
Chapter 5
THE LAMBDA CALCULUS

Functions play a prominent role in describing the semantics of a pro-
gramming language, since the meaning of a computer program can be
considered as a function from input values to output values. In addi-

tion, functions play an essential role in mathematics, which means that much
of the theory of functions, including the issue of computability, unfolded as
part of mathematical logic before the advent of computers. In particular, Alonzo
Church developed the lambda calculus in the 1930s as a theory of functions
that provides rules for manipulating functions in a purely syntactic manner.

Although the lambda calculus arose as a branch of mathematical logic to
provide a foundation for mathematics, it has led to considerable ramifica-
tions in the theory of programming languages. Beyond the influence of the
lambda calculus in the area of computation theory, it has contributed im-
portant results to the formal semantics of programming languages:

• Although the lambda calculus has the power to represent all computable
functions, its uncomplicated syntax and semantics provide an excellent
vehicle for studying the meaning of programming language concepts.

• All functional programming languages can be viewed as syntactic varia-
tions of the lambda calculus, so that both their semantics and implemen-
tation can be analyzed in the context of the lambda calculus.

• Denotational semantics, one of the foremost methods of formal specifica-
tion of languages, grew out of research in the lambda calculus and ex-
presses its definitions using the higher-order functions of the lambda cal-
culus.

In this chapter we take a brief but careful look at the lambda calculus, first
defining it as a language and then viewing it as a computational formalism in
light of its reduction rules. We end the chapter by implementing a lambda
calculus evaluator in Prolog. In Chapter 10 we continue the study of func-
tions with the goal of explaining recursive definitions.

139

140 CHAPTER 5 THE LAMBDA CALCULUS

5.1 CONCEPTS AND EXAMPLES

Our description of the lambda calculus begins with some motivation for the
notation. A function is a mapping from the elements of a domain set to the
elements of a codomain set given by a rule—for example,

cube : Integer → Integer where cube(n) = n3.

Certain questions arise from such a function definition:

• What is the value of the identifier “cube”?

• How can we represent the object bound to “cube”?

• Can this function be defined without giving it a name?

Church’s lambda notation allows the definition of an anonymous function,
that is, a function without a name:

λn . n3 defines the function that maps each n in the domain to n3.

We say that the expression represented by λn . n3 is the value bound to the
identifier “cube”. The number and order of the parameters to the function
are specified between the λ symbol and an expression. For instance, the
expression n2+m is ambiguous as the definition of a function rule:

(3,4) |→ 32+4 = 13 or (3,4) |→ 42+3 = 19.

Lambda notation resolves the ambiguity by specifying the order of the pa-
rameters:

λn . λm . n2+m or λm . λn . n2+m.

Most functional programming languages allow anonymous functions as val-
ues; for example, the function λn . n3 is represented as

(lambda (n) (* n n n)) in Scheme and

fn n => n* n* n in Standard ML.

Syntax of the Lambda Calculus

The lambda calculus derives its usefulness from having a sparse syntax and
a simple semantics, and yet it retains sufficient power to represent all com-
putable functions. Lambda expressions come in four varieties:

1. Variables, which are usually taken to be any lowercase letters.

1415.1 CONCEPTS AND EXAMPLES

2. Predefined constants, which act as values and operations are allowed in
an impure or applied lambda calculus .

3. Function applications (combinations).

4. Lambda abstractions (function definitions).

The simplicity of lambda calculus syntax is apparent from a BNF specifica-
tion of its concrete syntax:

<expression> ::= <variable> ; lowercase identifiers

| <constant> ; predefined objects

| (<expression> <expression>) ; combinations

| (λ <variable> . <expression>) ; abstractions.

In the spirit of software engineering, we allow identifiers of more than one
letter to stand as variables and constants. The pure lambda calculus has no
predefined constants, but it still allows the definition of all of the common
constants and functions of arithmetic and list manipulation. We will say
more about the expressibility of the pure lambda calculus later in this chap-
ter. For now, predefined constants will be allowed in our examples, including
numerals (for example, 34), add (for addition), mul (for multiplication), succ
(the successor function), and sqr (the squaring function).

In an abstraction, the variable named is referred to as the bound variable
and the associated lambda expression is the body of the abstraction. With a
function application (E1 E2), it is expected that E1 evaluates to a predefined
function (a constant) or an abstraction, say (λx . E3), in which case the result
of the application will be the evaluation of E3 after every “free” occurrence of
x in E3 has been replaced by E2. In a combination (E1 E2), the function or
operator E1 is called the rator and its argument or operand E2 is called the
rand . Formal definitions of free occurrences of variables and the replace-
ment operation will be provided shortly.

Lambda expressions will be illustrated with several examples in which we
use prefix notation as in Lisp for predefined binary operations and so avoid
the issue of precedence among operations.

• The lambda expression λx . x denotes the identity function in the sense
that ((λx . x) E) = E for any lambda expression E. Functions that allow
arguments of many types, such as this identity function, are known as
polymorphic operations. The lambda expression (λx . x) acts as an iden-
tity function on the set of integers, on a set of functions of some type, or on
any other kind of object.

• The expression λn . (add n 1) denotes the successor function on the inte-
gers so that ((λn . (add n 1)) 5) = 6. Note that “add” and 1 need to be

142 CHAPTER 5 THE LAMBDA CALCULUS

predefined constants to define this function, and 5 must be predefined to
apply the function as we have done.

• The abstraction (λf . (λx . (f (f x)))) describes a function with two arguments,
a function and a value, that applies the function to the value twice. If sqr is
the (predefined) integer function that squares its argument, then

(((λf . (λx . (f (f x)))) sqr) 3) = ((λx . (sqr (sqr x))) 3)

= (sqr (sqr 3)) = (sqr 9) = 81.

Here f is replaced by sqr and then x by 3. These examples show that the
number of parentheses in lambda expressions can become quite large. The
following notational conventions allow abbreviations that reduce the number
of parentheses:

1. Uppercase letters and identifiers beginning with capital letters will be used
as metavariables ranging over lambda expressions.

2. Function application associates to the left.

E1 E2 E3 means ((E1 E2) E3)

3. The scope of “λ<variable>” in an abstraction extends as far to the right as
possible.

λx . E1 E2 E3 means (λx . (E1 E2 E3)) and not ((λx . E1 E2) E3).

So application has a higher precedence than abstraction, and parenthe-
ses are needed for (λx . E1 E2) E3, where E3 is intended to be an argument
to the function λx . E1 E2 and not part of the body of the function as
above.

