure 8.4.

3. Use the definition of concrete syntax from exercise 2 and structural in-
duction to prove the following properties:

a) Every expression in Wren has the same number of left and right pa-
rentheses.

b) Each command in Wren has at least as many occurrences of the re-
served word then as of the reserved word else.

4. The following two inference rules define a language comprising lists of
integers using “::” as an infix operator denoting the operation of prefix-
ing an element to a list (cons in Lisp):

m∈ Num
m :: tail : intList

tail : intList[] : intList

These are similar to the lists in ML where “::” is a right associative opera-
tor and lists can be abbreviated as follows: [1,2,3,4] = 1 :: 2 :: 3 :: 4 :: [].

Functions on these lists of integers can be defined inductively by de-
scribing their behavior on the two kinds of lists given by the definitions.

length([]) = 0
length(m::tail) = 1+length(tail) where m∈ Num and tail:intList

concat([],L) = L where L:intList
concat(m::tail,L) = m :: concat(tail,L) where m∈ Num and tail,L:intList

reverse([]) = []
reverse(m::tail) = concat(reverse(tail), m::[])

where m∈ Num and tail:intList

245

Use structural induction to prove the following properties concerning
the functions just defined on integer lists where the variables L, L1, L2,
and L3 range over intList. Some properties depend on earlier ones.

a) concat(L,[]) = L

b) length(concat(L1,L2)) = length(L1)+length(L2)

c) concat(L1,concat(L2,L3)) = concat(concat(L1,L2),L3)

d) length(reverse(L)) = length(L)

e) reverse(concat(L1,L2)) = concat(reverse(L2),reverse(L1))

f) reverse(reverse(L)) = L

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

We now develop a description of the semantics of Wren using an inference
system according to structural operational semantics. The task can be sepa-
rated into two parts, the first specifying the semantics of expressions in Wren
and the second specifying the semantics of commands.

Semantics of Expressions in Wren

Structural operational semantics provides a deductive system, based on the
abstract syntax of a programming language, that allows a syntactic transfor-
mation of language elements to normal form values that serve as their mean-
ing. Such a definition includes a notion of configurations representing the
progress of computations and an inference system that defines transitions
between the configurations. We concentrate first on the meaning (evaluation)
of expressions in Wren.

Since expressions in Wren permit identifiers, their meaning depends on the
values of identifiers recorded in a structure, called the store, that models the
memory of a computer. Any expression (even any program) contains only a
finite set of identifiers, which means that the store structure can be viewed
as a finite set of pairs binding values to identifiers, sometimes referred to as
a finite function. For any store sto, let dom(sto) denote the (finite) set of
identifiers with bindings in sto.

Thinking of a store as a set of pairs, we informally use a notation of the form
{x|→3, y|→5, p|→true} to represent a store with three bindings. For this store,
dom(sto) = {x,y,p}. Let Store with sto as its metavariable stand for the cat-
egory of stores. The actual implementation of stores is immaterial to the

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

246 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

specification of a programming language, so we rely on three abstract opera-
tions to describe the manipulation of stores:

1. emptySto represents a store with no bindings; that is, all identifiers are
undefined.

2. updateSto(sto,id,n) and updateSto(sto,bid,b) represent the store that agrees
with sto but contains one new binding, either id|→n or bid|→b.

3. applySto(sto,id) and applySto(sto,bid) return the value associated with id
or bid; if no binding exists, the operation fails blocking the deduction.

Observe that applySto(sto,id) is defined if and only if id∈ dom(sto), and the
corresponding property holds for Boolean identifiers. Expressions in Wren
have no way to modify bindings in a store, so the operation updateSto is not
used in defining their semantics in Wren.

In a manner similar to the store actions, the binary operations allowed in
Wren expressions are abstracted into an all-purpose function
compute(op,arg1,arg2) that performs the actual computations. For example,
compute(+,3,5) returns the numeral 8, compute(<,3,5) returns true, and
compute(and,true,false) returns false. Since compute(/,n,0) is not defined,
the evaluation of any expression in which this computation appears must
fail. We say that such an evaluation is stuck, since no rule can be success-
fully applied to an expression of the form “n/0”. A stuck computation cannot
proceed. This concept is different from a nonterminating computation, which
proceeds forever.

For evaluating expressions, a configuration consists of a pair containing an
expression to examine and a store that provides a context for the computa-
tion. A particular evaluation starts with a configuration, and under control of
an inference system, allows a reduction of the configuration to a final or
terminating configuration that acts as a normal form value for the expres-
sion. In Wren, final configurations for expressions have a first value that is a
numeral or a Boolean constant: <n,sto> or <b,sto>.

The inference system for Wren expressions, shown in Figure 8.6, provides
rules for each syntactic form that is not in normal form. The symbol ➞ serves
to represent a transition from one configuration to another. Note that some
rules—namely, axioms (7), (12), and (13)—have conditions.

247

<ie1,sto> ➞ <ie1',sto>

<ie1 iop ie2,sto> ➞ <ie1' iop ie2,sto>
(1)

<ie1,sto> ➞ <ie1',sto>

<ie1 rop ie2,sto> ➞ <ie1' rop ie2,sto>
(2)

<be1,sto> ➞ <be1',sto>

<be1 bop be2,sto> ➞ <be1' bop be2,sto>
(3)

<ie2,sto> ➞ <ie2',sto>

<n iop ie2,sto> ➞ <n iop ie2',sto>
(4)

<ie2,sto> ➞ <ie2',sto>

<n rop ie2,sto> ➞ <n rop ie2',sto>
(5)

<be2,sto> ➞ <be2',sto>

<b bop be2,sto> ➞ <b bop be2',sto>
(6)

<n1 iop n2, sto> ➞ <compute(iop,n1,n2), sto> (iop ≠ /) or (n2 ≠ 0)(7)

<n1 rop n2, sto> ➞ <compute(rop,n1,n2), sto> (8)

<b1 bop b2, sto> ➞ <compute(bop,b1,b2), sto> (9)

<bid,sto> ➞ <applySto(sto,bid),sto> bid∈ dom(sto)(13)

(10)
<be,sto> ➞ <be',sto>

<not(be),sto> ➞ <not(be'),sto>

(11) <not(true),sto> ➞ <false,sto> <not(false),sto> ➞ <true,sto>

<id,sto> ➞ <applySto(sto,id),sto> id∈ dom(sto)(12)

Figure 8.6: Inference System for Expressions

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

248 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

The inference rules enforce a definite strategy for evaluating expressions.
Rules (1) through (3) require that the left argument in a binary expression be
simplified first. Only when the left argument has been reduced to a constant
(n or b) can rules (4) through (6) proceed by evaluating the right argument.
Finally, when both arguments are constants, rules (7) through (9) permit the
binary operation to be calculated using compute. The only other rules handle
the unary operation not and the atomic expressions that are identifiers. Atomic
expressions that are numerals or Boolean constants have already been re-
duced to normal form. Unary minus has been left as an exercise at the end of
this section.

