
187

Chapter 7
TRANSLATIONAL SEMANTICS

The previous chapter provided a definition of the semantics of a pro-
gramming language in terms of the programming language itself. The
primary example was based on a Lisp interpreter programmed in Lisp.

Although this is an interesting academic exercise, it has little practical im-
portance. However, programming language compilers are an integral part of
the study of computer science. Compilers perform a translation of a high-
level language into a low-level language. Executing this target program on a
computer captures the semantics of the program in a high-level language.

In Chapter 3 we investigated the use of attribute grammars for context check-
ing. These same techniques can be used to translate Wren into a machine-
oriented language. Translational semantics is based on two notions:

1. The semantics of a programming language can be preserved when the
language is translated into another form, called the target language.

2. The target language can be defined by a small number of primitive con-
structs that are closely related to an actual or a hypothetical machine
architecture.

We first introduce the target language and then build an attribute grammar
that is capable of translating a Wren program into this language. Finally, we
implement this attribute grammar in the laboratory.

7.1 CONCEPTS AND EXAMPLES

In order to focus on issues relating to the translation process, we assume
that the Wren program being translated obeys the context-sensitive condi-
tions for the language as well as the context-free grammar. We parse the
declaration section to ensure that the BNF is correct, but no attributes are
associated with the declaration section. Context checking can be combined
with code generation in a single attribute grammar, but we leave this task
unfinished at this time.

188 CHAPTER 7 TRANSLATIONAL SEMANTICS

The machine code is based on a primitive architecture with a single accumu-
lator (Acc) and a memory addressable with symbolic labels and capable of
holding integer values. In this translation, Boolean values are simulated by
integers. We use names to indicate symbolic locations. The hypothetical ma-
chine has a load/store architecture:

• The LOAD instruction copies a value from a named location, whose value
is not changed, to the accumulator, whose old value is overwritten, or
transfers an integer constant into the accumulator.

• The STO instruction copies the value of the accumulator, whose value is
not changed, to a named location, whose previous value is overwritten.

The target language has two input/output commands:

• GET transfers an integer value from the input device to the named location.

• PUT transfers the value stored at the named location to the output device.

There are four arithmetic operations—ADD, SUB, MULT and DIV—and three
logical operations—AND, OR, and NOT. For the binary operations, the first
operand is the current accumulator value and the second operand is speci-
fied in the instruction itself. The second operand can be either the contents
of a named location or an integer constant. For Boolean values, the integer 1
is used to represent true and the integer 0 to represent false. The result of an
operation is placed in the accumulator. The NOT operation has no argument;
it simply inverts the 0 or 1 in the accumulator.

The target language contains one unconditional jump J and one conditional
jump JF where the conditional jump is executed if the value in the accumu-
lator is false (equal to zero). The argument of a jump instruction is a label
instruction. For example, J L3 means to jump unconditionally to label L3,
which appears in an instruction of the form L3 LABEL. The label instruction
has no operand.

There are six test instructions; they test the value of the accumulator relative
to zero. For example, TSTEQ tests whether the accumulator is equal to zero.
The test instructions are destructive in the sense that the value in the accu-
mulator is replaced by a 1 if the test is true and a 0 if the test is false. We will
find this approach to be convenient when processing Boolean expressions.
The five other test instructions are: TSTLT (less than zero), TSTLE (less than
or equal zero), TSTNE (not equal zero), TSTGE (greater than or equal zero),
and TSTGT (greater than zero). The NO-OP instruction performs no opera-
tion. Finally, the target language includes a HALT instruction. The complete
instruction set is shown in Figure 7.1.

1897.1 CONCEPTS AND EXAMPLES

LOAD <name> or <const> Load accumulator from named
location or load constant value

STO <name> Store accumulator to named location
GET <name> Input value to named location
PUT <name> Output value from named location
ADD <name> or <const> Acc ← Acc + <operand>
SUB <name> or <const> Acc ← Acc – <operand>
MULT <name> or <const> Acc ← Acc • <operand>
DIV <name> or <const> Acc ← Acc / <operand>
AND <name> or 0 or 1 Acc ← Acc and <operand>
OR <name> or 0 or 1 Acc ← Acc or <operand>
NOT Acc ← not Acc
J <label> Jump unconditionally
JF <label> Jump on false (Acc = 0)
LABEL Label instruction
TSTLT Test if Acc Less Than zero
TSTLE Test if Acc Less than or Equal zero
TSTNE Test if Acc Not Equal zero
TSTEQ Test if Acc EQual zero
TSTGE Test if Acc Greater than or Equal zero
TSTGT Test if Acc Greater Than zero
NO-OP No operation
HALT Halt execution

Figure 7.1: Machine-oriented Target Language

A Program Translation

Consider a greatest common divisor (gcd) program:

program gcd is
var m,n : integer;

begin
read m; read n;
while m < > n do

if m < n then n := n – m
else m := m – n

end if
end while;
write m

end

This program translates into the following object code:

GET M
GET N

L1 LABEL
LOAD M

190 CHAPTER 7 TRANSLATIONAL SEMANTICS

SUB N
TSTNE
JF L2
LOAD M
SUB N
TSTLT
JF L3
LOAD N
SUB M
STO N
J L4

L3 LABEL
LOAD M
SUB N
STO M

L4 LABEL
J L1

L2 LABEL
LOAD M
STO T1
PUT T1
HALT

In Chapter 3 we saw that the semantics of a binary numeral can be ex-
pressed as the final value of a synthesized attribute at the root of the parse
tree. We use the same approach here: The synthesized attribute Code inte-
grates the pieces of object code in the target language from lower levels in the
tree, and the final value at the root of the tree expresses the semantics of the
Wren program in the form of its translation into object code in the target
language.

We begin by discussing the constraints imposed by labels and temporary
locations in the target language. Labels throughout the object program must
be unique. With nested control structures, the labels do not appear in order,
as we see from the sample program above. The labels L1 and L2 are associ-
ated with the while loop, the outer control structure, and the labels L3 and
L4 are associated with the nested if structure. We use both an inherited
attribute InhLabel and a synthesized attribute SynLabel working together to
thread the current label value throughout the derivation tree.

The intermediate language uses temporary named locations, labeled T1, T2,
T3, and so forth, to evaluate Boolean and arithmetic expressions. For our
purposes, it is immaterial if these named locations are thought of as regis-
ters or as an area of main memory. One location must not be used for two

191

different purposes at the same time within a subexpression, but it can be
reused once the final value for a subexpression has been processed. Since
temporary locations need not be unique throughout the program, there is no
need to maintain a synthesized attribute returning the last location used.
However, we do need an inherited attribute, called Temp, that transfers the
starting temporary location value to subexpressions.