4. An abstraction allows a list of variables that abbreviates a series of lambda
abstractions.

λx y z . E means (λx . (λy . (λz . E)))

5. Functions defined as lambda expression abstractions are anonymous, so
the lambda expression itself denotes the function. As a notational con-
vention, lambda expressions may be named using the syntax

define <name> = <expression>.

For example, given define Twice = λf . λx . f (f x), it follows that

(Twice (λn . (add n 1)) 5) = 7.

We follow a convention of starting defined names with uppercase letters
to distinguish them from variables. Imagine that “Twice” is replaced by its
definition as with a macro expansion before the lambda expression is
reduced. Later we show a step-by-step reduction of this lambda expres-
sion to 7.

143

Example : Because of the sparse syntax of the lambda calculus, correctly
parenthesizing (parsing) a lambda expression can be challenging. We illus-
trate the problem by grouping the terms in the following lambda expression:

(λn . λf . λx . f (n f x)) (λg . λy . g y).

We first identify the lambda abstractions, using the rule that the scope of
lambda variable extends as far as possible. Observe that the lambda ab-
stractions in the first term are ended by an existing set of parentheses.

(λx . f (n f x)) (λy . g y)

(λf . (λx . f (n f x))) (λg . (λy . g y))

(λn . (λf . (λx . f (n f x))))

Then grouping the combinations by associating them to the left yields the
completely parenthesized expression:

((λn . (λf . (λx . (f ((n f) x))))) (λg . (λy . (g y)))). ❚

Curried Functions

Lambda calculus as described above seems to permit functions of a single
variable only. The abstraction mechanism allows for only one parameter at a
time. However, many useful functions, such as binary arithmetic operations,
require more than one parameter; for example, sum(a,b) = a+b matches the
syntactic specification sum : NxN → N, where N denotes the natural numbers.

Lambda calculus admits two solutions to this problem:

1. Allow ordered pairs as lambda expressions, say using the notation <x,y>,
and define the addition function on pairs:

sum <a,b> = a + b

Pairs can be provided by using a predefined “cons” operation as in Lisp,
or the pairing operation can be defined in terms of primitive lambda ex-
pressions in the pure lambda calculus, as will be seen later in the chap-
ter.

2. Use the curried version of the function with the property that arguments
are supplied one at a time:

add : N → N → N (→ associates to the right)

where add a b = a + b (function application associates to the left).

Now (add a) : N → N is a function with the property that ((add a) b) = a + b.
In this way, the successor function can be defined as (add 1).

5.1 CONCEPTS AND EXAMPLES

144 CHAPTER 5 THE LAMBDA CALCULUS

Note that the notational conventions of associating → to the right and func-
tion application to the left agree. The terms “curried” and “currying” honor
Haskell Curry who used the mechanism in his study of functions. Moses
Schönfinkel actually developed the idea of currying before Curry, which means
that it might more accurately be called “Schönfinkeling”.

The operations of currying and uncurrying a function can be expressed in
the lambda calculus as

define Curry = λf . λx . λy . f <x,y>

define Uncurry = λf . λp . f (head p) (tail p)

provided the pairing operation <x,y> = (cons x y) and the functions (head p)
and (tail p) are available, either as predefined functions or as functions de-
fined in the pure lambda calculus, as we will see later.

Therefore the two versions of the addition operation are related as follows:

Curry sum = add and Uncurry add = sum.

One advantage of currying is that it permits the “partial application” of a
function. Consider an example using Twice that takes advantage of the cur-
rying of functions:

define Twice = λf . λx . f (f x).

Note that Twice is another example of a polymorphic function in the sense
that it may be applied to any function and element as long as that element is
in the domain of the function and its image under the function is also in that
domain. The mechanism that allows functions to be defined to work on a
number of types of data is also known as parametric polymorphism .

If D is any domain, the syntax (or signature) for Twice can be described as

Twice : (D → D) → D → D.

Given the square function, sqr : N → N where N stands for the natural num-
bers, it follows that

(Twice sqr) : N → N

is itself a function. This new function can be named

define FourthPower = Twice sqr.

Observe that FourthPower is defined without any reference to its argument.
Defining new functions in this way embodies the spirit of functional pro-
gramming. Much of the power of a functional programming language lies in
its ability to define and apply higher-order functions—that is, functions that
take functions as arguments and/or return a function as their result. Twice
is higher-order since it maps one function to another.

145

Semantics of Lambda Expressions

A lambda expression has as its meaning the lambda expression that results
after all its function applications (combinations) are carried out. Evaluating
a lambda expression is called reduction . The basic reduction rule involves
substituting expressions for free variables in a manner similar to the way
that the parameters in a function definition are passed as arguments in a
function call. We start by defining the concepts of free occurrences of vari-
ables and the substitution of expressions for variables.

Definition : An occurrence of a variable v in a lambda expression is called
bound if it is within the scope of a “λv”; otherwise it is called free. ❚

A variable may occur both bound and free in the same lambda expression;
for example, in λx . y λy . y x the first occurrence of y is free and the other two
are bound. Note the care we take in distinguishing between a variable and
occurrences of that variable in a lambda expression.

The notation E[v→E1] refers to the lambda expression obtained by replacing
each free occurrence of the variable v in E by the lambda expression E1.
Such a substitution is called valid or safe if no free variable in E1 becomes
bound as a result of the substitution E[v→E1]. An invalid substitution in-
volves a variable captur e or name clash .

For example, the naive substitution (λx . (mul y x))[y→x] to get (λx . (mul x x))
is unsafe since the result represents a squaring operation whereas the origi-
nal lambda expression does not. We cannot allow the change in semantics
engendered by this naive substitution, since we want to preserve the seman-
tics of lambda expressions as we manipulate them.

The definition of substitution requires some care to avoid variable capture.
We first need to identify the variables in E that are free by defining an opera-
tion that lists the variables that occur free in an expression. For example,
FV(λx . y λy . y x z) = {y,z}.

Definition : The set of fr ee variables (variables that occur free) in an expres-
sion E, denoted by FV(E), is defined as follows:

a) FV(c) = ∅ for any constant c

b) FV(x) = {x} for any variable x

c) FV(E1 E2) = FV(E1) ∪ FV(E2)

d) FV(λx . E) = FV(E) – {x} ❚

A lambda expression E with no free variables (FV(E) = ∅) is called closed .