We can view a computation describing the meaning of an expression as a
sequence of configurations where each transition is justified using rules (1)
through (13):

<e1,sto> ➞ <e2,sto> ➞ <e3,sto> ➞ … ➞ <en-1,sto> ➞ <en,sto>.

Then by adding a rule (14), which makes the ➞ relation transitive, we can
deduce <e1,sto> ➞ <en,sto> by applying the new rule n-1 times.

<e1,sto> ➞ <e2,sto>

<e1,sto> ➞ <e3,sto>

e1,e2,e3∈ Iexp
or

e1,e2,e3∈ Bexp

<e2,sto> ➞ <e3,sto>
(14)

In addition to having ➞ be transitive, it makes sense to assume that ➞ is also
reflexive, so that <e,sto> ➞ <e,sto> for any expression e and store sto. Then
when we write <e1,sto> ➞ <e2,sto>, we mean that one configuration <e1,sto>
can be reduced to another configuration <e2,sto>, possibly the same one, by
zero or more applications of inference rules from Figure 8.6.

The rules in these inference systems are really rule schemes, representing
classes of actual rules in which specific identifiers, numerals, Boolean con-
stants, and specific operators replace the metavariables in the inference rules.
For example, “< 5 ≥ 12,emptySto> ➞ <false,emptySto>” is an instance of rule
(8) since compute(≥,5,12) = false.

Example

Consider an evaluation of the expression “x+y+6” with sto = {x|→17, y|→25}
given as the store. The sequence of computations depends on the structure
of the abstract syntax tree that “x+y+6” represents. We distinguish between
the two possibilities by inserting parentheses as structuring devices. We carry
out the computation for “x+(y+6)” and leave the alternative grouping as an
exercise. Observe that in Wren an abstract syntax tree with this form must
have come from a text string that originally had parentheses.

249

We first display the computation sequence for “x+(y+6)” as a linear deriva-
tion:

a) <y,sto> ➞ <25,sto> since applySto(sto,y)=25 (12)

b) <y+6,sto> ➞ <25+6,sto> (1) and a

c) <25+6,sto> ➞ <31,sto> since compute(+,25,6)=31 (7)

d) <y+6,sto> ➞ <31,sto> (14), b, and c

e) <x,sto> ➞ <17,sto> since applySto(sto,x)=17 (12)

f) <x+(y+6),sto> ➞ <17+(y+6),sto> (1) and e

g) <17+(y+6),sto> ➞ <17+31,sto> (4) and d

h) <x+(y+6),sto> ➞ <17+31,sto> (14), f, and g

i) <17+31,sto> ➞ <48,sto> since compute(+,17,31)=48 (7)

j) <x+(y+6),sto> ➞ <48,sto> (14), h, and i

The last configuration is terminal since <48,sto> is in normal form. Note the
use of rule (14) that makes ➞ a transitive relation. Using a proof by math-
ematical induction, we can establish a derived rule that allows any finite
sequence of transitions as premises for the rule:

<e1,sto> ➞ <e2,sto>

<e1,sto> ➞ <en,sto>

<e2,sto> ➞ <e3,sto> <en-1,sto> ➞ <en,sto>…

provided that n≥2 and every ei comes from Iexp or every ei comes from Bexp.

Figure 8.7 depicts the derivation tree corresponding to the inferences that
evaluate “x+(y+6)”. To save space, the store argument is shortened to “s”. The
last step of the deduction uses the generalization of rule (14) seen immedi-
ately above.

<17+(y+6),s> ➞ <17+31,s>

<x+(y+6),s> ➞ <48,s>

<17+31,s> ➞ <48,s>

<y+6,s> ➞ <31,s>

<y+6,s> ➞ <25+6,s> <25+6,s> ➞ <31,s>

<y,s> ➞ <25,s>

<x,s> ➞ <17,s>

<x+(y+6),s> ➞ <17+(y+6),s>

Figure 8.7: A Derivation Tree

Notice from the previous example that the step-by-step computation seman-
tics prescribes a left-to-right evaluation strategy for expressions. For an ex-

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

250 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

pression such as “(2*x)+(3*y)”, with parentheses to show the structure of the
abstract syntax tree, the subexpression “2*x” is evaluated before the
subexpression “3*y”. Some language designers complain that such ordering
amounts to over specification of the semantics of expressions. However, slight
changes in the inference rules can make expression evaluation
nondeterministic in terms of this order. The problem is left to the reader as
an exercise.

Outcomes

We say the computation has terminated or halted if no rule applies to the
final configuration <en,sto>. This happens if the configuration is in normal
form or if no rule can be applied because of unsatisfied conditions. Since we
solely consider syntactically correct expressions, the only conditions whose
failure may cause the computation to become stuck result from the dynamic
errors of Wren. These conditions are as follows:

1. (iop≠/) or (n≠0) for rule (7)

2. id∈ dom(sto) for rule (12)

3. bid∈ dom(sto) for rule (13)

Taking the conditions into account, we can establish a completeness result
for the inference system that defines the semantics of Wren expressions.

Definition: For any expression e, let var(e) be the set of variable identifiers
that occur in e. ❚

Completeness Theorem:

1. For any ie∈ (Iexp – Num) and sto∈ Store with var(ie)⊆ dom(sto) and no oc-
currence of the division operator in ie, there is a numeral n∈ Num such
that <ie,sto> ➞ <n,sto>.

2. For any be∈ (Bexp – {true,false}) and sto∈ Store with var(be)⊆ dom(sto) and
no occurrence of the division operator in be, there is a Boolean constant
b∈ {true,false} such that <be,sto> ➞ <b,sto>.

Proof: The proof is by structural induction following the abstract syntax of
expressions in Wren.

1. Let ie∈(Iexp – Num) and sto∈ Store with var(ie)⊆ dom(sto), and suppose ie
has no occurrence of the division operator. According to the definition of
abstract syntax presented in Figure 8.4, ie must be of the form id∈ Id or
(ie1 iop ie2) where iop∈ Iop– {/} and ie1,ie2 : iexp also have no occurrence
of /.

Case 1: ie = id∈ Id. Then id∈ dom(sto) and <id,sto> ➞ <n,sto> where n =
applySto(sto,id) using rule (12).

251

Case 2: ie = ie1 iop ie2 where iop ∈ Iop – {/} and ie1,ie2 : iexp,
and for i=1,2, var(iei)⊆ dom(sto) and iei contains no occurrence of /.

Subcase a: ie1 = n1∈ Num and ie2 = n2∈ Num. Then <ie,sto> =
<n1 iop n2,sto> ➞ <n,sto> where n = compute(iop,n1,n2) by rule (7), whose
condition is satisfied since iop≠/.