Exercises

1. Generate object code that is semantically equivalent to the following
Wren program that multiplies two numbers.

program multiply is
var m, n, product : integer;

begin
read m; read n;
product := 0;
while n > 0 do

if 2 * (n / 2) < > n then (* if n is odd *)
product := product + m

end if;
m := 2 * m;
n := n / 2

end while;
write product

end

2. Generate object code that evaluates the following expression:

2 * (x – 1) * (y / 4) – (12 * z + y)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

Figure 7.2 gives all of the attributes and the associated value types necessary
to develop this attribute grammar. The nonterminals <variable>, <identifier>,
<letter>, <numeral>, and <digit> all have an associated Name attribute that
synthesizes an internal representation of identifier names and of base-ten
numerals, as was done in the attribute grammar for Wren in Chapter 3.
Since the source language uses lowercase letters as variable names, and the
target language uses uppercase, we make a conversion between the two in
the production for <letter>.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

192 CHAPTER 7 TRANSLATIONAL SEMANTICS

Attribute Value
Name Sequences of letters and/or digits
Temp Natural numbers (integers ≥ 0)
SynLabel Natural numbers
InhLabel Natural numbers
OpCode ADD, SUB, MULT, DIV
TestCode TSTLT, TSTLE, TSTNE, TSTEQ, TSTGE, TSTGT
Code Sequence of instructions of the following forms:

(Load/Store, Name) as in (LOAD, X)
(Input/Output, Name) as in (GET, X)
(OpCode, Name) as in (ADD, 5)
(BooleanOp, Name) as in (AND, T2)
(Jump, Name) as in (J, L2)
(Name, LABEL) as in (L3, LABEL)
TestCode as in TSTNE
NOT, NO-OP, or HALT

Figure 7.2: Attributes and Values

<variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

<identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<digit>))

<letter> ::=
 a

Name(<letter>) ← ‘A’
: : :

| z
Name(<letter>) ← ‘Z’

<numeral> ::= <digit>
Name(<numeral>) ← Name(<digit>)

| <numeral>2 <digit>
Name(<numeral>) ← concat(Name(<numeral>2),Name(<digit>))

193

<digit> ::=
 0

Name(<digit>) ← ‘0’
 : : :

| 9
Name(<digit>) ← ‘9’

Expressions

We now turn our attention to the code generation for binary arithmetic ex-
pressions. Consider the general form

<left operand> <operator> <right operand>

where the left and right operands may be simple, as in the case of a variable
name or numeral, or compound, as in the case of another operation or a
parenthesized expression. The general case can be handled by the following
code sequence, assuming that n is the value of the inherited attribute Temp:

code for <left operand>
STO T<n+1> (for example, if n = 0, this is T1)
code for <right operand>
STO T<n+2> (for example, if n = 0, this is T2)
LOAD T<n+1>
OpCode T<n+2>

In this situation, OpCode is determined by the <operator>. The inherited
value for Temp is passed to the left operand while that value, incremented by
one, is passed to the right operand, since the location T<n+1> is not available
for use when generating code for the right operand. In general, the value of
Temp represents the highest value used so far in the current subexpression.

As an example of translating expressions, consider the compound expres-
sion

x / (y – 5) * (z + 2 * y).

The expression expands to <term> that then expands to <term>
<strong op> <element>. So, assuming Temp initially equals zero, the code
expansion becomes

code for x/(y – 5)
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

7.2 ATTRIBUTE GRAMMAR CODE GENERATON

194 CHAPTER 7 TRANSLATIONAL SEMANTICS

We show object code in bold when it first appears. Temp is passed unchanged
to the code for the left operand and is incremented by 1 and passed to the
right operand. When we expand the code for x/(y – 5) we have

code for x
STO T1
code for (y – 5)
STO T2
LOAD T1
DIV T2
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

The code for x is LOAD X, so we proceed with the expansion of (y – 5) with
Temp equal to 1, obtaining

LOAD X
STO T1
code for y
STO T2
code for 5
STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
code for (z + 2 * y)
STO T2
LOAD T1
MULT T2

The code for y and for 5 is LOAD Y and LOAD 5, respectively. We now need to
expand the code for (z + 2 * y) with Temp equal to 1.

LOAD X
STO T1
LOAD Y
STO T2
LOAD 5

195

STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
code for z
STO T2
code for 2*y
STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

The code for z is LOAD Z. When we expand the code for 2*y, we use a Temp
value of 2, the inherited value incremented by 1. We complete the code by
using LOAD 2 and LOAD Y as the code for 2 and code for y, respectively. The
complete code expansion is shown below.

LOAD X
STO T1
LOAD Y
STO T2
LOAD 5
STO T3
LOAD T2
SUB T3
STO T2
LOAD T1
DIV T2
STO T1
LOAD Z
STO T2
LOAD 2
STO T3
LOAD Y
STO T4
LOAD T3
MULT T4

7.2 ATTRIBUTE GRAMMAR CODE GENERATON

196 CHAPTER 7 TRANSLATIONAL SEMANTICS

STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

If the result of this expression, which is currently in the accumulator, is to be
saved, one more store instruction will be needed. The code generated in this
way is correct but very lengthy. A human hand-generating code for the same
expression can do much better. Working “from the inside out” and taking
advantage of known arithmetic properties, such as the commutativity of ad-
dition, a human might produce the following code sequence:

LOAD Y
SUB 5
STO T1 -- T1 contains y – 5
LOAD X
DIV T1
STO T1 -- T1 contains x/(y – 5)
LOAD 2
MULT Y
ADD Z
MULT T1 -- accumulator contains x / (y – 5) * (z + 2 * y)

Only ten instructions and one temporary location are needed, as compared
with 26 instructions and four temporary locations for the code developed
previously. We do not attempt to match hand-compiled code generated by a
human for efficiency; however, there is one small optimization we can make
that improves the code generation. Consider the special case

<left operand> <operator> <variable or numeral>

If we follow the previous scheme, the generated code is

code for <left operand>
STO T<n+1>
code for <variable or numeral>
STO T<n+2>
LOAD T<n+1>
OpCode T<n+2>

When the second operand is a variable or numeral, this code can be opti-
mized to

code for <left operand>

OpCode <variable or numeral>

197

This saves four instructions and two temporary locations. This code pattern
occurs twice in the expression we were evaluating. The code for y–5

LOAD Y becomes LOAD Y
STO T2 SUB 5
LOAD 5
STO T3
LOAD T2
SUB T3

The code for 2*y

LOAD 2 becomes LOAD 2
STO T3 MULT Y
LOAD Y
STO T4
LOAD T3
MULT T4

When this one optimization technique is used, the code for the expression is
reduced to 18 instructions and three temporary locations, as shown below.

LOAD X
STO T1
LOAD Y
SUB 5
STO T2
LOAD T1
DIV T2
STO T1
LOAD Z
STO T2
LOAD 2
MULT Y
STO T3
LOAD T2
ADD T3
STO T2
LOAD T1
MULT T2

Code optimization, a major topic in compiler theory, is very complex and
occurs at many levels. A detailed discussion is beyond the scope of this text,
and we will do no further optimization beyond this one technique.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

198 CHAPTER 7 TRANSLATIONAL SEMANTICS

We now turn our attention to the attribute grammar itself. Four of the at-
tributes listed in Figure 7.2 are utilized in generating the code for arithmetic
expressions: Name, OpCode, Code, and Temp.