5.1 CONCEPTS AND EXAMPLES

146 CHAPTER 5 THE LAMBDA CALCULUS

Definition : The substitution of an expression for a (free) variable in a lambda
expression is denoted by E[v→E1] and is defined as follows:

a) v[v→E1] = E1 for any variable v

b) x[v→E1] = x for any variable x≠v

c) c[v→E1] = c for any constant c

d) (Erator Erand)[v→E1] = ((Erator[v→E1]) (Erand[v→E1]))

e) (λv . E)[v→E1] = (λv . E)

f) (λx . E)[v→E1] = λx . (E[v→E1]) when x≠v and x∉FV(E1)

g) (λx . E)[v→E1] = λz . (E[x→z][v→E1]) when x≠v and x∈FV(E1),

where z≠v and z∉FV(E E1) ❚

In part g) the first substitution E[x→z] replaces the bound variable x that will
capture the free x’s in E1 by an entirely new bound variable z. Then the
intended substitution can be performed safely.

Example : (λy . (λf . f x) y)[x→f y]

(λy . (λf . f x) y)[x→f y]

= λz . ((λf . f x) z)[x→f y] by g) since y∈FV(f y)

= λz . ((λf . f x)[x→f y] z[x→f y]) by d)

= λz . ((λf . f x)[x→f y] z) by b)

= λz . (λg . (g x)[x→f y]) z by g) since f∈FV(f y)

= λz . (λg . g (f y)) z by d), b), and a) ❚

Observe that if v∉FV(E), then E[v→E
1
] is essentially the same lambda expres-

sion as E; there may be a change of bound variables, but the structure of the
expression remains unchanged.

The substitution operation provides the mechanism for implementing func-
tion application. In the next section we define the rules for simplifying lambda
expressions based on this idea of substitution.

Exercises

1. Correctly parenthesize each of these lambda expressions:

a) λx . x λy . y x

147

b) (λx . x) (λy . y) λx . x (λy . y) z

c) (λf . λy . λz . f z y z) p x

d) λx . x λy . y λz . z λw . w z y x

2. Find the set of free variables for each of the following lambda expres-
sions:

a) λx . x y λz . x z

b) (λx . x y) λz . w λw . w z y x

c) x λz . x λw . w z y

d) λx . x y λx . y x

3. Carry out the following substitutions:

a) (f (λx . x y) λz . x y z)[x→g] b) (λx . λy . f x y)[y→x]

c) ((λx . f x) λf . f x)[f→g x] d) (λf . λy . f x y)[x→f y]

4. Using the function Twice and the successor function succ, define a func-
tion that

a) adds four to its argument.

b) adds sixteen to its argument.

5. Give a definition of the set of bound variables in a lambda expression E,
denoted by BV(E).

6. Show by an example that substitutions can be carried out that alter the
intended semantics if part g) of the substitution rule is replaced by:

g') (λx . E)[v→E1
] = λz . (E[x→z][v→E

1
]) when x≠v and x∈FV(E

1
),

where z∉FV(E E1)

5.2 LAMBDA REDUCTION

Simplifying or evaluating a lambda expression involves reducing the expres-
sion until no more reduction rules apply. The main rule for simplifying a
lambda expression, called β-reduction, encompasses the operation of func-
tion application. Since substituting for free variables in an expression may
cause variable capture, we first need a mechanism for changing the name of
a bound variable in an expression—namely, α-reduction.

5.2 LAMBDA REDUCTION

148 CHAPTER 5 THE LAMBDA CALCULUS

Definition: α-reduction

If v and w are variables and E is a lambda expression,

λv . E ⇒α λw . E[v→w]

provided that w does not occur at all in E, which makes the substitution
E[v→w] safe. The equivalence of expressions under α-reduction is what makes
part g) of the definition of substitution correct.

The α-reduction rule simply allows the changing of bound variables as long
as there is no capture of a free variable occurrence. The two sides of the rule
can be thought of as variants of each other, both members of an equivalence
class of “congruent” lambda expressions. ❚

The example substitution at the end of the previous section contains two
α-reductions:

λy . (λf . f x) y ⇒α λz . (λf . f x) z

λz . (λf . f x) z ⇒α λz . (λg . g x) z

Now that we have a justification of the substitution mechanism, the main
simplification rule can be formally defined.

Definition: β-reduction

If v is a variable and E and E1 are lambda expressions,

(λv . E) E1 ⇒β E[v→E1]

provided that the substitution E[v→E1] is carried out according to the rules
for a safe substitution.

This β-reduction rule describes the function application rule in which the
actual parameter or argument E1 is “passed to” the function (λv . E) by
substituting the argument for the formal parameter v in the function. The
left side (λv . E) E1 of a β-reduction is called a β-redex—a term derived from
the terms “reduction expression” and meaning an expression that can be β-
reduced. β-reduction serves as the main rule of evaluation in the lambda
calculus. α-reduction is simply used to make the substitutions for variables
valid. ❚

The evaluation of a lambda expression consists of a series of β-reductions,
possibly interspersed with α-reductions to change bound variables to avoid
confusion. Take E ⇒ F to mean E ⇒β F or E ⇒α F and let ⇒* be the reflexive
and transitive closure of ⇒. That means for any expression E, E ⇒* E and for
any three expressions, (E1 ⇒* E2 and E2 ⇒* E3) implies E1 ⇒* E3. The goal of
evaluation in the lambda calculus is to reduce a lambda expression via ⇒
until it contains no more β-redexes.

To define an “equality” relation on lambda expressions, we also allow a
β-reduction rule to work backward.

149

Definition : Reversing β-reduction produces the β-abstraction rule,

E[v→E1] ⇒β (λv . E) E1,

and the two rules taken together give β-conversion , denoted by ⇔β. There-
fore E ⇔β F if E ⇒β F or F ⇒β E. Take E ⇔ F to mean E ⇔β F, E ⇒α F or F ⇒α
E and let ⇔* be the reflexive and transitive closure of ⇔. Two lambda expres-
sions E and F are equivalent or equal if E ⇔* F. ❚

We also allow reductions (both α and β) to subexpressions in a lambda ex-
pression. In particular, the following three rules expand the notion of reduc-
tion to components of combinations and abstractions:

1. E1 ⇒ E2 implies E1 E ⇒ E2 E.

2. E1 ⇒ E2 implies E E1 ⇒ E E2.

3. E1 ⇒ E2 implies λx . E1 ⇒ λx . E2 .

A third rule, η-reduction, justifies an extensional view of functions; that is,
two functions are equal if they produce the same values when given the same
arguments. The rule is not strictly necessary for reducing lambda expres-
sions and may cause problems in the presence of constants, but we include
it for completeness.