Subcase b: ie1 = n1∈ Num and ie2∈ (Iexp – Num). By the induction hy-
pothesis, <ie2,sto> ➞ <n2,sto> for some n2∈ Num. We then use rule (4) to
get <ie,sto> = <n1 iop ie2,sto> ➞ <n1 iop n2,sto>, to which we can apply
subcase a.

Subcase c: ie1∈ (Iexp – Num) and ie2∈ Iexp. By the induction hypothesis,
<ie1,sto> ➞ <n1,sto> for some n1∈ Num. We then use rule (1) to get <ie,sto>
= <ie1 iop ie2,sto> ➞ <n1 iop ie2,sto>, to which we can apply subcase a or
subcase b.

Therefore, the conditions for structural induction on integer expressions
are satisfied and the theorem holds for all ie∈ (Iexp–Num).

2. An exercise. ❚

A companion theorem, called the consistency theorem, asserts that every
computation has a unique result.

Consistency Theorem:

1. For any ie∈ (Iexp – Num) and sto∈ Store, if <ie,sto> ➞ <n1,sto> and <ie,sto>
➞ <n2,sto> with n1,n2∈ Num, it follows that n1 = n2.

2. For any be∈ (Bexp – {true,false}) and sto∈ Store, if <be,sto> ➞ <b1,sto>
and <be,sto> ➞ <b2,sto> with b1,b2∈ {true,false}, it follows that b1 = b2.

Proof: Use structural induction again.

1. Let ie∈ (Iexp – Num) and sto∈ Store with <ie,sto> ➞ <n1,sto> and <ie,sto>
➞ <n2,sto> for n1,n2∈ Num.

Case 1: ie = id∈ Id. Then both computations must use rule (12), and n1
= applySto(sto,id) = n2.

Case 2: ie = ie1 iop ie2. The last step in the computations <ie1 iop ie2,sto>
➞ <n1,sto> and <ie1 iop ie2,sto> ➞ <n2,sto> must be obtained by apply-
ing rule (7) to expressions of the form k1 iop k2 and m1 iop m2
where k1,k2,m1,m2 ∈ Num,

<ie1 ,sto> ➞ <k1,sto>, <ie2,sto> ➞ <k2,sto>,
<ie1,sto> ➞ <m1,sto>, <ie2,sto> ➞ <m2,sto>,
compute(iop,k1,k2) = n1, and compute(iop,m1,m2) = n2.

Then by the induction hypothesis, k1 = m1 and k2 = m2.
Therefore n1 = compute(iop,k1,k2) = compute(iop,m1,m2) = n2.

8.5 STRUCTURAL OPERATIONAL SEMANTICS: EXPRESSIONS

252 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Now the result follows by structural induction.

2. An exercise. ❚

Exercises

1. Evaluate the Wren expression “(x+y)+6” using the store, sto = {x|→17,
y|→25}. Draw a derivation tree that shows the applications of the infer-
ence rules.

2. Evaluate the following Wren expressions using the structural operational
specification in Figure 8.6 and the store sto = {a|→6, b|→9, p|→true,
q|→false}.
a) (a<>0) and not(p and q)
b) a – (b – (a –1))
c) (a > 10) or (c=0)
d) b / (a-6)

3. Prove the derived rule for the semantics of Wren expressions:

<e1,sto> ➞ <e2,sto> <e2,sto> ➞ <e3,sto> … <en-1,sto> ➞ <en,sto>

<e1,sto> ➞ <en,sto>

with the condition that n≥2 and every ei comes from Iexp or every ei
comes from Bexp.

4. Provide additional inference rules in Figure 8.6 so that the system gives
meaning to Wren expressions using the unary minus operation. Hint:
Use compute for the arithmetic.

5. Modify the inference system for Wren expressions so that binary expres-
sions can have either the left or the right argument evaluated first.

6. Complete the proof of the completeness theorem for Boolean expres-
sions in Wren.

7. Complete the proof of the consistency theorem for Boolean expressions
in Wren.

8. Define rules that specify the meaning of Boolean expressions of the form
“b1 and b2” and “b1 or b2” directly in the manner of rule (11) for not.
Then rewrite the specification of Wren expressions so that and then and
or else are interpreted as conditional (short-circuit) operators. A condi-
tional and—for example, “b1 and then b2”—is equivalent to “if b1 then
b2 else false”.

253

9. Extend Wren to include conditional integer expressions with the ab-
stract syntax

be : bexp ie1 : iexp ie2 : iexp

if be then ie1 else ie2 : iexp

and add inference rule(s) to give them meaning.

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

The structural operational semantics of a command in Wren describes the
steps of a computation as the command modifies the state of a machine. We
now consider language features—assignment and input—that can change
the values bound to identifiers in the store. In addition, the read and write
commands affect the input and output lists associated with the execution of
a program. A triple of values represents the state of our abstract machine:
the current input list, the current output list, and the current store. Input
and output sequences are finite lists of numerals. We use structures of the
form st(in,out,sto) to describe the state of a machine at a particular instant,
where “in” and “out” are finite lists of numerals, represented using the nota-
tion [3,5,8].

A configuration on which the transition system operates contains a com-
mand to be executed and a state. Given a command c0 and an initial state
st(in0,out0,sto0), a computation proceeds following a set of inference rules.

<c0,st(in0,out0,sto0)> ➞ <c1,st(in1,out1,sto1)> ➞ <c2,st(in2,out2,sto2)> ➞ ….

The inference rules for the structural operational semantics of commands in
Wren are listed in Figure 8.8. Observe that most commands need not delve
into the internal structure of states; in fact, only assignment, read, and write
explicitly modify components of the state. The input and output lists are
manipulated by auxiliary functions, head, tail, and affix. The write com-
mand uses affix to append a numeral onto the right end of the output list.
For example, affix([2,3,5],8) = [2,3,5,8].

Again, the inference rules promote a well-defined strategy for the execution
of commands. When the action of a command depends on the value of some
expression that serves as a component in the command, we use a rule whose
premise describes one step in the reduction of the expression and whose
conclusion assimilates that change into the command. See rules (1), (3), and
(11) for illustrations of this strategy. When the expression has been reduced
to its normal form (a numeral or a Boolean constant), the command carries
out its action. See rules (2), (4), (5), and (12) for examples.