First consider the attribute grammar for integer expression.

<integer expr> ::=
 <term>

Code(<integer expr>) ← Code(<term>)
Temp(<term>) ← Temp(<integer expr>)

| <integer expr>2 <weak op> <term>
Code(<integer expr>) ←

concat(Code(<integer expr>2),
optimize(Code(<term>),Temp(<integer expr>),

OpCode(<weak op>)))
Temp(<integer expr>2) ← Temp(<integer expr>)
Temp(<term>) ← Temp(<integer expr>)+1

 <weak op> ::=
 +

OpCode(<weak op>) ← ADD
| –

OpCode(<weak op>) ← SUB

Temp is inherited, as expected, OpCode synthesizes the appropriate object
code operation, and Code is synthesized, as previously described. However,
we need to say something about the utility procedure “optimize”.

optimize(code, temp, opcode) =
if length(code) = 1 then -- a variable or numeral

[(opcode, secondField(first(code)))]
else

concat([(STO, temporary(temp+1))],
code,
[(STO, temporary(temp+2))],
[(LOAD, temporary(temp+1))],

[(opcode, temporary(temp+2))])

If the code for the second operand is a single item, indicating either a variable
or a numeral, we generate a single instruction, the appropriate operation
with that operand. Otherwise, we generate the more lengthy set of instruc-
tions and use two temporary locations. The utility procedure “temporary”
accepts an integer argument and produces the corresponding temporary sym-

199

bol as a string. This requires another utility function “string” to convert an
integer into the corresponding base-ten numeral.

temporary(integer) = concat(‘T’,string(integer))

string(n) = if n = 0 then ‘0’
: :

else if n = 9 then ‘9’
else concat(string(n/10), string(n mod 10))

The code for <term> and <element> is very similar and will be given later in
Figure 7.8. The sharp-eyed reader may notice that we have ignored negation
as one of the alternatives for <element>. Developing this portion of the at-
tribute grammar is left as an exercise. The complete, decorated parse tree for
x / (y – 5) * (z + 2 * y) is shown in Figure 7.3 where we have used an infix
operator @ to represent concatenation.

The code for <boolean expr> is similar to integer expression, except that the
single operator is or. Since the Boolean operations are commutative, there is
no need for a second temporary location. A Boolean term is similar to an
integer term. In <boolean element> the constants false and true result in
loading 0 and 1, respectively. Variables and parenthesized Boolean expres-
sions are handled as expected. A <comparison> is another alternative for a
Boolean element; we will discuss comparisons in a moment. The not opera-
tion results in the NOT instruction being appended after the code for the
Boolean expression being negated. The complete code for Boolean expres-
sions is given in Figure 7.8.

A comparison has the general form

<integer expr>1 <relation> <integer expr>2

Since the target language has test instructions based on comparisons with
zero, we rewrite the comparison as

<integer expr>1 – <integer expr>2 <relation> 0

The generated code will be the code defined for the left side expression minus
the right side expression followed by the test instruction. This code will be
optimized if the right side expression is a constant or a variable. Here is an
example with code optimization: x < y translates into

LOAD X
SUB Y
TSTLT

If the right side expression is complex, the code will not be optimized, as seen
by x >= 2*y, which translates to

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

200 CHAPTER 7 TRANSLATIONAL SEMANTICS

<expr>
Temp : 0
Code : c11

<term>
Temp : 0
Code : c11

<term>
Temp : 0
Code : c5

<strong op>
OpCode : MULT

<strong op>
Opcode : DIV

<element>
Temp : 1
Code : c4

<expr>
Temp : 1
Code : c4

<weak op>
Opcode : SUB

()

<expr>
Temp : 1
Code : c2

<term>
Temp : 1
Code : c2

<element>
Temp : 1
Code : c2

<variable>
Name : 'y'

:

<variable>
Name : 'x'

<term>
Temp : 0
Code : c1

<element>
Temp : 0
Code : c1

:

/

–

*

<element>
Temp : 1
Code : c10

<expr>
Temp : 1
Code : c10

<weak op>
OpCode : ADD

<term>
Temp : 2
Code : c9

()

<term>
Temp : 1
Code : c6

<element>
Temp : 1
Code : c6

<expr>
Temp : 1
Code : c6

<variable>
Name : 'z'

:

+

<term>
Temp : 2
Code : c7

<strong op>
OpCode : MULT

<element>
Temp : 3
Code : c8

<element>
Temp : 2
Code : c7

<variable>
Name : 'y'

<numeral>
Name : '2'

:

:

*

<term>
Temp : 2
Code : c3

<element>
Temp : 2
Code : c3

<numeral>
Name : '5'

:

c1 = [(LOAD,X)] c5 = c1@[(STO,T1)]@c4@[(STO,T2), (LOAD,T1), (DIV,T2)]
c2 = [(LOAD,Y)] c6 = [(LOAD,Z)]
c3 = [(LOAD,5)] c7 = [(LOAD,2)]
c4 = c2@[(SUB,5)] c8 = [(LOAD,Y)]
c9 = c7@[(MULT,Y)]
c10 = c6@[(STO,T2)]@c9@[(STO,T3), (LOAD,T2), (ADD,T3)]
c11 = c5@[(STO,T1)]@c10@[(STO,T2), (LOAD,T1), (MULT,T2)]

Figure 7.3: Expression Parse Tree for x/(y – 5) * (z + 2 * y)

201

LOAD X
STO T1
LOAD 2
MULT Y
STO T2
LOAD T1
SUB T2
TSTGE

There is a direct correspondence between the comparison operators in Wren
and the test instructions in the target language:

< becomes TSTLT
<= becomes TSTLE
= becomes TSTEQ
> becomes TSTGT
>= becomes TSTGE
<> becomes TSTNE.

The following attribute grammar rules follow directly from this discussion.

<comparison> ::= <integer expr>1 <relation> <integer expr>2

Code(<comparison>) ← concat(Code(<integer expr>1),
optimize(Code(<integer expr>2),Temp(<comparison>),SUB),
[TestCode(<relation>)])

Temp(<integer expr>1) ← Temp(<comparison>)

Temp(<integer expr>2) ← Temp(<comparison>)+1

 <relation> ::=
 >

TestCode(<relation>) ← TSTGT
| >=

TestCode(<relation>) ← TSTGE
| <>

TestCode(<relation>) ← TSTNE
| =

TestCode(<relation>) ← TSTEQ
| <=

TestCode(<relation>) ← TSTLE
| <

TestCode(<relation>) ← TSTLT

Commands

The next major task is the generation of code for the commands in Wren. As
mentioned earlier, all labeled locations must be unique throughout the ob-

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

202 CHAPTER 7 TRANSLATIONAL SEMANTICS

ject code. We use two attributes, InhLabel and SynLabel, to thread the cur-
rent label value throughout the tree. The <program> node concatenates HALT
to the code generated by <block>. The program identifier provides source
code documentation but does not contribute to the code generation.