Definition: η-reduction

If v is a variable, E is a lambda expression (denoting a function), and v has no
free occurrence in E,

λv . (E v) ⇒η E. ❚

Note that in the pure lambda calculus every expression is a function, but the
rule fails when E represents some constants; for example, if 5 is a predefined
constant numeral, λx . (5 x) and 5 are not equivalent or even related.

However, if E stands for a predefined function, the rule remains valid as
suggested by these examples:

λx . (sqr x) ⇒η sqr

λx . (add 5 x) ⇒η (add 5).

Remember, (add 5 x) abbreviates ((add 5) x).

The requirement that x should have no free occurrences in E is necessary to
avoid a reduction such as

λx . (add x x) ⇒ (add x),

which is clearly invalid.

Take E ⇔η F to mean E ⇒η F or F ⇒η E.

5.2 LAMBDA REDUCTION

150 CHAPTER 5 THE LAMBDA CALCULUS

The η-reduction rule can be used to justify the extensionality of functions;
namely, if f(x) = g(x) for all x, then f = g. In the framework of the lambda
calculus, we can prove an extensionality property.

Extensionality Theor em: If F1 x ⇒* E and F2 x ⇒* E where x∉FV(F1 F2),
then F1 ⇔* F2 where ⇔* includes η-reductions.

Proof: F1 ⇔η λx . (F1 x) ⇔* λx . E ⇔* λx . (F2 x) ⇔η F2. ❚

Finally, in an applied lambda calculus containing predefined values and op-
erations, we need a justification for evaluating combinations of constant ob-
jects. Such a rule is known as δ-reduction.

Definition: δ-reduction

If the lambda calculus has predefined constants (that is, if it is not pure),
rules associated with those predefined values and functions are called δ rules;
for example, (add 3 5) ⇒δ 8 and (not true) ⇒δ

false. ❚

Example : Consider the following reduction of Twice (λn . (add n 1)) 5 where
the leftmost β-redex is simplified in each step. For each β-reduction, the
redex has its bound variable and argument highlighted in boldface.

Twice (λn . (add n 1)) 5 ⇒ (λf . λx . (f (f x))) (λn . (add n 1)) 5

⇒β (λx . ((λn . (add n 1)) ((λn . (add n 1)) x))) 5

⇒β (λn . (add n 1)) ((λn . (add n 1)) 5)

⇒β (add ((λn . (add n 1)) 5) 1)

⇒β (add (add 5 1) 1) ⇒δ 7. ❚

The key to performing a reduction of a lambda calculus expression lies in
recognizing a β-redex, (λv . E) E1. Observe that such a lambda expression is
a combination whose left subexpression is a lambda abstraction. In terms of
the abstract syntax, we are looking for a structure with the form illustrated
by the following tree:

E

comb

lamb

x

E1

151

Reduction Strategies

The main goal of manipulating a lambda expression is to reduce it to a “sim-
plest form” and consider that as the value of the lambda expression.

Definition : A lambda expression is in normal for m if it contains no β-redexes
(and no δ-rules in an applied lambda calculus), so that it cannot be further
reduced using the β-rule or the δ-rule. An expression in normal form has no
more function applications to evaluate. ❚

The concepts of normal form and reduction strategy can be investigated by
asking four questions:

1. Can every lambda expression be reduced to a normal form?

2. Is there more than one way to reduce a particular lambda expression?

3. If there is more than one reduction strategy, does each one lead to the
same normal form expression?

4. Is there a reduction strategy that will guarantee that a normal form ex-
pression will be produced?

The first question has a negative answer, as shown by the lambda expression
(λx . x x) (λx . x x). This β-redex reduces to itself, meaning that the only
reduction path continues forever:

(λx . x x) (λx . x x) ⇒β

(λx . x x) (λx . x x) ⇒β (λx . x x) (λx . x x) ⇒β …

The second question has an affirmative answer, as evidenced by the different
reduction paths in the following examples.

Example : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

Path 1 : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

⇒β (λy . (add y ((λz . (mul 7 z)) 3))) 5

⇒β (add 5 ((λz . (mul 7 z)) 3))

⇒β (add 5 (mul 7 3)) ⇒δ (add 5 21) ⇒δ 26

Path 2 : (λx . λy . (add y ((λz . (mul x z)) 3))) 7 5

⇒β (λx . λy . (add y (mul x 3))) 7 5

⇒β (λy . (add y (mul 7 3))) 5

⇒δ (λy . (add y 21)) 5 ⇒β (add 5 21) ⇒δ 26

5.2 LAMBDA REDUCTION

152 CHAPTER 5 THE LAMBDA CALCULUS

In this example both paths lead to the same result, which is clearly in normal
form. Note that in both paths λx must be reduced before λy because at this
point in the reduction, λy is not part of a β-redex. ❚

Example : (λy . 5) ((λx . x x) (λx . x x))

Path 1 : (λy . 5) ((λx . x x) (λx . x x)) ⇒β 5

Path 2 : (λy . 5) ((λx . x x) (λx . x x))

⇒β (λy . 5) ((λx . x x) (λx . x x))

⇒β (λy . 5) ((λx . x x) (λx . x x)) …

With this example the first path, which reduces the leftmost redex first, leads
to a normal form expression, but the second path, which evaluates the
rightmost application each time, results in a nonterminating calculation. ❚

These two reduction strategies have names.

Definition : A normal or der reduction always reduces the leftmost outer-
most β-redex (or δ-redex) first. An applicative or der reduction always re-
duces the leftmost innermost β-redex (or δ-redex) first. ❚

The operative words in this definition are “outermost” and “innermost”. Only
when more than one outermost or innermost redex occur in a lambda
expresion do we choose the leftmost of these redexes.

Definition : For any lambda expression of the form E = ((λx . B) A), we say
that β-redex E is outside any β-redex that occurs in B or A and that these are
inside E. A β-redex in a lambda expression is outermost if there is no β-
redex outside of it, and it is innermost if there is no β-redex inside of it. ❚

Sometimes constructing an abstract syntax tree for the lambda expression
can help show the pertinent β-redexes. For example, in Figure 5.1 the tree
has the outermost and innermost β-redexes marked for the lambda expres-
sion (((λx . λy . (add x y)) ((λz . (succ z)) 5)) ((λw . (sqr w)) 7)). The two kinds of
structured subexpressions are tagged by comb for combinations and lamb
for lambda abstractions. From the tree, we can identify the leftmost outer-
most β-redex as ((λx . λy . (add x y)) ((λz . (succ z)) 5)) and the leftmost inner-
most as ((λz . (succ z)) 5). Remember that a β-redex (λv . E) E1 is a combina-
tion consisting of an abstraction joined with another expression to be passed
to the function. Some abstractions cannot be considered as innermost or
outermost because they are not part of β-redexes.