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

254 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<if be then c1 else c2,st(in,out,sto)> ➞ <if be' then c1 else c2,st(in,out,sto)>

<while be do c,state> ➞ <if be then (c ; while be do c) else skip,state>

<read id,st(in,out,sto)> ➞
<skip,st(tail(in),out,updateSto(sto,id,head(in)))>

<ie,sto> ➞ <ie',sto>

<write ie,st(in,out,sto)> ➞ <write ie',st(in,out,sto)>
(11)

(12) <write n,st(in,out,sto)> ➞ <skip,st(in,affix(out,n),sto)

<id := n,st(in,out,sto)> ➞ <skip,st(in,out,updateSto(sto,id,n))>

<bid := b,st(in,out,sto)> ➞ <skip,st(in,out,updateSto(sto,bid,b))>

(2a)

<be,sto> ➞ <be',sto>(3)

(1a)
<ie,sto> ➞ <ie',sto>

<id := ie,st(in,out,sto)> ➞ <id := ie',st(in,out,sto)>

(4) <if true then c1 else c2,state> ➞ <c1,state>

(5) <if false then c1 else c2,state> ➞ <c2,state>

(7)

in ≠ [](10)

(8)
<c1,state> ➞ <c1',state'>

<c1 ; c2,state> ➞ <c1' ; c2,state'>

(6) <if be then c,state> ➞ <if be then c else skip,state>

(9) <skip ; c,state> ➞ <c,state>

<be,sto> ➞ <be',sto>

<bid:=be,st(in,out,sto)> ➞ <bid:=be',st(in,out,sto)>
(1b)

(2b)

Figure 8.8: Semantics for Commands

255

Note that assignment and the read and write commands are elementary
actions, so they reduce to an “empty command” represented by skip. Two
commands, if-then and while, are handled by translation into forms that
are treated elsewhere (see rules (6) and (7)). Finally, command sequencing
(semicolon) needs two rules—one to bring about the reduction of the first
command to skip, and the second to discard the first command when it has
been simplified to skip. Observe that now we have the possibility that a com-
putation may continue forever because of the while command in Wren. Rule
(7) defines “while be do c” in terms of itself.

For completeness, we again included an inference rule that makes the tran-
sition relation ➞ transitive:

<c1,state1> ➞ <c2,state2>

<c1,state1> ➞ <c3,state3>

<c2,state2> ➞ <c3,state3>
(13)

and furthermore assume that ➞ is a reflexive relation.

Given a Wren program whose declarations have been elaborated, verifying
that it satisfies the context conditions of its syntax, and whose body is the
command c, and given a list [n1, n2, n3, …, nk] of numerals as input, the
transition rules defined by the inference system in Figure 8.8 are applied to
the initial configuration, <c, st([n1,n2,n3,…,nk],[],emptySto)>, to produce the
meaning of the Wren program.

A configuration with the pattern <skip,state> serves as a normal form for
computations. No rule applies to configurations in this form, and their state
embodies the result of the computation—namely, the output list and the
final store—when all of the commands have been executed. We have three
possible outcomes of a computation that starts with a command and an
initial state:

1. After a finite number of transitions, we reach a configuration <skip,state>
in normal form.

2. After a finite number of transitions, we reach a configuration that is not
in normal form but for which no further transition is defined. This can
happen when an expression evaluation becomes stuck because of an
undefined identifier or division by zero, or upon the failure of the condi-
tion on rule (10), which specifies that the input list is nonempty when a
read command is to be executed next.

3. A computation sequence continues without end when describing the se-
mantics of a while command that never terminates. As a simple example,
consider the transitions:

<while true do skip,state>

➞ <if true then (skip ; while true do skip) else skip,state> (7)

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

256 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

➞ <skip ; while true do skip,state> (4)

➞ <while true do skip,state> (9)

➞ <if true then (skip ; while true do skip) else skip,state> (7)

➞ <skip ; while true do skip,state> (4)

➞ <while true do skip,state> (9)

➞ ….

We use the notation <c,state> ➞ ∞ to denote the property that a compu-
tation sequence starting with the configuration <c,state> fails to termi-
nate. It should be obvious from the example above that for any state st,
<while true do skip,st> ➞ ∞ .

Using rules (8) and (9) we can derive a new inference rule (9') that will make
deductions a bit more concise.

<c1,state> ➞ <skip,state'>

<c1 ; c2,state> ➞ <c2,state'>
(9')

Verifying this new rule provides an example of a derivation following the in-
ference system.

<skip ; c2,state'> ➞ <c2,state'> (9)
(8)

<c1,state> ➞ <skip,state'>

<c1 ; c2,state> ➞ <skip ; c2,state'>

<c1 ; c2,state> ➞ <c2,state'> (13)

A Sample Computation

Since the steps in a computation following structural operational semantics
are very small, derivation sequences for even simple programs can get quite
lengthy. We illustrate the semantics with an example that may well be a test
of endurance. The Wren program under consideration consists of the com-
mand sequence

mx := 0; read z; while z≥0 do ((if z>mx then mx:=z);read z); write mx

where we assume that all identifiers have been appropriately declared. Meta-
parentheses clarify the grouping of this representation of the abstract syn-
tax. The program is given the input list: [5,8,3,-1].

To shorten the description of the derivation, a number of abbreviations will
be employed:

c1 = (mx:=0)

c2 = read z

257

c3 = while z≥0 do ((if z>mx then mx:=z);read z)

c4 = write mx

cw = (if z>mx then mx:=z);read z

{ } = emptySto

We start the transition system with the initial state, st([5,8,3,-1],[],{ }).

Throughout the derivation, assume that “if z>mx then mx:=z” is an abbre-
viation of “if z>mx then mx:=z else skip” to avoid the extra steps using rule
(6). For each step in the derivation, the number of the rule being applied will
appear at the far right. The details of expression evaluation are suppressed,
so we just use “(expr)” to signify a derivation for an expression even though it
may consist of several steps. The rule (13) that makes ➞ transitive is gener-
ally ignored, but its result is implied. Here then is the computation according
to structural operational semantics.

<mx:=0,st([5,8,3,-1],[],{ })> ➞ <skip,st([5,8,3,-1],[],{mx|→0})> (2)

<mx:=0;c2;c3;c4,st([5,8,3,-1],[],{ })> ➞

<read z;c3;c4,st([5,8,3,-1],[],{mx|→0})> (9')

<read z,st([5,8,3,-1],[],{mx|→0})> ➞ <skip,st([8,3,-1],[],{mx|→0,z|→5})> (10)

<read z;c3;c4,st([5,8,3,-1],[],{mx|→0})> ➞ (9')

<(while z≥0 do cw);c4,st([8,3,-1],[],{mx|→0,z|→5})>

<while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (7)

<if z≥0 then(cw;c3) else skip,st([8,3,-1],[],{mx|→0,z|→5})>

<z≥0,{mx|→0,z|→5}> ➞ <true,{mx|→0,z|→5}> (expr)

<if z≥0 then(cw;c3) else skip,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (3)

<if true then(cw; c3) else skip,st([8,3,-1],[],{mx|→0,z|→5})>

<if true then(cw;c3) else skip,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (4)