<program> ::= program <identifier> is <block>

Code(<program>) ← concat(Code(<block>), [HALT])

The code for <block> is synthesized directly from the code for <command
sequence>. The inherited attributes Temp and InhLabel are initialized to zero
at this time. Parsing a declaration sequence does not involve any attributes
for code generation.

<block> ::= <declaration sequence> begin <command sequence> end
Code(<block>) ← Code(<command sequence>)
Temp(<command sequence>) ← 0

InhLabel(<command sequence>) ← 0

The BNF for <declaration sequence> will be given in Figure 7.8, but no at-
tributes are calculated for this nonterminal. The nonterminal <command
sequence> allows two alternatives, a single command or a command fol-
lowed by a command sequence. The first case, which describes a single com-
mand, passes the inherited attributes Temp and InhLabel to the child and
synthesizes the attributes Code and SynLabel from the child. When the com-
mand sequence is a command followed by a second command sequence, the
Code attributes from each of the children are concatenated and passed up to
the parent. The inherited attribute Temp passes down to both children. The
inherited attribute InhLabel is passed down to the first child <command>,
synthesized out as SynLabel, passed over and inherited into <command se-
quence>2. Finally SynLabel for <command sequence>2 is passed back to <com-
mand sequence>. The attribute grammar for a command sequence appears
below.

<command sequence> ::=
 <command>

Code(<command sequence>) ← Code(<command>)
Temp(<command>) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
SynLabel(<command sequence>) ← SynLabel(<command>)

| <command> ; <command sequence>2

Code(<command sequence>) ←
concat(Code(<command>),Code(<command sequence>2))

Temp(<command>) ← Temp(<command sequence>)
Temp(<command sequence>2) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)

203

InhLabel(<command sequence>2) ← SynLabel(<command>)

SynLabel(<command sequence>) ← SynLabel(<command sequence>2)

This threading of label values in and out of commands is important and is
illustrated in Figure 7.4.

<cs1>

<c1>

SynLabel (cs1) ←
 SynLabel (cs2)

<cs2>

<cs3>

SynLabel (cs2) ←
 SynLabel (cs3)

<c2>

InhLabel (cs2) ← SynLabel (c1)

InhLabel (c2) ← InhLabel (cs2)

InhLabel (cs3) ← SynLabel (c2)

InhLabel (c3) ← InhLabel (cs3)

A

D

B
C

A

B

C

D

<c3>

SynLabel (cs3) ← SynLabel (c3) E

E

InhLabel (c1) ←
 InhLabel (cs1)

Figure 7.4: Threading of Label Attributes

Some commands, such as assignment, do not affect label values while oth-
ers, such as while or if, require one or two label values. The threaded label
value is incremented appropriately as it passes through the tree and, in this
way, it ensures that all labeled locations are unique throughout the target
code.

A command takes one of seven alternatives: input, output, skip, assign-
ment, a single alternative if, a double alternative if, or while. Four of the
commands—input, output, skip, and assignment—do not generate code with
labels, so the inherited label value InhLabel is “turned around” unmodified
and synthesized back as SynLabel. The if and while commands receive the
inherited attribute InhLabel and synthesize back a different value for SynLabel.

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

204 CHAPTER 7 TRANSLATIONAL SEMANTICS

The input, output, and skip commands are very simple. Input of a variable
generates the code of GET followed by the variable name. Output generates
code for the expression, stores the result in a temporary location, and then
does a PUT of that temporary location. Finally, skip generates a NO-OP (no
operation) instruction.

<command> ::= read <variable>
Code(<command>) ← [(GET, Name(<variable>))]
SynLabel(<command>) ← InhLabel(<command>)

<command> ::= write <integer expr>
Code(<command>) ← concat(Code(<integer expr>),

 [(STO, temporary(Temp(<command>)+1))])
 [(PUT, temporary(Temp(<command>)+1))])

Temp(<integer expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

<command> ::= skip
Code(<command>) ← [NO-OP]

SynLabel(<command>) ← InhLabel(<command>)

We have already discussed in detail the code generation for both integer and
Boolean expressions. The result of an expression is left in the accumulator,
so the assignment command concatenates code to store that result in the
target variable name for the assignment. Since an expression may need to
use temporary locations, the inherited attribute Temp is passed down to
<expr>.

<command> ::= <variable> := <expr>
Code(<command>) ←

concat(Code(<expr>),[(STO, Name(<variable>))])
Temp(<expr>) ← Temp(<command>)

SynLabel(<command>) ← InhLabel(<command>)

The while command has the form

while <boolean expr> do <command sequence> end while

where the code generated by the Boolean expression is followed by a condi-
tional jump on false. A flow diagram of the while command and the corre-
sponding code appears in Figure 7.5. We assume that the incoming value of
the InhLabel attribute is n. The attribute grammar definition for the while
command follows directly.

205

command
sequence

boolean
expression

true

false

L< n+1 > LABEL

Code for <boolean expr>

JF L< n+2 >

Code for <command sequence>

L< n+2 > LABEL

J L< n+1>

Figure 7.5: Flow Diagram and Code Generation for a while Command

<command> ::=
while <boolean expr> do <command sequence> end while

Code(<command>) ← concat(
[(label(InhLabel(<command>)+1),LABEL)],
Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+2))],
Code(<command sequence>),
[(J,label(InhLabel(<command>)+1))],
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+2

SynLabel(<command>) ← SynLabel(<command sequence>)

Since the while command itself needs two labels, InhLabel is incremented by
two before being passed down to InhLabel for the command sequence, which
may or may not generate new labels of its own. The SynLabel coming out of
the command sequence is passed out of the while command. The inherited
attribute Temp is passed down to both the Boolean expression and the com-
mand sequence. The utility function “label” converts an integer value into an
appropriate label name.

label(integer) = concat(‘L’, string(integer))

The if command has two forms; we concentrate on the one with two alterna-
tives

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

206 CHAPTER 7 TRANSLATIONAL SEMANTICS

if <boolean expr> then <command sequence>

else <command sequence> end if

where the code generated by the Boolean expression is followed by a condi-
tional jump on false. A flow diagram of the if command and the correspond-
ing code appears in Figure 7.6. Again we assume the incoming value of the
InhLabel attribute is n. The attribute grammar definition for this if command
follows directly.

boolean
expression

true

false

true task
command
sequence

false task
command
sequence

L< n+1 > LABEL

Code for <boolean expr>

JF L< n+1 >

Code for true task
 command sequence

Code for false task
 command sequence

J L< n+2>

L< n+2 > LABEL

Figure 7.6: Flow Diagram and Code Generation for an if Command

<command> ::= if <boolean expr> then <command sequence>1

else <command sequence>2 end if
Code(<command>) ← concat(Code(<boolean expr>),

[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>1),
[(J,label(InhLabel(<command>)+2))],
[(label(InhLabel(<command>)+1),LABEL)],
Code(<command sequence>2),
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>1) ← Temp(<command>)
Temp(<command sequence>2) ← Temp(<command>)

207

InhLabel(<command sequence>1) ← InhLabel(<command>)+2
InhLabel(<command sequence>2) ← SynLabel(<command sequence>1)

SynLabel(<command>) ← SynLabel(<command sequence>2)

Since the if command with two alternatives needs two labels, InhLabel is
incremented by two before being passed down to the first command sequence.
The SynLabel coming out of the first command sequence is threaded over as
the input to InhLabel for the second command sequence. The SynLabel from
the second command sequence is passed out of the if command. The inher-
ited attribute Temp is passed down to the Boolean expression and to both
command sequences.