153

comblamb

w

x

y

z

5

7

comb comb

comb

combcomb

comb

lamb

lamb lamb

w

x

z

y

succ

sqr

add

comb

Outermost

Innermost
and

Outermost

Innermost

Figure 5.1: β-redexes in (((λx.λy.(add x y)) ((λz.(succ z)) 5)) ((λw.(sqr w)) 7))

When reducing lambda expressions in an applied lambda calculus, use a
reduction strategy to decide when both β-reductions and δ-reductions are
carried out. For predefined binary operations, we complete the δ-reduction
only when both arguments have been evaluated. Strictly following an
applicative order reduction strategy requires that ((λn . (add 5 n)) 8) be re-
duced to the lambda expression ((λn . add5 n) 8) where add5 : N → N is the
function that adds 5 to its argument. To avoid making up unary functions
from partially evaluated curried binary functions, we postpone the evalua-
tion of add until both of its arguments are evaluated. So the reduction pro-
ceeds as follows:

((λn . (add 5 n)) 8) ⇒β (add 5 8) ⇒δ 13.

The two remaining questions can be answered by applying the results proved
by Alonzo Church and J. Barkley Rosser in 1936.

Church-Rosser Theor em I : For any lambda expressions E, F, and G, if E ⇒*
F and E ⇒* G, there is a lambda expression Z such that F ⇒* Z and G ⇒* Z.

Proof: The somewhat technical proof of this theorem can be found in
[Barendregt84] or [MacLennan90]. ❚

5.2 LAMBDA REDUCTION

154 CHAPTER 5 THE LAMBDA CALCULUS

Any relation that satisfies this condition is said to have the diamond pr op-
erty or the confluence pr operty .The diagram below suggests the origin of
these terms.

E

F G

Z

⇒ ∗

⇒ ∗ ⇐∗

∗ ⇐

Corollary : For any lambda expressions E, M, and N, if E ⇒* M and E ⇒* N
where M and N are in normal form, M and N are variants of each other
(equivalent with respect to α-reduction).

Proof: The only reduction possible for an expression in normal form is an α-
reduction. Therefore the lambda expression Z in the theorem must be a vari-
ant of M and N by α-reduction only. ❚

This corollary states that if a lambda expression has a normal form, that
normal form is unique up to a change of bound variables, thereby answering
the third question.

Church-Rosser Theor em II : For any lambda expressions E and N, if E ⇒* N
where N is in normal form, there is a normal order reduction from E to N.

Proof: Again see [Barendregt84]. ❚

The second Church-Rosser theorem answers the fourth question by stating
that normal order reduction will produce a normal form lambda expression
if one exists.

A normal order reduction can have either of the following outcomes:
1. It reaches a unique (up to α-conversion) normal form lambda expression.
2. It never terminates.

Unfortunately, there is no algorithmic way to determine for an arbitrary lambda
expression which of these two outcomes will occur.

Turing machines are abstract machines designed in the 1930s by Alan Tur-
ing to model computable functions. It has been shown that the lambda cal-
culus is equivalent to Turing machines in the sense that every lambda ex-
pression has an equivalent function defined by some Turing machine and
vice versa. This equivalence gives credibility to Church’s thesis.

Church’s Thesis : The effectively computable functions on the positive inte-
gers are precisely those functions definable in the pure lambda calculus (and
computable by Turing machines). ❚

155

The term “thesis” means a conjecture. In the case of Church’s thesis, the
conjecture cannot be proved since the informal notion of “effectively comput-
able function” is not defined precisely. But since all methods developed for
computing functions have been proved to be no more powerful than the lambda
calculus, it captures the idea of computable functions as well as we can
hope.

Alan Turing proved a fundamental result, called the undecidability of the
halting pr oblem , which states that there is no algorithmic way to determine
whether or not an arbitrary Turing machine will ever stop running. Therefore
there are lambda expressions for which it cannot be determined whether a
normal order reduction will ever terminate.

Correlation with Parameter Passing

The two fundamental reduction strategies, normal and applicative order, are
related to techniques for passing parameters to a procedure or function in a
programming language. Recall that an abstraction λx . B is an anonymous
function whose formal parameter is x and whose body is the lambda expres-
sion B.

1. Call by name is the same as normal order reduction except that no redex
in a lambda expression that lies within an abstraction (within a function
body) is reduced. With call by name, an actual parameter is passed as an
unevaluated expression that is evaluated in the body of the function be-
ing executed each time the corresponding formal parameter is referenced.
Normal order is ensured by choosing the leftmost redex, which will al-
ways be an outermost one with an unevaluated operand.

2. Call by value is the same as applicative order reduction except that no
redex in a lambda expression that lies within an abstraction is reduced.
This restriction corresponds to the principle that the body of a function is
not evaluated until the function is called (in a β-reduction). Applicative
order means the argument to a function is evaluated before the function
is applied.

Example : The call by value reduction of

(λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x)) z)))) ((λz . (add z 3)) 5)

proceeds as follows:

5.2 LAMBDA REDUCTION

156 CHAPTER 5 THE LAMBDA CALCULUS

(λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) ((λz . (add z 3)) 5)

⇒β (λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) (add 5 3)

⇒δ (λx . (λf . f (succ x)) (λz . (λg . (λy . (add (mul (g y) x))) z))) 8

⇒β (λf . f (succ 8)) (λz . (λg . (λy . (add (mul (g y) 8))) z))

⇒β (λz . (λg . (λy . (add (mul (g y) 8))) z)) (succ 8)

⇒δ (λz . (λg . (λy . (add (mul (g y) 8))) z)) 9

⇒β (λg . (λy . (add (mul (g y) 8))) 9) ❚

In this example, the reduction of the argument, ((λz . (add z 3)) 5), can be
thought of as an optimization, since we pass in a value and not an unevaluated
expression that would be evaluated twice in the body of the function. Ob-
serve that the final result stops short of normal form with call by value se-
mantics.