<cw;c3,st([8,3,-1],[],{mx|→0,z|→5})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5}>

<z>mx,{mx|→0,z|→5}> ➞ <true,{mx|→0,z|→5}> (expr)

<if z>mx then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}> ➞ (3)

<if true then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}>

<if true then mx:=z,st([8,3,-1],[],{mx|→0,z|→5}> ➞ (4)

<mx:=z,st([8,3,-1],[],{mx|→0,z|→5}>

<z,{mx|→0,z|→5}> ➞ <5,{mx|→0,z|→5}> (expr)

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

258 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<mx:=z,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (1)

<mx:=5,st([8,3,-1],[],{mx|→0,z|→5})>

<mx:=5,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (2)

<skip,st([8,3,-1],[],{mx|→5,z|→5})>

<if z>mx then mx:=z,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (13)

<skip,st([8,3,-1],[],{mx|→5,z|→5})>

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([8,3,-1],[],{mx|→0,z|→5})> ➞

<read z;while z≥0 do cw,st([8,3,-1],[],{mx|→5,z|→5})> (9')

<read z,st([8,3,-1],[],{mx|→5,z|→5})> ➞ <skip,st([3,-1],[],{mx|→5,z|→8})> (10)

<read z;while z≥0 do cw,st([8,3,-1],[],{mx|→5,z|→5})> ➞ (9')

<while z≥0 do cw,st([3,-1],[],{mx|→5,|→8})>

<while z≥0 do cw,st([3,-1],[],{mx|→5,z|→8})> ➞ (7)

<if z≥0 then(cw;c3) else skip,st([3,-1],[],{mx|→5,|→8})>

<z≥0,{mx|→5,z|→8}> ➞ <true,{m|→5,|→8}> (expr)

<if z≥0 then(cw;c3) else skip,st([3,-1],[],{mx|→5,|→8})> ➞ (3)

<if true then(cw;c3) else skip,st([3,-1],[],{mx|→5,z|→8})>

<if true then(cw;c3) else skip,st([3,-1],[],{mx|→5,z|→8})> ➞ (4)

<cw;c3,st([3,-1],[],{mx|→5,|→8})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([3,-1],[],{mx|→5,|→8}>

<z>mx,{mx|→5,z|→8}> ➞ <true,{m|→5,z|→8})> (expr)

<if z>mx then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<if true then mx:=z,st([3,-1],[],{mx|→5,z|→8})> (3)

<if true then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<mx:=z,st([3,-1],[],{mx|→5,z|→8})> (4)

<z,{mx|→5,z|→8}> ➞ <8,{mx|→5,z|→8}> (expr)

<mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞

<mx:=8,st([3,-1],[],{mx|→5,z|→8})> (1)

<mx:=8,st([3,-1],[],{mx|→5,|→8}> ➞ (2)

<skip,st([3,-1],[],{mx|→8,z|→8}>

<if z>mx then mx:=z,st([3,-1],[],{mx|→5,z|→8})> ➞ (13)

<skip,st([3,-1],[],{mx|→8,z|→8})>

259

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([3,-1],[],{mx|→5,z|→8})> ➞

<read z;while z≥0 do cw,st([3,-1],[],{mx|→8,|→8})> (9')

<read z,st([3,-1],[],{mx|→8,z|→8})> ➞ <skip,st([-1],[],{mx|→8,z|→3})> (10)

<read z;while z≥0 do cw,st([3,-1],[],{mx|→8,z|→8})> ➞ (9')

<while z≥0 do cw,st([-1],[],{mx|→8,z|→3})>

<while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> ➞ (7)

<if z≥0 then(cw;c3) else skip,st([-1],[],{mx|→8,z|→3})>

<z≥0,{mx|→8,z|→3}> ➞ <true,{mx|→8,z|→3}> (expr)

<if z≥0 then(cw;c3) else skip,st([-1],[],{mx|→8,z|→3})> ➞ (3)

<if true then(cw;c3) else skip,st([-1],[],{mx|→8,z|→3})>

<if true then(cw;c3) else skip,st([-1],[],{mx|→8,z|→3})> ➞ (4)

<cw;c3,st([-1],[],{mx|→8,z|→3})> =

 <(if z>mx then mx:=z);read z;while z≥0 do cw,st([-1],[],{m|→8,z|→3}>

<z>mx,{mx|→8,z|→3}> ➞ <false,{mx|→8,z|→3})> (expr)

<if z>mx then mx:=z,st([-1],[],{mx|→8,z|→3})> ➞ (3)

<if false then mx:=z,st([-1],[],{mx|→8,z|→3})>

<if false then mx:=z,st([-1],[],{mx|→8,z|→3})> ➞ (5)

<skip,st([-1],[],{mx|→8,z|→3})>

<(if z>mx then mx:=z);read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> (9')

<read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})>

<read z,st([-1],[],{mx|→8,z|→3})> ➞ <skip,st([],[],{mx|→8,z|→-1})> (10)

<read z;while z≥0 do cw,st([-1],[],{mx|→8,z|→3})> ➞ (9')

<while z≥0 do cw,st([],[],{mx|→8,z|→-1})>

<while z≥0 do cw,st([],[],{m|→8,z|→-1})> ➞ (7)

<if z≥0 then(cw;c3) else skip,st([],[],{mx|→8,z|→-1})>

<z≥0,{mx|→8,z|→-1}> ➞ <false,{mx|→8,z|→-1}> (expr)

<if z≥0 then(cw;c3) else skip,st([],[],{mx|→8,z|→-1})> ➞ (3)

<if false then(cw;c3) else skip,st([],[],{mx|→8,z|→-1})>

<if false then(cw;c3) else skip,st([],[],{mx|→8,z|→-1})> ➞ (5)

<skip,st([],[],{mx|→8,z|→-1})>

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

260 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

<while z≥0 do cw,st([],[],{mx|→8,z|→-1})> ➞ (13)

<skip,st([],[],{mx|→8,z|→-1})>

<while z≥0 do cw ;write mx,st([8,3,-1],[],{mx|→0,z|→5})> ➞ (9')

<write mx,st([],[],{mx|→8,z|→-1})>

<mx,{mx|→8,z|→-1})> ➞ <8,{mx|→8,z|→-1}> (expr)

<write mx,st([],[],{mx|→8,z|→-1})> ➞ (11)

<write 8,st([],[],{mx|→8,z|→-1})>

<write 8,st([],[],{mx|→8,z|→-1})> ➞ (12)

<skip ,st([],[8],{mx|→8,z|→-1})>

<c1;c2;c3;c4,st([5,8,3,-1],[],{ })> ➞

<skip ,st([],[8],{mx|→8,z|→-1})> (13)

This linear deduction of the final state represents a derivation tree with axi-
oms at its leaf nodes and the configuration <skip, st([],[8],{mx|→8,z|→-1})> at
its root. Clearly, there is no reasonable way we can show the tree for this
derivation.