The single alternative if command is simpler since it needs to generate only
one label instruction. This attribute grammar clause will be presented in
Figure 7.8. The attribute grammar for code generation for Wren is now com-
plete. A summary of the synthesized and inherited attributes associated with
each nonterminal is presented in Figure 7.7. The entire attribute grammar is
given without interruption in Figure 7.8.

Inherited Synthesized
Nonterminal Attributes Attributes
<program> — Code
<block> — Code
<declaration sequence> — —
<declaration> — —
<variable list> — —
<type> — —
<command sequence> Temp, InhLabel Code, SynLabel
<command> Temp, InhLabel Code, SynLabel
<expr> Temp Code
<integer expr> Temp Code
<term> Temp Code
<element> Temp Code
<weak op> — OpCode
<strong op> — OpCode
<boolean expr> Temp Code
<boolean term> Temp Code
<boolean element> Temp Code
<comparison> Temp Code
<relation> — TestCode
<variable> — Name
<identifier> — Name
<numeral> — Name
<letter> — Name
<digit> — Name

Figure 7.7: Attributes Associated with Nonterminal Symbols

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

208 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <program> ::= program <identifier> is <block>
Code(<program>) ← concat(Code(<block>), [HALT])

 <block> ::= <declaration sequence> begin <command sequence> end
Code(<block>) ← Code(<command sequence>)
Temp(<command sequence>) ← 0
InhLabel(<command sequence>) ← 0

 <declaration sequence> ::= ε | <declaration> <declaration sequence>2

 <declaration> ::= var <variable list> : <type>;

 <variable list> ::= <variable> | <variable> , <variable list>2

 <type> ::= integer | boolean

 <command sequence> ::= <command>
Code(<command sequence>) ← Code(<command>)
Temp(<command>) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
SynLabel(<command sequence>) ← SynLabel(<command>)

| <command> ; <command sequence>2
Code(<command sequence>) ←

concat(Code(<command>),Code(<command sequence>2))
Temp(<command>) ← Temp(<command sequence>
Temp(<command sequence>2) ← Temp(<command sequence>)
InhLabel(<command>) ← InhLabel(<command sequence>)
InhLabel(<command sequence>2) ← SynLabel(<command>)
SynLabel(<command sequence>) ← SynLabel(<command sequence>2)

 <command> ::= <variable> := <expr>
Code(<command>) ← concat(Code(<expr>),[(STO, Name(<variable>))])
Temp(<expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= read <variable>
Code(<command>) ← [(GET, Name(<variable>))]
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= write <integer expr>
Code(<command>) ←

concat(Code(<integer expr>),
[(STO, temporary(Temp(<command>)+1))],
[(PUT, temporary(Temp(<command>)+1))])

Temp(<integer expr>) ← Temp(<command>)
SynLabel(<command>) ← InhLabel(<command>)

Figure 7.8: Complete Attribute Grammar for Wren (Part 1)

209

 <command> ::= skip
Code(<command>) ← [NO-OP]
SynLabel(<command>) ← InhLabel(<command>)

 <command> ::= while <boolean expr> do <command sequence> end while
Code(<command>) ← concat([(label(InhLabel(<command>)+1),LABEL)],

Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+2))],
Code(<command sequence>),
[(J,label(InhLabel(<command>)+1))],
[(label(InhLabel(<command>)+2),LABEL)]),

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+2
SynLabel(<command>) ← SynLabel(<command sequence>)

 <command> ::= if <boolean expr> then <command sequence> end if
Code(<command>) ← concat(Code(<boolean expr>),

[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>),
[(label(InhLabel(<command>)+1),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>) ← Temp(<command>)
InhLabel(<command sequence>) ← InhLabel(<command>)+1
SynLabel(<command>) ← SynLabel(<command sequence>)

 <command> ::= if <boolean expr> then <command sequence>1
else <command sequence>2 end if

Code(<command>) ← concat(Code(<boolean expr>),
[(JF,label(InhLabel(<command>)+1))],
Code(<command sequence>1),
[(J,label(InhLabel(<command>)+2))],
[(label(InhLabel(<command>)+1),LABEL)],
Code(<command sequence>2),
[(label(InhLabel(<command>)+2),LABEL)])

Temp(<boolean expr>) ← Temp(<command>)
Temp(<command sequence>1) ← Temp(<command>)
Temp(<command sequence>2) ← Temp(<command>)
InhLabel(<command sequence>1) ← InhLabel(<command>)+2
InhLabel(<command sequence>2) ← SynLabel(<command sequence>1)
SynLabel(<command>) ← SynLabel(<command sequence>2)

Figure 7.8: Complete Attribute Grammar for Wren (Part 2)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

210 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <expr> ::=
 <integer expr>

Code(<expr>) ← Code(<integer expr>)
Temp(<integer expr>) ← Temp(<expr>)

| <boolean expr>
Code(<expr>) ← Code(<boolean expr>)
Temp(<boolean expr>) ← Temp(<expr>)

 <integer expr> ::=
 <term>

Code(<integer expr>) ← Code(<term>)
Temp(<term>) ← Temp(<integer expr>)

| <integer expr>2 <weak op> <term>
Code(<integer expr>) ← concat(Code(<integer expr>2),

optimize(Code(<term>),Temp(<integer expr>),OpCode(<weak op>)))
Temp(<integer expr>2) ← Temp(<integer expr>)
Temp(<term>) ← Temp(<integer expr>)+1

 <weak op> ::=
 +

OpCode(<weak op>) ← ADD
| –

OpCode(<weak op>) ← SUB

 <term> ::=
 <element>

Code(<term>) ← Code(<element>)
Temp(<element>) ← Temp(<term>)

| <term>2 <strong op> <element>
Code(<term>) ← concat(Code(<term>2),

optimize(Code(<element>),Temp(<term>),OpCode(<strong op>)))
Temp(<term>2) ← Temp(<term>)
Temp(<element>) ← Temp(<term>)+1

 <strong op> ::=
 *

OpCode(<strong op>) ← MULT
| /

OpCode(<strong op>) ← DIV

 <element> ::=
 <numeral>

Code(<element>) ← [(LOAD, Name(<numeral>))]
| <variable>

Code(<element>) ← [(LOAD, Name(<variable>))]
| (<integer expr>)

Code(<element>) ← Code(<integer expr>)
Temp(<integer expr>) ← Temp(<element>)

Figure 7.8: Complete Attribute Grammar for Wren (Part 3)

211

 <boolean expr> ::=
 <boolean term>

Code(<boolean expr>) ← Code(<boolean term>)
Temp(<boolean term>) ← Temp(<boolean expr>)

| <boolean expr>2 or <boolean term>
Code(<boolean expr>) ← concat(Code(<boolean expr>2),