Constants in the Pure Lambda Calculus

If Church’s thesis is to be credible, there must be a way to define the nonne-
gative integers in the pure lambda calculus. Furthermore, to allow the defi-
nition of uncurried binary functions, we need to be able to define a list con-
structor and list selectors. Since so many functions employ conditional defi-
nitions, we also need to define Boolean constants and operations. Although
all of these constants can be defined as functions in the pure lambda calcu-
lus, we consider only a few examples here.

The function “Pair” encapsulates two values in a given order; it is essentially
the dotted pair notion (cons) in Lisp.

define Pair = λa . λb . λf . f a b

Two selector functions “Head” and “Tail” confirm that Pair implements the
cons operation.

define Head = λg . g (λa . λb . a)

define Tail = λg . g (λa . λb . b)

Now the correctness of the definitions is verified by reductions:

Head (Pair p q) ⇒ (λg . g (λa . λb . a)) ((λa . λb . λf . f a b) p q)

⇒β ((λa . λb . λf . f a b) p q) (λa . λb . a)

⇒β ((λb . λf . f p b) q) (λa . λb . a)

⇒β (λf . f p q) (λa . λb . a)

⇒β (λa . λb . a) p q ⇒β (λb . p) q ⇒β p

157

As with “cons” in Lisp, “Pair” is sufficient to construct lists of arbitrary length;
for example, assuming we have positive integers and a special constant,

define Nil = λx . λa . λb . a,

a list can be constructed as follows:

define [1, 2, 3, 4] = Pair 1 (Pair 2 (Pair 3 (Pair 4 Nil))).

Combinations of the selector functions can choose items from the list:

Head (Tail (Tail [1, 2, 3, 4])) ⇒ 3.

Several ways have been proposed for representing the natural numbers in
the pure lambda calculus. In each case, cardinal values are encoded as pat-
terns in function definitions. Our approach will be to code a natural number
by the number of times a function parameter is applied:

define 0 = λf . λx . x

define 1 = λf . λx . f x

define 2 = λf . λx . f (f x)

define 3 = λf . λx . f (f (f x)) and so on.

Based on this definition of numerals, the standard arithmetic operations can
be defined as functions in the lambda calculus. We give two examples here.

Successor function, Succ : N → N

define Succ = λn . λf . λx . f (n f x)

Addition operation, Add : N → N → N

define Add = λm . λn . λf . λx . m f (n f x).

As an example of a reduction using this arithmetic of pure lambda expres-
sions, consider the successor of 2. The bound variables are altered in 2 to
make the reduction easier to follow, but the changes are really unnecessary.

Succ 2 ⇒ (λn . λf . λx . f (n f x)) (λg . λy . g (g y))

⇒β λf . λx . f ((λg . λy . g (g y)) f x)

⇒β λf . λx . f ((λy . f (f y)) x)

⇒β λf . λx . f (f (f x)) = 3

5.2 LAMBDA REDUCTION

158 CHAPTER 5 THE LAMBDA CALCULUS

Functional Programming Languages

All functional programming languages can be viewed as syntactic variations
of the lambda calculus. Certainly the fundamental operations in all func-
tional languages are the creation of functions—namely, lambda abstraction—
and the application of functions, the two basic operations in the lambda
calculus. The naming of functions or other objects is pure syntactic sugar
since the values named can be substituted directly for their identifiers, at
least for nonrecursive definitions. Recursive definitions can be made
nonrecursive using a fixed point finder, an issue that we cover in Chapter 10.

Most current functional programming languages follow static scoping to re-
solve references to identifiers not declared in a local scope. Static or lexical
scoping means that nonlocal variables refer to bindings created in the textu-
ally enclosing blocks. In contrast, with dynamic scoping nonlocal references
are resolved by following the calling chain. We examine these two possibili-
ties more carefully in Chapters 6 and 8.

Nested scopes are naturally created by the activations of nested function
calls where the formal parameters designate the local identifiers. A let ex-
pression is an alternate means of writing a lambda expression that is a func-
tion application.

let x=5 in (add x 3) means (λx . (add x 3)) 5.

In some functional languages, a where expression acts as an alternative to
the let expression.

(add x 3) where x=5 also means (λx . (add x 3)) 5.

A recursive let or where, sometimes called “letrec” or “whererec”, requires the
fixed point operator, but we postpone a discussion of that until Chapter 10.
At any rate, the syntactic forms of a functional programming language can
be translated into the lambda calculus and studied in that context. For more
on this translation process, see the further readings at the end of this chap-
ter.

Exercises

1. Identify the innermost and outermost β-redexes in the following lambda
expression and draw its abstract syntax tree:

(λx y z . (add x (mul y z))) ((λx . (succ x)) 5) 12 ((λw . (w 4)) sqr)

159

2. Use both normal order reduction and applicative order reduction to re-
duce the following lambda expressions. Reach a normal form represen-
tation if possible.

a) (λg . g 5) (λx . (add x 3))

b) (λx . (λy z . z y) x) p (λx . x)

c) (λx . x x x) (λx . x x x)

d) (λx . λy . (add x ((λx . (sub x 3)) y))) 5 6

e) (λc . c (λa . λb . b)) ((λa . λb . λf . f a b) p q)

f) Twice (λn . (mul 2 (add n 1))) 5

g) Twice (Twice (λn . (mul 2 (add n 1)))) 5

h) Twice Twice sqr 2

i) (λx . ((λz . (add x x)) ((λx . λz . (z 13 x)) 0 div))) ((λx . (x 5)) sqr)

3. Use call by value semantics to reduce the following lambda expressions:

a) (λf . f add (f mul (f add 5))) (λg . λx . g x x)

b) (λx . λf . f (f x)) ((λy . (add y 2)) ((λz . (sqr z)) ((λy . (succ y)) 1))) sqr

4. Show that Tail (Pair p q) ⇒β q.

5. Using constants defined in the pure lambda calculus, verify the follow-
ing reductions:

a) Succ 0 ⇒ 1

b) Add 2 3 ⇒ 5

6. Using the definitions of Pair, Head, Tail, Curry, and Uncurry, where

define Curry = λf . λx . λy . f (Pair x y)

define Uncurry = λf . λp . f (Head p) (Tail p)

carry out the following reductions:

a) Curry (Uncurry h) ⇒ h

b) Uncurry (Curry h) (Pair r s) ⇒ h (Pair r s)

7. Translate these “let” expressions into lambda expressions and reduce
them. Also write the expressions using “where” instead of “let”.

a) let x = 5 in let y = (add x 3) in (mul x y)

b) let a = 7 in let g = λx . (mul a x) in let a = 2 in (g 10)

5.2 LAMBDA REDUCTION

160 CHAPTER 5 THE LAMBDA CALCULUS

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

In this section we implement a lambda calculus evaluator in Prolog for an
applied lambda calculus with a few constants. Extensions are suggested in
the exercises. The implementation was inspired by a lambda calculus evalu-
ator written in Lisp and described in [Gordon88].