Semantic Equivalence

One justification for formal definitions of programming languages is to pro-
vide a method for determining when two commands have the same effect. In
the framework of structural operational semantics, we can define semantic
equivalence in terms of the computation sequences produced by the two
commands.

Definition: Commands c1 and c2 are semantically equivalent, written c1 ≡
c2, if both of the following two properties hold:

1. For any two states s and sf,

<c1,s> ➞ <skip,sf> if and only if <c2,s> ➞ <skip,sf>, and

2. For any state s,

<c1,s> ➞ ∞ if and only if <c2,s> ➞ ∞. ❚

It follows that for semantically equivalent commands, if one gets stuck in a
nonfinal configuration, the other must also.

Example: For any c1,c2 : cmd and be : bexp,

if be then c1 else c2 ≡ if not(be) then c2 else c1.

261

Proof: Let be : bexp and let c1 and c2 be any two commands. Suppose that
s = st(in,out,sto) is an arbitrary state.

Case 1: <be,sto> ➞ <true,sto> by some computation sequence.
Then <not(be),sto> ➞ <not(true),sto> ➞ <false,sto> by rules (10) and (11) for
expressions in Figure 8.6. Now use rules (3), (4), and (5) for commands to get:

<if be then c1 else c2,s> ➞ <if true then c1 else c2,s> ➞ <c1,s> and

<if not(be) then c2 else c1,s> ➞ <if false then c2 else c1,s> ➞ <c1,s>.

From here on the two computations from <c1,s> must be identical.

Case 2: <be,sto> ➞ <false,sto> by some computation. Proceed as in case 1.

Case 3: <be,sto> ➞ <be’,sto> where be' is not a Boolean constant and the
computation is stuck. Then both

<if be then c1 else c2,s> ➞ <if be' then c1 else c2,s> and

<if not(be) then c2 else c1,s> ➞ <if not(be’) then c2 else c1,s>

are stuck computations. ❚

Our definition of semantic equivalence entails a slight anomaly in that any
two nonterminating computations are viewed as equivalent. In particular,
this means that a program that prints the number 5 endlessly is considered
equivalent to another program that runs forever without any output. For
terminating computations, however, the definition of semantic equivalence
agrees with our intuition for programs having the same behavior.

Natural Semantics

Structural operational semantics takes as its mission the description of the
individual steps of a computation. It strives to capture the smallest possible
changes in configurations. For this reason, structural operational semantics
is sometimes called small-step semantics. An alternative semantics takes
the opposite view—namely, to describe the computation in large steps pro-
viding a direct relation between initial and final states. This version of opera-
tional semantics is defined by inference systems to create a so-called big-
step semantics. The most developed version of big-step semantics, called
natural semantics, was proposed by a group in France led by Gilles Kahn.

To suggest the flavor of natural semantics, we show in Figure 8.9 several of
the inference rules that are used to define the meaning of Wren. In natural
semantics, configurations have several possible forms for each kind of lan-
guage construct:

Expressions: <e,sto>, n, or b, and

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

262 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Commands: <c,state> or state.

A transition defines a final result in one step, namely

<e,sto> ➨ n or <e,sto> ➨ b, and

<c,state> ➨ state',

We chose to investigate small-step semantics because big-step semantics
closely resembles denotational semantics and, in fact, can be viewed as a
notational variant of it. See Chapter 9 for a description of denotational se-
mantics. For more on natural semantics as well as structural operational
semantics, see the further readings at the end of this chapter.

<ie1,sto> ➨ n1

<ie1 iop ie2,sto> ➨ compute(iop,n1,n2)

<ie2,sto> ➨ n2

<be,sto> ➨ true

<if be then c1 else c2,st(in,out,sto)> ➨ st(in',out',sto')

<c1,st(in,out,sto)> ➨ st(in',out',sto')

<c1,state> ➨ state'

<c1 ; c2,state> ➨ state''

<c2,state'> ➨ state''

<be,sto> ➨ false

<if be then c1 else c2,st(in,out,sto)> ➨ st(in',out',sto')

<c2,st(in,out,sto)> ➨ st(in',out',sto')

Figure 8.9: Some Inference Rules for the Natural Semantics of Wren

Exercises

1. Derive the computation sequence for the following Wren programs. Use
[8,13,-1] as the input list.

a) read a; read b; c:=a; a:=b; b:=c; write a; write b

b) n:=3; f:=1; while n>1 do (f:=f*n; n:=n-1); write f

c) s:=0; read a; while a≥0 do (s:=s+a; read a); write s

d) read x; if x>5 then y := x+2 else y := 0

e) p:=true; read m; while p do (read a; m:=m*a; p:=not(p)); write m

263

2. The following rule provides an alternate definition of the while com-
mand in Wren:

<if be then (c ; while be do c) else skip,state> ➞ <skip,state'>

<while be do c,state> ➞ <skip,state'>
(7')

Show that the inference system with rule (7) replaced by this new rule is
equivalent to the original system.

3. Add these language constructs to Wren and provide meaning for them
by defining inference rules for their semantics.

repeat c until be : cmd

be : bexp c : cmda)

begin c return ie end : iexp

c : cmd ie : iexp b)

c) swap (id1,id2) : cmd id1,id2∈ Id

ie1,ie2 : iexp

id1,id2 := ie1,ie2 : cmd
 id1,id2∈ Id

d) Parallel assignment:

4. Verify the following semantic equivalences.

a) For any c:cmd, c ; skip ≡ c.

b) For any c:cmd, skip ; c ≡ c.

c) For any be:bexp and c:cmd, if be then c else c ≡ c, assuming the
reduction of be does not become stuck.

d) For any be:bexp and c1,c2,c3:cmd,
(if be then c1 else c2) ; c3 ≡ if be then (c1 ; c3) else (c2 ; c3).

5. Prove that these pairs of commands are not semantically equivalent:

a) c3 ; (if be then c1 else c2) and if be then (c3 ; c1) else (c3 ; c2)

b) id1,id2 := ie1,ie2 and id1 := ie1 ; id2 := ie2

6. Extend Wren to include a definite iteration command of the form

ie1 : iexp ie2 : iexp c : cmd

for id := ie1 to ie2 do c end : cmd
id∈ Id

8.6 STRUCTURAL OPERATIONAL SEMANTICS: COMMANDS

264 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

whose informal semantics agrees with the for command in Pascal. Add
inference rules to the structural operational semantics of Wren to give a
formal semantics for this new command.

8.7 LABORATORY: IMPLEMENTING STRUCTURAL
OPERATIONAL SEMANTICS

In Chapter 2 we developed a scanner and parser that take a text file contain-
ing a Wren program and produce an abstract syntax tree. Now we continue,
creating a prototype implementation of Wren based on its structural opera-
tional semantics.