[(STO, temporary(Temp(<boolean expr>)+1))],
Code(<boolean term>,
[(OR, temporary(Temp(<boolean expr>)+1))])

Temp(<boolean expr>2) ← Temp(<boolean expr>)
Temp(<boolean term>) ← Temp(<boolean expr>)+1

 <boolean term> ::=
 <boolean element>

Code(<boolean term>) ← Code(<boolean element>)
Temp(<boolean element>) ← Temp(<boolean term>)

| <boolean term>2 and <boolean element>
Code(<boolean term>) ← concat(Code(<boolean term>2),

[(STO, temporary(Temp(<boolean term>)+1))],
Code(<boolean element>,
[(AND, temporary(Temp(<boolean term>)+1))])

Temp(<boolean term>2) ← Temp(<boolean term>)
Temp(<boolean element>) ← Temp(<boolean term>)+1

 <boolean element> ::=
 false

Code(<boolean element>) ← [(LOAD, 0)]
| true

Code(<boolean element>) ← [(LOAD, 1)]
| <variable>

Code(<boolean element>) ← [(LOAD, Name(<variable>))]
| <comparison>

Code(<boolean element>) ← Code(<comparison>)
Temp(<comparison>) ← Temp(<boolean element>)

| (<boolean expr>)
Code(<boolean element>) ← Code(<boolean expr>)
Temp(<boolean expr>) ← Temp(<boolean element>)

| not (<boolean expr>)
Code(<boolean element>) ← concat(Code(<boolean expr>), [NOT]),
Temp(<boolean expr>) ← Temp(<boolean element>)

 <comparison> ::= <integer expr>1 <relation> <integer expr>2
Code(<comparison>) ← concat(Code(<integer expr>1),

optimize(Code(<integer expr>2),Temp(<comparison>),SUB),
[TestCode(<relation>)])

Temp(<integer expr>1) ← Temp(<comparison>)
Temp(<integer expr>2) ← Temp(<comparison>)+1

 Figure 7.8: Complete Attribute Grammar for Wren (Part 4)

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

212 CHAPTER 7 TRANSLATIONAL SEMANTICS

 <relation> ::=
 >

TestCode(<relation>) ← TSTGT
| >=

TestCode(<relation>) ← TSTGE
| <>

TestCode(<relation>) ← TSTNE
| =

TestCode(<relation>) ← TSTEQ
| <=

TestCode(<relation>) ← TSTLE
| <

TestCode(<relation>) ← TSTLT

 <variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

 <identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← concat(Name(<identifier>2),Name(<digit>))

 <letter> ::=
 a

Name(<letter>) ← ‘A’
: :

| z
Name(<letter>) ← ‘Z’

 <numeral> ::=
 <digit>

Name(<numeral>) ← Name(<digit>)
| <numeral>2 <digit>

Name(<numeral>) ← concat(Name(<numeral>2),Name(<digit>))

 <digit> ::=
 0
 Name(<digit>) ← ‘0’

: :
 | 9
 Name(<digit>) ← ‘9’

Figure 7.8: Complete Attribute Grammar for Wren (Part 5)

213

 Auxiliary Functions

 optimize(code, temp, opcode) =
if length(code) = 1 then -- a variable or numeral

[(opcode, secondField(first(code)))]
else

concat([(STO, temporary(temp+1))],
code,
[(STO, temporary(temp+2))],
[(LOAD, temporary(temp+1))],
[(opcode, temporary(temp+2))])

 temporary(integer) = concat(‘T’,string(integer))

 label(integer) = concat(‘L’, string(integer))

 string(n) = if n = 0 then ‘0’
 : : :
else if n = 9 then ‘9’
else concat(string(n/10), string(n mod 10))

Figure 7.8: Complete Attribute Grammar for Wren (Part 6)

Exercises

1. The negation of an element was not specified in the attribute grammar
of Figure 7.8. Add this alternative to the production for <element> with-
out adding any new instructions to the object code.

2. Draw the complete, decorated tree for the arithmetic expression

2 * x * y + z / 3

3. Draw the complete, decorated tree for the command sequence in the
following program:

program mod is
var m, n : integer;

begin
read m; read n;
while m > n do

m := m – n
end while;
write m

end

7.2 ATTRIBUTE GRAMMAR CODE GENERATION

214 CHAPTER 7 TRANSLATIONAL SEMANTICS

4. Without drawing the complete tree, show the code generated by attribute
grammar for the following Wren program:

program multiply is
var m, n, product : integer;

begin
read m; read n;
product := 0;
while n > 0 do

if 2 * (n / 2) < > n then (* if n is odd *)
product := product + m

end if;
m := 2 * m; n := n / 2

end while;
write product

end
Compare the answer for this problem with the answer for exercise 1 in
section 7.1. Is there any difference in efficiency between hand-generated
and machine-generated code?

5. Change the semantic rules for the write command so that the code is
optimized when the expression being printed is a variable.

6. The Boolean expressions in the grammar given are fully evaluated. Some
programming languages short-circuit Boolean expression evaluation once
the final result is known. Is it possible to modify the grammar in a simple
way so that short-circuit evaluation is performed?

7. We did not include an optimization for Boolean expressions. Will such
an optimization be possible? If it is, add it to the attribute grammar; if it
is not, explain why.

8. Add the command
repeat <command sequence> until <boolean expr>

to Wren and modify the attribute grammar so that the generated code
causes the loop to be exited when the Boolean expression is true.

9. Add the conditional integer expression
if <boolean expr> then <integer expr>1 else <integer expr>2

to Wren and modify the attribute grammar accordingly.

10. Add integer expressions with side effects
begin <command sequence> return <integer expr> end

to Wren and modify the attribute grammar so that the value returned is
evaluated with the state produced by executing the command sequence.

215

11. Reverse Polish notation is used on some calculators to evaluate arith-
metic expressions. For a binary operation, the first operand is pushed
on a stack, the second operand is pushed on the stack, and, when the
operation is performed, both operands are popped off the stack and the
result of the operation is pushed back onto the stack. Introduce appro-
priate machine instructions for a stack architecture for arithmetic expres-
sion evaluation and modify the attribute grammar for Wren accordingly.

12. The following BNF grammar defines an expression language with binary
operations +, –, *, and /, unary -, and the variables a, b, and c.

<expr> ::= <term> | <expr> + <term> | <expr> – <term>

<term> ::= <elem> | <term> * <elem> | <term> / <elem>

<elem> ::= a | b | c | (<expr>) | - <expr>

Convert this definition into an attribute grammar whose main attribute
Val is an abstract syntax tree for the expression represented in the form
of a tagged structure similar to a Prolog structure. For example,

Val(“(a–b)*-(b+c)/a”) = times(minus(a,b),divides(negative(plus(b,c)),a)).

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

As in Chapter 3, we will be developing an attribute grammar written in Prolog,
but unlike that previous laboratory project, our goal now is the generation of
intermediate code, as described in section 7.1. Although we parse the decla-
ration section of the program, we do not use this information in the genera-
tion of code.