The evaluator expects to read a file containing one lambda expression to be
reduced according to a normal order reduction strategy. A sample execution
follows:

>>> Evaluating an Applied Lambda Calculus <<<
Enter name of source file: twice
 ((L f x (f (f x))) (L n (mul 2 (add n 1))) 5)
Successful Scan
Successful Parse
Result = 26
yes

Since Greek letters are missing from the ascii character set, we use “L” to
stand for λ in lambda expressions. The concrete syntax recognized by our
implementation, displayed in Figure 5.2, allows only two abbreviations for
eliminating parentheses:

(L x y E) means (L x (L y E)), which stands for λx . λy . E and

(E1 E2 E3) means ((E1 E2) E3).

In particular, outermost parentheses are never omitted.

<expression> ::= <identifier> | <constant>

| (L <identifier>+ <expression>)

| (<expression>+ <expression>)

<constant> ::= <numeral> | true | false | succ | sqr

| add | sub | mul

Figure 5.2: Concrete Syntax for an Applied Lambda Calculus

Scanner and Parser

The scanner for the implementation needs to recognize identifiers starting
with lowercase letters, numerals (only nonnegative to simplify the example),
parentheses, and the reserved words “L”, “true”, and “false”, together with

161

the identifiers for the predefined operations. The scanner for Wren can be
adapted to recognize these tokens for the lambda calculus. Remember that
an atom starting with an uppercase letter, such as L, must be written within
apostrophes in Prolog.

The parser takes the list of tokens Tokens from the scanner and constructs
an abstract syntax tree for the lambda expression as a Prolog structure. The
examples below illustrate the tags used by the abstract syntax.

Lambda Expression: λx . (sqr x)

Concrete Syntax: (L x (sqr x))

Abstract Syntax Tree: lamb(x,comb(con(sqr),var(x)))

Lambda Expression: (λx . λy . (add x y)) 5 8

Concrete Syntax: ((L x y (add x y)) 5 8)

Abstract Syntax Tree: comb(comb(lamb(x,lamb(y,comb(comb(con(add),

var(x)),var(y)))),con(5)),con(8))

The abstract syntax tree for the second example is displayed in Figure 5.3.

lambx

comb

con(5)

con(8)comb

comb

lamb

y

comb

con(add) var(x)

var(y)

Figure 5.3: Abstract Syntax Tree for (λx . λy . (add x y)) 5 8

Figure 5.4 gives the abstract syntax used by the lambda calculus evaluator
following a tagged structure format. Identifiers and constants are left un-
specified since they are handled by the scanner.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

162 CHAPTER 5 THE LAMBDA CALCULUS

Expression ::= var(Identifier) | con(Constant)

| lamb(Identifier,Expression)

| comb(Expression,Expression)

Figure 5.4: Abstract Syntax for an Applied Lambda Calculus

We invoke the parser by means of program(expr(E),Tokens,[eop]). Following the
concrete syntax, we obtain the logic grammar shown in Figure 5.5 that rec-
ognizes variables, constants, lambda abstractions, and combinations.

program(expr(E)) --> expr(E).

expr(lamb(X,E)) --> [lparen],['L'],[var(X)],expr(E1),restlamb(E1,E).
restlamb(E,E) --> [rparen].
restlamb(var(Y),lamb(Y,E)) --> expr(E1),restlamb(E1,E).

expr(E) --> [lparen],expr(E1),expr(E2),restcomb(E1,E2,E).
restcomb(E1,E2,comb(E1,E2)) --> [rparen].
restcomb(E1,E2,E) --> expr(E3), restcomb(comb(E1,E2),E3,E).

expr(var(X)) --> [var(X)]. expr(con(N)) --> [num(N)].
expr(con(true)) --> [true]. expr(con(false)) --> [false].
expr(con(succ)) --> [succ]. expr(con(sqr)) --> [sqr].
expr(con(add)) --> [add]. expr(con(sub)) --> [sub].
expr(con(mul)) --> [mul].

Figure 5.5: Logic Grammar for the Lambda Calculus

The Lambda Calculus Evaluator

The evaluator proceeds by reducing the given lambda expression until no
further reduction is possible. That reduction can be carried out in Prolog
using

evaluate(E,NewE) :- reduce(E,TempE), evaluate(TempE,NewE).

evaluate(E,E).

When reduce fails, the second clause terminates the evaluation, returning
the current lambda expression.

Before we can describe the reduction predicate reduce, which encompasses
the β-reduction rule, the δ-reduction rule, and the overall normal order re-
duction strategy, we need to define the substitution operation used by β-

163

reduction. As a first step, we formulate a predicate for determining the free
variables in a lambda expression:

freevars(var(X),[X]).

freevars(con(C),[]).

freevars(comb(Rator,Rand),FV) :- freevars(Rator,RatorFV),
freevars(Rand,RandFV),
union(RatorFV,RandFV,FV).

freevars(lamb(X,E),FV) :- freevars(E,F), delete(X,F,FV).

The utility predicates union(S1,S2,S3), forming S3 as the union of lists S1 and
S2, and delete(X,S1,S2), which removes the item X from the list S1 producing
S2, are left for the reader to supply. Compare the Prolog definition of freevars
with the specification of FV(E) in section 5.1.

The substitution predicate follows the definition in section 5.1 case by case,
except that parts f) and g) combine into one clause with a guard, member(X,F1),
where F1 holds the free variables in E1, to distinguish the cases. If the guard
fails, we are in part f) and just carry out the substitution in E. If, however, X
is a free variable in E1, we construct a new variable Z using the predicate
variant and perform the two substitutions shown in the definition of part g).

subst(var(V),V,E1,E1). % a)

subst(var(X),V,E1,var(X)). % b)

subst(con(C),V,E1,con(C)). % c)

subst(comb(Rator,Rand),V,E1,comb(NewRator,NewRand)) :- % d)
subst(Rator,V,E1,NewRator),

subst(Rand,V,E1,NewRand).

subst(lamb(V,E),V,E1,lamb(V,E)). % e)

subst(lamb(X,E),V,E1,lamb(Z,NewE)) :- freevars(E1,F1),

(member(X,F1), freevars(E,F), % g)

union(F,[V],F2), union(F1,F2,FV),

variant(X,FV,Z),

subst(E,X,var(Z),TempE),

subst(TempE,V,E1,NewE)

; subst(E,V,E1,NewE), Z=X) . % f)

The predicate variant(X,L,NewX) builds a variable that is different from all the
variables in the list L by adding apostrophes to the end of the variable bound
to X.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

164 CHAPTER 5 THE LAMBDA CALCULUS

variant(X,L,NewX) :- member(X,L),prime(X,PrimeX),variant(PrimeX,L,NewX).

variant(X,L,X).

prime(X,PrimeX) :- name(X,L), concat(L,[39],NewL), name(PrimeX,NewL).