The transcript below shows a sample execution with the operational inter-
preter. The program reads a positive decimal integer and converts it into
binary by subtracting powers of two. The example illustrates how the input
list can be handled in Prolog.

>>> Interpreting Wren via Operational Semantics <<<
Enter name of source file: tobinary.wren
 program tobinary is
 var n,p : integer;
 begin
 read n; p := 2;
 while p<=n do p := 2*p end while;
 p := p/2;
 while p>0 do
 if n>= p then write 1; n := n-p
 else write 0 end if;
 p := p/2
 end while
 end
Scan successful
Parse successful
Enter input list followed by a period: [321].
Output = [1,0,1,0,0,0,0,0,1]
Final Store:
 n int(0)
 p int(0)
yes

265

Commands

As with the implementation of the SECD machine in section 8.3, we define a
predicate transform(Config,NewConfig) that carries out one computation step
for the transition function. A configuration is represented just as it was in
section 8.6—namely, st(In,Out,Sto)—except that we need uppercase for Prolog
variables. Then rules (3), (4), and (5) defining transitions for if-then-else
commands become three Prolog clauses whose order requires rule (3) to be
last, which means that its more general pattern applies only if the Boolean
expression is not in normal form.

transform(cfg(if(bool(true),C1,C2),State), cfg(C1,State)). % 4

transform(cfg(if(bool(false),C1,C2),State), cfg(C2,State)). % 5

transform(cfg(if(Be,C1,C2),st(In,Out,Sto)), % 3
cfg(if(Be1,C1,C2),st(In,Out,Sto))) :- transform(cfg(Be,Sto),cfg(Be1,Sto)).

The predicate transform that reduces expressions is defined later. Rules (6)
and (7) in Figure 8.8 translate while and if commands according to their
meaning. Two Prolog clauses perform the required translations.

transform(cfg(if(Be,C),State), cfg(if(Be,C,skip),State)). % 6

transform(cfg(while(Be,C),State), cfg(if(Be,[C,while(Be,C)],skip),State)). % 7

Remember from Chapter 2 that the parser produces a Prolog list of com-
mands as the abstract syntax tree for a sequence of commands. Therefore
the command “c1 ; c2 ; c3 ; c4” comes from the parser as [c1, c2, c3, c4]. So rule
(9) becomes

transform(cfg([skip|Cs],State), cfg(Cs,State)). % 9

and rule (8), which must follow rule (9), becomes

transform(cfg([C|Cs],State), cfg([C1|Cs],State1)) :- % 8
transform(cfg(C,State),cfg(C1,State1)).

Since a list of commands may become empty, we need an additional clause
that has no analogue in Figure 8.8:

transform(cfg([],State), cfg(skip,State)).

Before considering the assignment command, we discuss how to model the
finite function that comprises the store. We portray the store as a Prolog
structure of the form

sto(a, int(3), sto(b, int(8), sto(c, bool(false), nil)))

for the store {a|→3, b|→8, c|→false}. The empty store is given by the Prolog
atom nil. The auxiliary functions for manipulating the store become predi-
cates defined as follows:

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

266 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

updateSto(sto(Ide,V,Sto),Ide,Val,sto(Ide,Val,Sto)).

updateSto(sto(I,V,Sto),Ide,Val,sto(I,V,NewSto)) :-
updateSto(Sto,Ide,Val,NewSto).

updateSto(nil,Ide,Val,sto(Ide,Val,nil)).

applySto(sto(Ide,Val,Sto),Ide,Val).

applySto(sto(I,V,Sto),Ide,Val) :- applySto(Sto,Ide,Val).

applySto(nil,Ide,undefined) :- write('Undefined variable'), nl, abort.

Note that when an identifier cannot be found in the store, applySto prints an
error message and aborts the execution of the operational interpreter.

If the right side of an assignment is already in normal form, the new binding
can be entered into the store immediately. Two clauses correspond to the two
parts of rule (2).

transform(cfg(assign(Ide,int(N)),st(In,Out,Sto)), % 2a
cfg(skip,st(In,Out,Sto1))) :- updateSto(Sto,Ide,int(N),Sto1).

transform(cfg(assign(Ide,bool(B)),st(In,Out,Sto)), % 2b
cfg(skip,st(In,Out,Sto1))) :- updateSto(Sto,Ide,bool(B),Sto1).

We leave the tags produced by the scanner and parser on constants as we
place the values in memory.

If the right side of an assignment is not yet in normal form, we call on the
transition function for expressions to reduce the right side using the predi-
cate transform(cfg(E,Sto),cfg(E1,Sto)) that provides the operational semantics
for expressions. We can combine the two parts of rule (1) in the Prolog imple-
mentation, since Prolog is not strongly typed.

transform(cfg(assign(Ide,E),st(In,Out,Sto)), % 1
cfg(assign(Ide,E1),st(In,Out,Sto))) :- transform(cfg(E,Sto),cfg(E1,Sto)).

Again, because of pattern matching, the more specialized clause head must
precede the more general—that is, rule (2) comes before rule (1).

The read command is handled by two clauses, one to catch the dynamic
error when the input list is empty and one to carry out the operation. Note
that the head and tail functions are replaced by pattern matching.

transform(cfg(read(Ide),st([],Out,Sto)),cfg(skip,st([],Out,Sto))) :- % 10
write('Attempted read of empty file'), nl, abort.

transform(cfg(read(Ide),st([N|T],Out,Sto)), cfg(skip,st(T,Out,Sto1))) :- % 10
 updateSto(Sto,Ide,int(N),Sto1).

267

The write command uses a Prolog predicate concat that concatenates two
lists to affix a value to the right end of the output list.

transform(cfg(write(int(N)),st(In,Out,Sto)), cfg(skip,st(In,Out1,Sto))) :- % 12
concat(Out,[N],Out1).

transform(cfg(write(E),st(In,Out,Sto)), cfg(write(E1),st(In,Out,Sto))) :- % 11
transform(cfg(E,Sto),cfg(E1,Sto)).

We need a driver predicate interpret to call the transition predicate transform
repeatedly until a normal form configuration with the skip command turns
up or until the program aborts, if ever.

interpret(cfg(skip,FinalState),FinalState).

interpret(Config,FinalState) :- transform(Config,NewConfig),
interpret(NewConfig,FinalState).

Expressions

The three groups of rules for binary expressions must be handled from the
most specific to the most general. Rules (7), (8), and (9), having both argu-
ments in normal form, must come first.

transform(cfg(exp(Opr,int(N1),int(N2)),Sto), cfg(Val,Sto)) :- % 7
compute(Opr,int(N1),int(N2),Val).

transform(cfg(bexp(Opr,int(N1),int(N2)),Sto), cfg(Val,Sto)) :- % 8
compute(Opr,int(N1),int(N2),Val).

transform(cfg(bexp(Opr,bool(B1),bool(B2)),Sto), cfg(Val,Sto)) :- % 9
compute(Opr,bool(B1),bool(B2),Val).