As before, we assume “front end” code to read the text from a file and convert
it into a sequence of tokens. We also add a pretty-printing capability on the
“back end” so that the resulting program looks like assembly code. An ex-
ample illustrates the code generator.

>>> Translating Wren <<<
Enter name of source file: gcd.wren
 program gcd is
 var m,n: integer;
 begin
 read m; read n;
 while m <> n do
 if m < n then n := n - m
 else m := m - n
 end if

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

216 CHAPTER 7 TRANSLATIONAL SEMANTICS

 end while;
 write m
 end
Scan successful
[program,ide(gcd),is,var,ide(m),comma,ide(n),colon,integer,
 semicolon,begin,read,ide(m),semicolon,read,ide(n),semicolon,
 while,ide(m),neq,ide(n),do,if,ide(m),less,ide(n),then,ide(n),
 assign,ide(n),minus,ide(m),else,ide(m),assign,ide(m),minus,
 ide(n),end,if,end,while,semicolon,write,ide(m),end,eop]
Parse successful
[[GET,m],[GET,n],[L1,LABEL],[LOAD,m],[SUB,n],TSTNE,[JF,L2],[LOAD,m],[SUB,n],
 TSTGT,[JF,L3],[LOAD,n],[SUB,m],[STO,n],[J,L4],[L3,LABEL],
 [LOAD,m],[SUB,N],[STO,m],[L4,LABEL],[J,L1],[L2,LABEL],
 [LOAD,m],[STO,T1],[PUT,T1],HALT]

GET M
GET N

L1 LABEL
LOAD M
SUB N
TSTNE
JF L2
LOAD M
SUB N
TSTGT
JF L3
LOAD N
SUB M
STO N
J L4

L3 LABEL
LOAD M
SUB N
STO M

L4 LABEL
J L1

L2 LABEL
LOAD M
STO T1
PUT T1
HALT

yes

The transcript above shows the token list produced by the scanner and the
list of assembly language instructions constructed by the attribute grammar

217

woven throughout the parser. A pretty-print routine capitalizes symbols in
the code and formats the output. The program above is the gcd program in
Wren that was discussed in section 7.1.

This example illustrates the code generated by the Prolog translator once it is
fully implemented. As in previous laboratory sections, we provide only a par-
tial implementation and leave the unimplemented components as exercises.

The generated code for the synthesized attribute Code is maintained as a Prolog
list of assembly language instructions, each of which is a Prolog list itself.

The program clause adds the instruction 'HALT' to the generated code; at the
same time it ignores the program identifier since that value does not affect
the code generated. Because uppercase has particular significance in Prolog,
generated opcodes must be enclosed in apostrophes. At the block level, the
synthesized Code attribute is passed to the program level and the inherited
attributes for Temp and InhLabel are initialized to zero.

program(Code) --> [program, ide(Ident), is], block(Code1),
{ concat(Code1, ['HALT'], Code) }.

block(Code) --> decs, [begin], commandSeq(Code,0,0,SynLabel), [end].

Commands

Implementing decs following the example in Chapter 2 is left as an exercise.
We break a command sequence into the first command followed by the rest of
the commands, if any. The Temp attribute is passed to both children, the
InhLabel attribute from the command sequence is inherited by the first com-
mand, the SynLabel attribute from the first command becomes the InhLabel
attribute of the rest of the commands, and the SynLabel of the rest of the
commands is passed to the parent command sequence. The two code se-
quences are concatenated in a list structure. The rest of the commands are
handled in a similar manner except that when no more commands remain,
the resulting code list is empty.

commandSeq(Code,Temp,InhLab,SynLab) -->
command(Code1,Temp,InhLab,SynLab1),
restcmds(Code2,Temp,SynLab1,SynLab),
{ concat(Code1, Code2, Code) }.

restcmds(Code,Temp,InhLab,SynLab) -->
[semicolon],
command(Code1,Temp,InhLab,SynLab1),
restcmds(Code2,Temp,SynLab1,SynLab),
{ concat(Code1, Code2, Code) }.

restcmds([],Temp,InhLab,InhLab) --> [].

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

218 CHAPTER 7 TRANSLATIONAL SEMANTICS

The input and skip commands do not use the Temp attribute and simply
turn the label attribute around and feed it back out by placing the same
variable Label in both argument places. The assignment and output com-
mands use the Temp attribute and turn around the label attribute. Some of
these commands appear below, others are left as exercises.

command([['GET', Var]], Temp, Label, Label) --> [read,ide(Var)].

command(Code, Temp, Label, Label) -->
[ide(Var), assign], expr(Code1,Temp),
{ concat(Code1, [['STO',Var]], Code) }.

The input of a variable is translated into the GET of the same variable. The
output of an expression is the code generated for the expression, followed by
the store of its result in a temporary location and a PUT of this location. The
skip command generates a NO-OP. The assignment command concatenates
a STO of the target variable after the code generated by expression. The reader
is encouraged to complete the write and skip commands.

The single alternative if command consists of the code for the Boolean ex-
pression that includes a test operation, a conditional jump, the code for the
body, and a label instruction that is the target of the conditional jump. No-
tice the use of the built-in Prolog predicate is to evaluate an arithmetic ex-
pression and bind the result. We have also used a utility predicate label to
combine L with the label number. Note that we need to define a concat predi-
cate that concatenates three lists (see Appendix A).

command(Code,Temp,InhLab,SynLab) -->
[if], { InhLab1 is InhLab+1, label(InhLab1,Lab) },
booleanExpr(Code1,Temp),
[then], commandSeq(Code2,Temp,InhLab1,SynLab), [end,if],
{ concat(Code1, [['JF',Lab]|Code2], [[Lab,'LABEL']], Code) }.

label(Number,Label) :-
name('L',L1), name(Number,L2), concat(L1,L2,L), name(Label,L).

The two-alternative if command has the most complex code sequence:

• The code from the Boolean expression

• A conditional jump to the false task

• The code from the true task

• An unconditional jump to the label instruction following the entire com-
mand

• A label instruction for entry into the false task

• The code for the false task itself

• The final label instruction for the jump out of the true task.

219

The same Temp attribute is passed to all three children. Since the two-alter-
native if command requires two unique labels, the InhLabel for the true com-
mand sequence has been incremented by two. The SynLabel out of the true
command sequence is threaded into the false command sequence. The
SynLabel of the false command sequence is passed to the parent. Here we
need a concat predicate that concatenates four lists.

command(Code,Temp,InhLab,SynLab) -->
[if], { InhLab1 is InhLab+1, InhLab2 is InhLab+2,

label(InhLab1,Lab1), label(InhLab2,Lab2) },
booleanExpr(Code1,Temp),
[then], commandSeq(Code2,Temp,InhLab2,SynLab2),
[else], commandSeq(Code3,Temp,SynLab2,SynLab), [end,if],
{ concat(Code1, [['JF',Lab1]|Code2],
 [['J',Lab2], [Lab1,'LABEL']|Code3], [[Lab2,'LABEL']], Code) }.