The ascii value 39 indicates an apostrophe. The reader needs to furnish the
utility predicates member and concat to finish the specification of the substi-
tution operation. See Appendix A for definitions of these predicates.

The reduce predicate performs a one-step reduction of a lambda expression,
using pattern matching to provide a normal order reduction strategy. Since
no clauses match a variable or a constant, no reduction exists for them—
they are already in normal form. The first clause handles a β-reduction be-
cause the pattern is the outermost β-redex. The second clause executes a
predefined function (δ-reduction) by calling a predicate compute to carry out
the arithmetic and Boolean operations. The third and fourth clauses reduce
the rator and rand expressions in that order, thus ensuring the evaluation of
outermost β-redexes from left to right. Finally, the last clause simplifies a
lambda expression by reducing its body.

reduce(comb(lamb(X,Body),Arg),R) :- subst(Body,X,Arg,R). % 1

reduce(comb(con(C),con(Arg)),R) :- compute(C,Arg,R). % 2

reduce(comb(Rator,Rand),comb(NewRator,Rand)) :-
reduce(Rator,NewRator). % 3

reduce(comb(Rator,Rand),comb(Rator,NewRand)) :-
reduce(Rand,NewRand). % 4

reduce(lamb(X,Body),lamb(X,NewBody)) :- reduce(Body,NewBody). % 5

The compute predicate evaluates the arithmetic operations using Prolog’s na-
tive numerical operations. We give it the responsibility for attaching the con
tag to the result because some predefined operations may not need a tag. An
exercise asks the reader to implement an “if” operation, which produces an
untagged answer since it only evaluates one of its branches.

compute(succ,N,con(R)) :- R is N+1.

compute(sqr,N,con(R)) :- R is N*N.

compute(add,N,con(add(N))). compute(add(M),N,con(R)) :- R is M+N.

compute(sub,N,con(sub(N))). compute(sub(M),N,con(R)) :- R is M-N.

compute(mul,N,con(mul(N))). compute(mul(M),N,con(R)) :- R is M*N.

Notice how the curried binary operations are handled by constructing a Prolog
term containing the left operand, tagged by the operation name to represent
the partially evaluated operation. To compute (add 2 3), which has as its
abstract syntax tree

165

comb(comb(con(add),con(2)),con(3)),

the evaluation proceeds as follows using add(2) to represent the partially
applied operation:

comb(comb(con(add),con(2)),con(3)) ⇒ comb(con(add(2)),con(3))
⇒ con(5).

The final result can be printed by a pretty-printer predicate pp. To visualize
the progress of the reduction, insert pp(TempE) in the evaluate predicate.

pp(var(X)) :- write(X).

pp(con(C)) :- write(C).

pp(lamb(X,E)) :- write('(L '),write(X),tab(1),pp(E),write(')').

pp(comb(Rator,Rand)) :- write('('),pp(Rator),tab(1),pp(Rand),write(')').

If the parser produces a structure of the form expr(Exp), the lambda calculus
evaluator can be invoked using the query

evaluate(Exp,Result), nl, write('Result = '), pp(Result), nl.

Although the lambda calculus evaluator in Prolog suffers from a lack of effi-
ciency, it provides an effective tool for describing the reduction of lambda
expressions. The reader will find that the task of matching parentheses cor-
rectly in an expression inflicts the most discomfort to a user of the evaluator.

Exercises

1. Complete the Prolog code for the lambda calculus evaluator by writing
the missing utility predicates and test the evaluator on some of the lambda
expressions in section 5.2.

2. Define a Prolog predicate boundvars(E,List) that produces a list contain-
ing the bound variables in E.

3. Add the operations “div”, “pred” (for predecessor), “and”, “or”, “not”, “zerop”
(testing whether an expression equals zero), and “(if E1,E2,E3)” to the
evaluator. Test the evaluator on the lambda expression:

((L x (if (zerop x) 5 (div 100 x))) 0).

4. Add lists of arbitrary lambda expressions “[E1, E2, …, En]”, the opera-
tions “cons”, “head”, “tail”, and “nullp” (testing whether a list is empty),
and the constant “nil” to the evaluator.

5.3 LABORATORY: A LAMBDA CALCULUS EVALUATOR

166 CHAPTER 5 THE LAMBDA CALCULUS

5. Change the evaluator to applicative order reduction and test it by com-
paring it to the normal order reducer.

6. Add a mechanism to the evaluator for giving definitions prior to the
lambda expression to be evaluated. An example program is

define Twice = (L f x (f (f x)))

define Thrice = (L f x (f (f (f x))))

define Double = (L x (add x x))

(Thrice Twice Double 3).

Provide a predicate elaborate that enters the definitions into an environ-
ment structure, say

env(Double,lamb(x,comb(comb(con(add),var(x)),var(x))),

env(Thrice,lamb(f,lamb(x,comb(var(f),comb(var(f),comb(var(f),var(x)))))),

env(Twice,lamb(f,lamb(x,comb(var(f),comb(var(f),var(x))))),nil)))

where nil represents an empty environment, and a predicate expand that
replaces the defined names by their bindings in the environment. De-
sign the mechanism so that definitions may refer to names that have
already been defined in the list of declarations. This modification will
require changes to the scanner and parser as well as the evaluator.

5.4 FURTHER READING

Many books on functional programming contain material on the lambda cal-
culus, including [Michaelson89], [Revesz88], [Field88], and [Reade89]. For a
short but very clear presentation of the lambda calculus, we recommend
[Gordon88], which contains a lambda calculus evaluator written in Lisp. The
text by Bruce MacLennan [MacLennan90] contains readable proofs for some
of the theoretical results that we skipped in this chapter. For an advanced
and exhaustive look at the lambda calculus, see [Barendregt84].

Several books describe a methodology for translating programs in a func-
tional language into the lambda calculus, among them [Peyton Jones87] and
[Diller88].