For all three rules, the actual computation is isolated in the predicate
compute(Opr,A1,A2,Result).

Expressions whose first argument is in normal form are treated in rules (4),
(5), and (6). We use E2p for E2'.

transform(cfg(exp(Opr,int(N),E2),Sto), cfg(exp(Opr,int(N),E2p),Sto)) :- % 4
transform(cfg(E2,Sto),cfg(E2p,Sto)).

transform(cfg(bexp(Opr,int(N),E2),Sto), cfg(bexp(Opr,int(N),E2p),Sto)) :- % 5
transform(cfg(E2,Sto),cfg(E2p,Sto)).

transform(cfg(bexp(Opr,bool(B),E2),Sto),
cfg(bexp(Opr,bool(B),E2p),Sto)) :- % 6

transform(cfg(E2,Sto),cfg(E2p,Sto)).

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

268 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

Those rules in which the left argument is not yet in normal form—namely (1),
(2), and (3)—must come last.

transform(cfg(exp(Opr,E1,E2),Sto),cfg(exp(Opr,E1p,E2),Sto)) :- % 1
transform(cfg(E1,Sto),cfg(E1p,Sto)).

transform(cfg(bexp(Opr,E1,E2),Sto),cfg(bexp(Opr,E1p,E2),Sto)) :- % 2+3
transform(cfg(E1,Sto),cfg(E1p,Sto)).

Rules (2) and (3) can be folded together by letting Opr stand for both compari-
sons and Boolean operators. The compute predicate relies on native arith-
metic in Prolog and simple pattern matching to carry out the computations.
A few examples of clauses for this predicate are listed below.

compute(plus,int(M),int(N),int(R)) :- R is M+N.

compute(divides,int(M),int(0),int(0)) :- write('Division by zero'), nl, abort.
compute(divides,int(M),int(N),int(R)) :- R is M//N.

compute(equal,int(M),int(N),bool(true)) :- M =:= N.
compute(equal,int(M),int(N),bool(false)).

compute(neq,int(M),int(N),bool(false)) :- M =:= N.
compute(neq,int(M),int(N),bool(true)).

compute(less,int(M),int(N),bool(true)) :- M < N.
compute(less,int(M),int(N),bool(false)).

compute(and,bool(true),bool(true),bool(true)).
compute(and,bool(P),bool(Q),bool(false)).

Observe how a division by zero error causes the interpreter to abort. We use
abort to signal a stuck configuration. Also note that the clauses for each
operator depend on their order for correctness.

To complete the transition function for the operational semantics of expres-
sions, we still need to handle the two unary operations, logical not and unary
minus, which are left as exercises, and to deal with identifiers by probing the
store (rules 12 and 13 for expressions). One clause defines the transition
function for both integer and Boolean identifiers.

transform(cfg(ide(Ide),Sto), cfg(Val,Sto)) :- applySto(Sto,Ide,Val). % 12+13

Finally, we need to define the driver predicate evaluate that propels and moni-
tors the computation steps for expressions.

evaluate(cfg(int(N),Sto), int(N)).

evaluate(cfg(bool(B),Sto), bool(B)).

evaluate(Config, FinalValue) :- transform(Config, NewConfig),
evaluate(NewConfig, FinalValue).

269

Top-Level Driver

At the top level we call interpret with an initial configuration containing the
command Cmd that makes up the body of the Wren program together with an
initial state st(In,[],nil)) where In holds the input list obtained from the user.
We depend on a predicate go to request the input and print the output.

go :- nl,write('>>> Interpreting Wren via Operational Semantics <<<'), nl, nl,
write('Enter name of source file: '), nl, readfilename(File), nl,
see(File), scan(Tokens), seen, write('Scan successful'), nl, !,
program(prog(Dec,Cmd),Tokens,[eop]), write('Parse successful'), nl, !,
write('Enter input list followed by a period: '), nl, read(In), nl,
interpret(cfg(Cmd,st(In,[],nil)),st(FinalIn,Out,Sto)), nl,
write('Output = '), write(Out), nl, nl,
write('Final Store:'), nl, printSto(Sto), nl.

Exercises

1. Supply Prolog definitions for the transition rules for the remaining ex-
pression types: not and unary minus.

2. Complete the definition of the compute predicate.

3. Extend the prototype interpreter to include the following language con-
structs.
a) repeat-until commands

Command ::= ... | repeat Command until Expression
b) conditional expressions

Expression ::= ... | if Expression then Expression else Expression
c) expressions with side effects

Expression ::= ... | begin Command return Expression end

4. Give a definition of the Prolog predicate printSto(Sto) that prints the bind-
ings in the store Sto, one to a line.

8.8 FURTHER READING

Structural operational semantics originated in a seminal technical report by
Gordon Plotkin [Plotkin81]. This initial presentation of an operational se-
mantics based on inference rules defines a number of imperative program-
ming constructs using small-step semantics. Early work with big-step se-
mantics, called natural semantics by the group at INRIA, can be found in

8.7 IMPLEMENTING STRUCTURAL OPERATIONAL SEMANTICS

270 CHAPTER 8 TRADITIONAL OPERATIONAL SEMANTICS

[Kahn87]. The logic text [Reeves90] contains an introduction to natural de-
duction, the logic methodology that provides a basis for structural opera-
tional semantics. Also see [Prawitz65] for a more advanced description of
natural deduction.

The introduction to formal semantics by Nielson and Nielson [Nielson92] treats
both structural operational semantics and natural deduction. They suggest
translating such operational definitions of programming languages into pro-
totype implementations using Miranda.

Matthew Hennessy [Hennessy90] has aimed his text at an undergraduate
audience, providing many examples of operational specifications using both
small-step and big-step semantics, using the terms computation semantics
and evaluation semantics. Hennessy considers imperative, functional, and
concurrent programming languages in his examples. He also includes an
extensive discussion of structural induction with numerous examples.

Egidio Astesiano [Astesiano91] gives a clear and logical presentation of op-
erational semantics based on inference systems. He discusses the use of
inference rules to specify abstract syntax and compares small-step and big-
step operational semantics. Astesiano also describes the relation between
natural semantics and denotational semantics.

Peter Landin’s description of the SECD machine appears in [Landin64] and
[Landin66]. Many recent texts on functional programming also contain ma-
terial on SECD machines and their variants, including [Glaser84], [Henson87],
[Field88], and [Reade89].

Peter Wegner’s survey paper [Wegner72] covers the basics of the Vienna Defi-
nition Language. [Pagan81] describes VDL succinctly, using two small pro-
gramming languages to illustrate this specification method.