The while command begins with a label instruction that is the target for the
unconditional jump at the bottom of the loop, which is followed by the code
for the Boolean expression, a conditional jump out of the while, the code for
the loop body, an unconditional jump to the top of the loop, and a final label
instruction for exiting the while loop. The Temp attribute is inherited down
to the Boolean expression and loop body. Since two labels are used, the
InhLabel to the loop body is incremented by two and the SynLabel from the
loop body is passed back up to the parent. Completion of the code for a while
command is left as an exercise.

Expressions

The code generated by arithmetic expressions does not involve labels, so the
label attributes are not used at all. As we saw earlier in Chapter 2, we have to
transform our left recursive attribute grammar into a right recursive format
when implemented as a logic grammar. If an expression goes directly to a
single term, then Temp is passed in and Code is passed out. If an expression
is a term followed by one or more subsequent terms, then the inherited Temp
value is passed down to the left-hand term and this value incremented by
one is passed to the right-hand term. There may be still more terms to the
right, but since the additive operations are left associative, we have com-
pleted the operation on the left two terms and the temporary locations can be
used again. Therefore the original Temp value is passed down to the clause
for the remaining terms.

The generated code for an integer expression is the code from the first term
followed by the optimized code from any remaining terms. If the code from
the right-hand term is simply the load of a variable or a numeral, the code is

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

220 CHAPTER 7 TRANSLATIONAL SEMANTICS

optimized by having the opcode associated with the binary operation applied
directly to the simple operand. If this is not the case, the result from the left
operand is stored in a temporary, the code is generated for the right operand
that is stored in a second temporary, the first temporary is loaded, and the
operation is applied to the second temporary. The predicate optimize allows
two forms due to the two possible list structures. Notice the use of the utility
predicate temporary to build temporary location names. The resulting code
from an expression with multiple terms is the code from the first term, the
code from the second term, and the code from the remaining terms, if any.

integerExpr(Code,Temp) --> term(Code1,Temp), restExpr(Code2,Temp),
{ concat(Code1, Code2, Code) }.

restExpr(Code,Temp) --> weakop(Op), { Temp1 is Temp+1 },
term(Code1,Temp1),
{ optimize(Code1,OptCode1,Temp,Op) },
restExpr(Code2,Temp),
{ concat(OptCode1, Code2, Code) }.

restExpr([],Temp) --> [].

weakop('ADD') --> [plus].

weakop('SUB') --> [minus].

optimize([['LOAD',Operand]],[[Opcode,Operand]],Temp,Opcode).
optimize(Code,OptCode,Temp,Op) :-

Temp1 is Temp+1, Temp2 is Temp+2,
temporary(Temp1,T1), temporary(Temp2,T2),
concat([['STO',T1]|Code], [['STO',T2], ['LOAD',T1], [Op,T2]], OptCode).

temporary(Number,Temp) :-
name('T',T1), name(Number,T2), concat(T1,T2,T), name(Temp,T).

Terms are similar to expressions and are left as an exercise. For now, we give
a clause for terms that enables the current specification of the attribute gram-
mar to work correctly on a restrict subset of Wren with only the “weak” arith-
metic operators. This clause will have to be replaced to produce correct trans-
lations of terms in Wren.

term(Code,Temp) --> element(Code,Temp).

An element can expand to a number, an identifier, or a parenthesized expres-
sion, in which case the Temp attribute is passed in. The negation of an ele-
ment is left as an exercise.

element(['LOAD',Number], Temp) --> [num(Number)].

element(['LOAD',Name], Temp) --> [ide(Name)].

element(Code,Temp) --> [lparen], expression(Code,Temp), [rparen].

221

The code for expressions, Boolean expressions, Boolean terms, and Boolean
elements is left as an exercise.

The final task is to generate the code for comparisons. We generate code for
the left-side expression, recognize the relation, generate code for the right-
side expression, and then call optimize for the right side using the subtract
operation. The code for the comparison is the concatenation of the code for
the left-side expresion, the optimized code for the right-side expression, and
the test instruction. In the code below, the variable Tst holds the value of the
test operation returned by testcode. The reader is encouraged to write the
clauses for testcode.

comparison(Code,Temp) -->
{ Temp1 is Temp+1 },
integerExpr(Code1,Temp),
testcode(Tst), integerExpr(Code2,Temp1),
{ optimize(Code2,OptCode2,Temp,'SUB') },
{ concat(Code1,OptCode2,[Tst], Code) }.

This completes our partial code generator for Wren. The exercises below de-
scribe the steps needed to complete this Wren translator. Other exercises
deal with extensions to Wren that can be translated into intermediate code.

Exercises

1. Complete the implementation given in this section by adding the follow-
ing featues:

• The output and skip commands

• The while command

• Clauses for term, remterm, and strongop

• Clauses for expression, boolExpr, boolTerm, and boolElement

• Clauses for testcode

2. Write a pretty-print routine for the intermediate code. Add a routine to
capitalize all identifiers. All commands, except for labels, are indented
by one tab and there is a tab between an opcode and its argument. A tab
character is generated by put(9) and a return is accomplished by nl. Re-
cursion in the pretty-print predicate can stop once the halt instruction
is encountered and printed.

7.3 LABORATORY: IMPLEMENTING CODE GENERATION

222 CHAPTER 7 TRANSLATIONAL SEMANTICS

3. The negation of an element (unary minus) was not specified in the pro-
duction that defines elements. Add this alternative using the existing
intermediate code instructions.

4. Modify the output command to print a list of expression values. Add a
new intermediate code command for a line feed that is generated after
the list of expressions is printed.

5. Add the repeat .. until command, as described in exercise 8, section 7.2.

6. Add a conditional expression, as described in exercise 9, section 7.2.

7. Add expressions with side effects, as described in exercise 10, section
7.2.

8. Follow exercise 11 in section 7.2 to change the code generation for a
stack architecture machine and to implement these changes in the Prolog
code generator.

7.4 FURTHER READING

The use of attribute grammars for code generation is of primary interest to
the compiler writer. Lewis, Rosenkrantz, and Stearns presented an early pa-
per on attributed translations [Lewis74]. Several references in compiler con-
struction have already been noted in Section 3.4 [Aho86], [Fischer91], [Par-
sons92], and [Pittman92].

Frank Pagan presents a code-generating attribute grammar for the language
Pam [Pagan81]. Pam is somewhat simpler than Wren since all variables are
of type integer. Because there is no need to generate Boolean values, as our
TST instructions do, his target language has six conditional jumps that use
the same instruction both to test and jump.

We have assigned programs for students to use the Synthesizer-Generator
[Reps89] to implement code generation for Wren. Our code generator in Prolog
operates in batch mode whereas the Synthesizer-Generator code-generating
editor operates in incremental mode. Two windows appear on the screen, one
for the source code and one for the object code. As the code is entered in the
source window, the corresponding object code appears immediately. Changes
in the source code, including deletions, result in “instantaneous” changes in
the object code, even when this involves changes in label numbers and tem-
porary location numbers.

